nim-eth/eth/p2p/auth.nim

402 lines
12 KiB
Nim
Raw Permalink Normal View History

2019-02-05 15:40:29 +00:00
#
# Ethereum P2P
# (c) Copyright 2018-2024
2019-02-05 15:40:29 +00:00
# Status Research & Development GmbH
#
# Licensed under either of
# Apache License, version 2.0, (LICENSE-APACHEv2)
# MIT license (LICENSE-MIT)
#
## This module implements Ethereum EIP-8 RLPx authentication - pre-EIP-8
## messages are not supported
## https://github.com/ethereum/devp2p/blob/5713591d0366da78a913a811c7502d9ca91d29a8/rlpx.md#initial-handshake
## https://github.com/ethereum/EIPs/blob/b479473414cf94445b450c266a9dedc079a12158/EIPS/eip-8.md
2019-02-05 15:40:29 +00:00
{.push raises: [].}
import
2022-06-17 20:45:37 +00:00
nimcrypto/[rijndael, keccak, utils],
stew/[arrayops, byteutils, endians2, objects],
results,
../rlp,
../common/keys,
./ecies
2020-04-07 09:56:25 +00:00
export results
2019-02-05 15:40:29 +00:00
type keccak256 = keccak.keccak256
2019-02-05 15:40:29 +00:00
const
# Auth message sizes
MsgLenLenEIP8* = 2
## auth-size = size of enc-auth-body, encoded as a big-endian 16-bit integer
## ack-size = size of enc-ack-body, encoded as a big-endian 16-bit integer
MinPadLenEIP8* = 100
MaxPadLenEIP8* = 300
## Padding makes message length unpredictable which makes packet filtering
## a tiny bit harder - although not necessary any more, we always add at
## least 100 bytes of padding to make the message distinguishable from
## pre-EIP8 and at most 200 to stay within recommendation
# signature + pubkey + nonce + version + rlp encoding overhead
# 65 + 64 + 32 + 1 + 7 = 169
2019-02-05 15:40:29 +00:00
PlainAuthMessageEIP8Length = 169
PlainAuthMessageMaxEIP8 = PlainAuthMessageEIP8Length + MaxPadLenEIP8
# Min. encrypted message + size prefix = 284
AuthMessageEIP8Length* =
eciesEncryptedLength(PlainAuthMessageEIP8Length) + MsgLenLenEIP8
AuthMessageMaxEIP8* = AuthMessageEIP8Length + MaxPadLenEIP8
## Minimal output buffer size to pass into `authMessage`
# Ack message sizes
# pubkey + nounce + version + rlp encoding overhead
# 64 + 32 + 1 + 5 = 102
PlainAckMessageEIP8Length = 102
PlainAckMessageMaxEIP8 = PlainAckMessageEIP8Length + MaxPadLenEIP8
# Min. encrypted message + size prefix = 217
AckMessageEIP8Length* =
eciesEncryptedLength(PlainAckMessageEIP8Length) + MsgLenLenEIP8
AckMessageMaxEIP8* = AckMessageEIP8Length + MaxPadLenEIP8
## Minimal output buffer size to pass into `ackMessage`
Vsn = [byte 4]
## auth-vsn = 4
## ack-vsn = 4
2019-02-05 15:40:29 +00:00
type
Nonce* = array[KeyLength, byte]
HandshakeFlag* = enum
Initiator ## `Handshake` owner is connection initiator
Responder ## `Handshake` owner is connection responder
2019-02-05 15:40:29 +00:00
AuthError* = enum
EcdhError = "auth: ECDH shared secret could not be calculated"
BufferOverrun = "auth: buffer overrun"
SignatureError = "auth: signature could not be obtained"
EciesError = "auth: ECIES encryption/decryption error"
InvalidPubKey = "auth: invalid public key"
InvalidAuth = "auth: invalid Authentication message"
InvalidAck = "auth: invalid Authentication ACK message"
RlpError = "auth: error while decoding RLP stream"
IncompleteError = "auth: data incomplete"
2019-02-05 15:40:29 +00:00
Handshake* = object
flags*: set[HandshakeFlag] ## handshake flags
host*: KeyPair ## host keypair
ephemeral*: KeyPair ## ephemeral host keypair
remoteHPubkey*: PublicKey ## remote host public key
remoteEPubkey*: PublicKey ## remote host ephemeral public key
initiatorNonce*: Nonce ## initiator nonce
responderNonce*: Nonce ## responder nonce
2019-02-05 15:40:29 +00:00
ConnectionSecret* = object
aesKey*: array[aes256.sizeKey, byte]
macKey*: array[KeyLength, byte]
egressMac*: keccak256
ingressMac*: keccak256
AuthResult*[T] = Result[T, AuthError]
2019-02-05 15:40:29 +00:00
template toa(a, b, c: untyped): untyped =
toOpenArray((a), (b), (b) + (c) - 1)
proc mapErrTo[T, E](r: Result[T, E], v: static AuthError): AuthResult[T] =
r.mapErr(
proc(e: E): AuthError =
v
)
2019-02-05 15:40:29 +00:00
proc init*(
T: type Handshake,
rng: var HmacDrbgContext,
host: KeyPair,
flags: set[HandshakeFlag],
): T =
2019-02-05 15:40:29 +00:00
## Create new `Handshake` object.
var
initiatorNonce: Nonce
responderNonce: Nonce
ephemeral = KeyPair.random(rng)
2019-02-05 15:40:29 +00:00
if Initiator in flags:
2022-06-17 20:45:37 +00:00
rng.generate(initiatorNonce)
2019-02-05 15:40:29 +00:00
else:
2022-06-17 20:45:37 +00:00
rng.generate(responderNonce)
return T(
flags: flags,
host: host,
ephemeral: ephemeral,
initiatorNonce: initiatorNonce,
responderNonce: responderNonce,
)
2019-02-05 15:40:29 +00:00
proc authMessage*(
h: var Handshake,
rng: var HmacDrbgContext,
pubkey: PublicKey,
output: var openArray[byte],
): AuthResult[int] =
## Create EIP8 authentication message - returns length of encoded message
## The output should be a buffer of AuthMessageMaxEIP8 bytes at least.
if len(output) < AuthMessageMaxEIP8:
return err(AuthError.BufferOverrun)
var padsize = int(rng.generate(byte))
while padsize > (MaxPadLenEIP8 - MinPadLenEIP8):
padsize = int(rng.generate(byte))
padsize += MinPadLenEIP8
let
pencsize = eciesEncryptedLength(PlainAuthMessageEIP8Length)
wosize = pencsize + padsize
fullsize = wosize + 2
doAssert fullsize <= len(output), "We checked against max possible length above"
var secret = ecdhSharedSecret(h.host.seckey, pubkey)
secret.data = secret.data xor h.initiatorNonce
let signature = sign(h.ephemeral.seckey, SkMessage(secret.data))
secret.clear()
2019-02-05 15:40:29 +00:00
h.remoteHPubkey = pubkey
var payload =
rlp.encodeList(signature.toRaw(), h.host.pubkey.toRaw(), h.initiatorNonce, Vsn)
doAssert(len(payload) == PlainAuthMessageEIP8Length)
2019-02-05 15:40:29 +00:00
var buffer {.noinit.}: array[PlainAuthMessageMaxEIP8, byte]
copyMem(addr buffer[0], addr payload[0], len(payload))
rng.generate(toa(buffer, PlainAuthMessageEIP8Length, padsize))
let wosizeBE = uint16(wosize).toBytesBE()
output[0 ..< 2] = wosizeBE
if eciesEncrypt(
rng,
toa(buffer, 0, len(payload) + padsize),
toa(output, 2, wosize),
pubkey,
toa(output, 0, 2),
).isErr:
return err(AuthError.EciesError)
ok(fullsize)
proc ackMessage*(
h: var Handshake, rng: var HmacDrbgContext, output: var openArray[byte]
): AuthResult[int] =
## Create EIP8 authentication ack message - returns length of encoded message
## The output should be a buffer of AckMessageMaxEIP8 bytes at least.
if len(output) < AckMessageMaxEIP8:
return err(AuthError.BufferOverrun)
var padsize = int(rng.generate(byte))
while padsize > (MaxPadLenEIP8 - MinPadLenEIP8):
2022-06-17 20:45:37 +00:00
padsize = int(rng.generate(byte))
padsize += MinPadLenEIP8
2022-06-17 20:45:37 +00:00
let
pencsize = eciesEncryptedLength(PlainAckMessageEIP8Length)
2022-06-17 20:45:37 +00:00
wosize = pencsize + padsize
fullsize = wosize + 2
doAssert fullsize <= len(output), "We checked against max possible length above"
2022-06-17 20:45:37 +00:00
2019-02-05 15:40:29 +00:00
var
buffer: array[PlainAckMessageMaxEIP8, byte]
payload = rlp.encodeList(h.ephemeral.pubkey.toRaw(), h.responderNonce, Vsn)
2019-03-13 22:15:26 +00:00
doAssert(len(payload) == PlainAckMessageEIP8Length)
copyMem(addr buffer[0], addr payload[0], PlainAckMessageEIP8Length)
rng.generate(toa(buffer, PlainAckMessageEIP8Length, padsize))
output[0 ..< MsgLenLenEIP8] = uint16(wosize).toBytesBE()
if eciesEncrypt(
rng,
toa(buffer, 0, PlainAckMessageEIP8Length + padsize),
toa(output, MsgLenLenEIP8, wosize),
h.remoteHPubkey,
toa(output, 0, MsgLenLenEIP8),
).isErr:
return err(AuthError.EciesError)
ok(fullsize)
func decodeMsgLen(input: openArray[byte]): AuthResult[int] =
if input.len < 2:
return err(AuthError.IncompleteError)
ok(int(uint16.fromBytesBE(input)) + 2)
func decodeAuthMsgLen*(h: Handshake, input: openArray[byte]): AuthResult[int] =
let len = ?decodeMsgLen(input)
if len < AuthMessageEIP8Length:
return err(AuthError.IncompleteError)
ok(len)
2019-02-05 15:40:29 +00:00
func decodeAckMsgLen*(h: Handshake, input: openArray[byte]): AuthResult[int] =
let len = ?decodeMsgLen(input)
if len < AckMessageEIP8Length:
return err(AuthError.IncompleteError)
ok(len)
proc decodeAuthMessage*(h: var Handshake, m: openArray[byte]): AuthResult[void] =
2019-02-05 15:40:29 +00:00
## Decodes EIP-8 AuthMessage.
let
expectedLength = ?h.decodeAuthMsgLen(m)
size = expectedLength - MsgLenLenEIP8
# Check if the prefixed size is => than the minimum
if expectedLength < AuthMessageEIP8Length:
return err(AuthError.IncompleteError)
if expectedLength > len(m):
return err(AuthError.IncompleteError)
var buffer = newSeq[byte](eciesDecryptedLength(size))
if eciesDecrypt(
toa(m, MsgLenLenEIP8, int(size)), buffer, h.host.seckey, toa(m, 0, MsgLenLenEIP8)
).isErr:
return err(AuthError.EciesError)
2019-02-05 15:40:29 +00:00
try:
var reader = rlpFromBytes(buffer)
2019-02-05 15:40:29 +00:00
if not reader.isList() or reader.listLen() < 4:
return err(AuthError.InvalidAuth)
2019-02-05 15:40:29 +00:00
if reader.listElem(0).blobLen != RawSignatureSize:
return err(AuthError.InvalidAuth)
2019-02-05 15:40:29 +00:00
if reader.listElem(1).blobLen != RawPublicKeySize:
return err(AuthError.InvalidAuth)
2019-02-05 15:40:29 +00:00
if reader.listElem(2).blobLen != KeyLength:
return err(AuthError.InvalidAuth)
2019-02-05 15:40:29 +00:00
if reader.listElem(3).blobLen != 1:
return err(AuthError.InvalidAuth)
let
signatureBr = reader.listElem(0).toBytes()
pubkeyBr = reader.listElem(1).toBytes()
nonceBr = reader.listElem(2).toBytes()
signature = ?Signature.fromRaw(signatureBr).mapErrTo(SignatureError)
pubkey = ?PublicKey.fromRaw(pubkeyBr).mapErrTo(InvalidPubKey)
nonce = toArray(KeyLength, nonceBr)
var secret = ecdhSharedSecret(h.host.seckey, pubkey)
secret.data = secret.data xor nonce
let recovered = recover(signature, SkMessage(secret.data))
secret.clear()
h.remoteEPubkey = ?recovered.mapErrTo(SignatureError)
2019-02-05 15:40:29 +00:00
h.initiatorNonce = nonce
h.remoteHPubkey = pubkey
ok()
2019-04-23 01:31:12 +00:00
except CatchableError:
err(AuthError.RlpError)
2019-02-05 15:40:29 +00:00
proc decodeAckMessage*(h: var Handshake, m: openArray[byte]): AuthResult[void] =
2019-02-05 15:40:29 +00:00
## Decodes EIP-8 AckMessage.
let
expectedLength = ?h.decodeAckMsgLen(m)
size = expectedLength - MsgLenLenEIP8
# Check if the prefixed size is => than the minimum
if expectedLength > len(m):
return err(AuthError.IncompleteError)
var buffer = newSeq[byte](eciesDecryptedLength(size))
if eciesDecrypt(
toa(m, MsgLenLenEIP8, size), buffer, h.host.seckey, toa(m, 0, MsgLenLenEIP8)
).isErr:
return err(AuthError.EciesError)
2019-02-05 15:40:29 +00:00
try:
var reader = rlpFromBytes(buffer)
# The last element, the version, is ignored
2019-02-05 15:40:29 +00:00
if not reader.isList() or reader.listLen() < 3:
return err(AuthError.InvalidAck)
2019-02-05 15:40:29 +00:00
if reader.listElem(0).blobLen != RawPublicKeySize:
return err(AuthError.InvalidAck)
2019-02-05 15:40:29 +00:00
if reader.listElem(1).blobLen != KeyLength:
return err(AuthError.InvalidAck)
let
pubkeyBr = reader.listElem(0).toBytes()
nonceBr = reader.listElem(1).toBytes()
h.remoteEPubkey = ?PublicKey.fromRaw(pubkeyBr).mapErrTo(InvalidPubKey)
h.responderNonce = toArray(KeyLength, nonceBr)
ok()
2019-04-23 01:31:12 +00:00
except CatchableError:
err(AuthError.RlpError)
2019-02-05 15:40:29 +00:00
proc getSecrets*(
h: Handshake, authmsg: openArray[byte], ackmsg: openArray[byte]
): ConnectionSecret =
2019-02-05 15:40:29 +00:00
## Derive secrets from handshake `h` using encrypted AuthMessage `authmsg` and
## encrypted AckMessage `ackmsg`.
var
ctx0: keccak256
ctx1: keccak256
mac1: MDigest[256]
secret: ConnectionSecret
2019-02-05 15:40:29 +00:00
# ecdhe-secret = ecdh.agree(ephemeral-privkey, remote-ephemeral-pubk)
var shsec = ecdhSharedSecret(h.ephemeral.seckey, h.remoteEPubkey)
2019-02-05 15:40:29 +00:00
# shared-secret = keccak(ecdhe-secret || keccak(nonce || initiator-nonce))
ctx0.init()
ctx1.init()
ctx1.update(h.responderNonce)
ctx1.update(h.initiatorNonce)
mac1 = ctx1.finish()
ctx1.clear()
ctx0.update(shsec.data)
2019-02-05 15:40:29 +00:00
ctx0.update(mac1.data)
mac1 = ctx0.finish()
# aes-secret = keccak(ecdhe-secret || shared-secret)
ctx0.init()
ctx0.update(shsec.data)
2019-02-05 15:40:29 +00:00
ctx0.update(mac1.data)
mac1 = ctx0.finish()
# mac-secret = keccak(ecdhe-secret || aes-secret)
ctx0.init()
ctx0.update(shsec.data)
2019-02-05 15:40:29 +00:00
ctx0.update(mac1.data)
secret.aesKey = mac1.data
mac1 = ctx0.finish()
secret.macKey = mac1.data
clear(shsec)
2019-02-05 15:40:29 +00:00
# egress-mac = keccak256(mac-secret ^ recipient-nonce || auth-sent-init)
var xornonce = mac1.data xor h.responderNonce
2019-02-05 15:40:29 +00:00
ctx0.init()
ctx0.update(xornonce)
ctx0.update(authmsg)
# ingress-mac = keccak256(mac-secret ^ initiator-nonce || auth-recvd-ack)
xornonce = secret.macKey xor h.initiatorNonce
2019-02-05 15:40:29 +00:00
ctx1.init()
ctx1.update(xornonce)
ctx1.update(ackmsg)
burnMem(xornonce)
if Initiator in h.flags:
secret.egressMac = ctx0
secret.ingressMac = ctx1
else:
secret.ingressMac = ctx0
secret.egressMac = ctx1
ctx0.clear()
ctx1.clear()
secret