nim-eth/tests/trie/test_binaries_utils.nim

177 lines
6.9 KiB
Nim
Raw Normal View History

2019-02-05 14:01:10 +02:00
import
unittest, strutils,
ranges/bitranges, eth/rlp/types, nimcrypto/[keccak, hash],
eth/trie/[binaries, trie_utils],
test_utils
proc parseBitVector(x: string): BitRange =
result = genBitVec(x.len)
for i, c in x:
result[i] = (c == '1')
const
commonPrefixData = [
(@[0b0000_0000.byte], @[0b0000_0000.byte], 8),
(@[0b0000_0000.byte], @[0b1000_0000.byte], 0),
(@[0b1000_0000.byte], @[0b1100_0000.byte], 1),
(@[0b0000_0000.byte], @[0b0100_0000.byte], 1),
(@[0b1110_0000.byte], @[0b1100_0000.byte], 2),
(@[0b0000_1111.byte], @[0b1111_1111.byte], 0)
]
suite "binaries utils":
test "get common prefix length":
for c in commonPrefixData:
var
c0 = c[0]
c1 = c[1]
let actual_a = getCommonPrefixLength(c0.bits, c1.bits)
let actual_b = getCommonPrefixLength(c1.bits, c0.bits)
let expected = c[2]
check actual_a == actual_b
check actual_a == expected
const
None = ""
parseNodeData = {
"\x00\x03\x04\x05\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p":
(0, "00110000010000000101", "\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p", false),
"\x01\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p":
(1, "\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p", "\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p", false),
"\x02value": (2, None, "value", false),
"": (0, None, None, true),
"\x00\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p": (0, None, None, true),
"\x01\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p": (0, None, None, true),
"\x01\x02\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p":
(0, None, None, true),
"\x02": (0, None, None, true),
"\x03": (0, None, None, true)
}
test "node parsing":
for c in parseNodeData:
let input = toRange(c[0])
let node = c[1]
let kind = TrieNodeKind(node[0])
let raiseError = node[3]
var res: TrieNode
if raiseError:
expect(InvalidNode):
res = parseNode(input)
else:
res = parseNode(input)
check(kind == res.kind)
case res.kind
of KV_TYPE:
check(res.keyPath == parseBitVector(node[1]))
check(res.child == toRange(node[2]))
of BRANCH_TYPE:
check(res.leftChild == toRange(node[2]))
check(res.rightChild == toRange(node[2]))
of LEAF_TYPE:
check(res.value == toRange(node[2]))
const
kvData = [
("0", "\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p", "\x00\x10\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p", false),
("" , "\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p", None, true),
("0", "\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p", None, true),
("1", "\x00\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p", None, true),
("2", "", None, true)
]
test "kv node encoding":
for c in kvData:
let keyPath = parseBitVector(c[0])
let node = toRange(c[1])
let output = toBytes(c[2])
let raiseError = c[3]
if raiseError:
expect(ValidationError):
check output == encodeKVNode(keyPath, node)
else:
check output == encodeKVNode(keyPath, node)
const
branchData = [
("\xc8\x9e\xfd\xaaT\xc0\xf2\x0cz\xdfa(\x82\xdf\tP\xf5\xa9Qc~\x03\x07\xcd\xcbLg/)\x8b\x8b\xc6", "\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p",
"\x01\xc8\x9e\xfd\xaaT\xc0\xf2\x0cz\xdfa(\x82\xdf\tP\xf5\xa9Qc~\x03\x07\xcd\xcbLg/)\x8b\x8b\xc6\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p", false),
("", "\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p", None, true),
("\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p", "\x01", None, true),
("\xc5\xd2F\x01\x86\xf7#<\x92~}\xb2\xdc\xc7\x03\xc0\xe5\x00\xb6S\xca\x82';{\xfa\xd8\x04]\x85\xa4p", "12345", None, true),
(repeat('\x01', 33), repeat('\x01', 32), None, true),
]
test "branch node encode":
for c in branchData:
let left = toRange(c[0])
let right = toRange(c[1])
let output = toBytes(c[2])
let raiseError = c[3]
if raiseError:
expect(ValidationError):
check output == encodeBranchNode(left, right)
else:
check output == encodeBranchNode(left, right)
const
leafData = [
("\x03\x04\x05", "\x02\x03\x04\x05", false),
("", None, true)
]
test "leaf node encode":
for c in leafData:
let raiseError = c[2]
if raiseError:
expect(ValidationError):
check toBytes(c[1]) == encodeLeafNode(toRange(c[0]))
else:
check toBytes(c[1]) == encodeLeafNode(toRange(c[0]))
test "random kv encoding":
let lengths = randList(int, randGen(1, 999), randGen(100, 100), unique = false)
for len in lengths:
var k = len
var bitvec = genBitVec(len)
var nodeHash = keccak256.digest(cast[ptr byte](k.addr), uint(sizeof(int))).toRange
var kvnode = encodeKVNode(bitvec, nodeHash).toRange
# first byte if KV_TYPE
# in the middle are 1..n bits of binary-encoded-keypath
# last 32 bytes are hash
var keyPath = decodeToBinKeypath(kvnode[1..^33])
check kvnode[0].ord == KV_TYPE.ord
check keyPath == bitvec
check kvnode[^32..^1] == nodeHash
test "optimized single bit keypath kvnode encoding":
var k = 1
var nodeHash = keccak256.digest(cast[ptr byte](k.addr), uint(sizeof(int))).toRange
var bitvec = genBitVec(1)
bitvec[0] = false
var kvnode = encodeKVNode(bitvec, nodeHash).toRange
var kp = decodeToBinKeypath(kvnode[1..^33])
var okv = encodeKVNode(false, nodeHash).toRange
check okv == kvnode
var okp = decodeToBinKeypath(kvnode[1..^33])
check okp == kp
check okp.len == 1
check okp == bitvec
bitvec[0] = true
kvnode = encodeKVNode(bitvec, nodeHash).toRange
kp = decodeToBinKeypath(kvnode[1..^33])
okv = encodeKVNode(true, nodeHash).toRange
check okv == kvnode
okp = decodeToBinKeypath(kvnode[1..^33])
check okp == kp
check okp.len == 1
check okp == bitvec