mirror of
https://github.com/status-im/nim-eth-p2p.git
synced 2025-01-15 01:14:26 +00:00
1434 lines
50 KiB
Nim
1434 lines
50 KiB
Nim
#
|
|
# Ethereum P2P
|
|
# (c) Copyright 2018
|
|
# Status Research & Development GmbH
|
|
#
|
|
# Licensed under either of
|
|
# Apache License, version 2.0, (LICENSE-APACHEv2)
|
|
# MIT license (LICENSE-MIT)
|
|
#
|
|
|
|
import
|
|
tables, deques, macros, sets, algorithm, hashes, times, random, options,
|
|
asyncdispatch2, asyncdispatch2/timer,
|
|
rlp, ranges/[stackarrays, ptr_arith], nimcrypto, chronicles,
|
|
eth_keys, eth_common,
|
|
kademlia, discovery, auth, rlpxcrypt, enode
|
|
|
|
type
|
|
EthereumNode* = ref object
|
|
networkId*: int
|
|
chain*: AbstractChainDB
|
|
clientId*: string
|
|
connectionState: ConnectionState
|
|
keys: KeyPair
|
|
listeningPort: Port
|
|
address: Address
|
|
rlpxCapabilities: seq[Capability]
|
|
rlpxProtocols: seq[ProtocolInfo]
|
|
listeningServer: StreamServer
|
|
protocolStates: seq[RootRef]
|
|
discovery: DiscoveryProtocol
|
|
peerPool: PeerPool
|
|
|
|
Peer* = ref object
|
|
transp: StreamTransport
|
|
dispatcher: Dispatcher
|
|
nextReqId: int
|
|
network: EthereumNode
|
|
secretsState: SecretState
|
|
connectionState: ConnectionState
|
|
remote*: Node
|
|
protocolStates: seq[RootRef]
|
|
outstandingRequests: seq[Deque[OutstandingRequest]]
|
|
awaitedMessages: seq[FutureBase]
|
|
|
|
OutstandingRequest = object
|
|
reqId: int
|
|
future: FutureBase
|
|
timeoutAt: uint64
|
|
|
|
PeerPool* = ref object
|
|
network: EthereumNode
|
|
keyPair: KeyPair
|
|
networkId: int
|
|
minPeers: int
|
|
clientId: string
|
|
discovery: DiscoveryProtocol
|
|
lastLookupTime: float
|
|
connectedNodes: Table[Node, Peer]
|
|
running: bool
|
|
listenPort*: Port
|
|
|
|
MessageInfo* = object
|
|
id*: int
|
|
name*: string
|
|
thunk*: MessageHandler
|
|
printer*: MessageContentPrinter
|
|
requestResolver: RequestResolver
|
|
nextMsgResolver: NextMsgResolver
|
|
|
|
CapabilityName* = array[3, char]
|
|
|
|
Capability* = object
|
|
name*: CapabilityName
|
|
version*: int
|
|
|
|
ProtocolInfo* = ref object
|
|
name*: CapabilityName
|
|
version*: int
|
|
messages*: seq[MessageInfo]
|
|
index: int # the position of the protocol in the
|
|
# ordered list of supported protocols
|
|
peerStateInitializer: PeerStateInitializer
|
|
networkStateInitializer: NetworkStateInitializer
|
|
handshake: HandshakeStep
|
|
disconnectHandler: DisconnectionHandler
|
|
|
|
Dispatcher = ref object
|
|
# The dispatcher stores the mapping of negotiated message IDs between
|
|
# two connected peers. The dispatcher objects are shared between
|
|
# connections running with the same set of supported protocols.
|
|
#
|
|
# `protocolOffsets` will hold one slot of each locally supported
|
|
# protocol. If the other peer also supports the protocol, the stored
|
|
# offset indicates the numeric value of the first message of the protocol
|
|
# (for this particular connection). If the other peer doesn't support the
|
|
# particular protocol, the stored offset is -1.
|
|
#
|
|
# `messages` holds a mapping from valid message IDs to their handler procs.
|
|
#
|
|
protocolOffsets: seq[int]
|
|
messages: seq[ptr MessageInfo]
|
|
|
|
MessageHandler = proc(x: Peer, data: Rlp): Future[void]
|
|
MessageContentPrinter = proc(msg: pointer): string
|
|
RequestResolver = proc(msg: pointer, future: FutureBase)
|
|
NextMsgResolver = proc(msgData: Rlp, future: FutureBase)
|
|
PeerStateInitializer = proc(peer: Peer): RootRef
|
|
NetworkStateInitializer = proc(network: EthereumNode): RootRef
|
|
HandshakeStep = proc(peer: Peer): Future[void]
|
|
DisconnectionHandler = proc(peer: Peer,
|
|
reason: DisconnectionReason): Future[void]
|
|
|
|
RlpxMessageKind* = enum
|
|
rlpxNotification,
|
|
rlpxRequest,
|
|
rlpxResponse
|
|
|
|
ConnectionState* = enum
|
|
None,
|
|
Connecting,
|
|
Connected,
|
|
Disconnecting,
|
|
Disconnected
|
|
|
|
DisconnectionReason* = enum
|
|
DisconnectRequested,
|
|
TcpError,
|
|
BreachOfProtocol,
|
|
UselessPeer,
|
|
TooManyPeers,
|
|
AlreadyConnected,
|
|
IncompatibleProtocolVersion,
|
|
NullNodeIdentityReceived,
|
|
ClientQuitting,
|
|
UnexpectedIdentity,
|
|
SelfConnection,
|
|
MessageTimeout,
|
|
SubprotocolReason = 0x10
|
|
|
|
UnsupportedProtocol* = object of Exception
|
|
# This is raised when you attempt to send a message from a particular
|
|
# protocol to a peer that doesn't support the protocol.
|
|
|
|
MalformedMessageError* = object of Exception
|
|
|
|
logScope:
|
|
topic = "rlpx"
|
|
|
|
const
|
|
baseProtocolVersion = 4
|
|
clientId = "nim-eth-p2p/0.2.0"
|
|
|
|
defaultReqTimeout = 10000
|
|
|
|
var
|
|
gProtocols: seq[ProtocolInfo]
|
|
gDispatchers = initSet[Dispatcher]()
|
|
devp2p: ProtocolInfo
|
|
|
|
# The variables above are immutable RTTI information. We need to tell
|
|
# Nim to not consider them GcSafe violations:
|
|
template rlpxProtocols: auto = {.gcsafe.}: gProtocols
|
|
template devp2pProtocolInfo: auto = {.gcsafe.}: devp2p
|
|
|
|
# Dispatcher
|
|
#
|
|
|
|
proc `$`*(p: Peer): string {.inline.} =
|
|
$p.remote
|
|
|
|
proc hash(d: Dispatcher): int =
|
|
hash(d.protocolOffsets)
|
|
|
|
proc `==`(lhs, rhs: Dispatcher): bool =
|
|
lhs.protocolOffsets == rhs.protocolOffsets
|
|
|
|
iterator activeProtocols(d: Dispatcher): ProtocolInfo =
|
|
for i in 0 ..< rlpxProtocols.len:
|
|
if d.protocolOffsets[i] != -1:
|
|
yield rlpxProtocols[i]
|
|
|
|
proc describeProtocols(d: Dispatcher): string =
|
|
result = ""
|
|
for protocol in d.activeProtocols:
|
|
if result.len != 0: result.add(',')
|
|
for c in protocol.name: result.add(c)
|
|
|
|
proc getDispatcher(node: EthereumNode,
|
|
otherPeerCapabilities: openarray[Capability]): Dispatcher =
|
|
# TODO: sub-optimal solution until progress is made here:
|
|
# https://github.com/nim-lang/Nim/issues/7457
|
|
# We should be able to find an existing dispatcher without allocating a new one
|
|
|
|
new(result)
|
|
newSeq(result.protocolOffsets, rlpxProtocols.len)
|
|
|
|
var nextUserMsgId = 0x10
|
|
|
|
for i in 0 ..< rlpxProtocols.len:
|
|
let localProtocol = rlpxProtocols[i]
|
|
if not node.rlpxProtocols.contains(localProtocol):
|
|
result.protocolOffsets[i] = -1
|
|
continue
|
|
|
|
block findMatchingProtocol:
|
|
for remoteCapability in otherPeerCapabilities:
|
|
if localProtocol.name == remoteCapability.name and
|
|
localProtocol.version == remoteCapability.version:
|
|
result.protocolOffsets[i] = nextUserMsgId
|
|
nextUserMsgId += localProtocol.messages.len
|
|
break findMatchingProtocol
|
|
# the local protocol is not supported by the other peer
|
|
# indicate this by a -1 offset:
|
|
result.protocolOffsets[i] = -1
|
|
|
|
if result in gDispatchers:
|
|
return gDispatchers[result]
|
|
else:
|
|
template copyTo(src, dest; index: int) =
|
|
for i in 0 ..< src.len:
|
|
dest[index + i] = addr src[i]
|
|
|
|
result.messages = newSeq[ptr MessageInfo](nextUserMsgId)
|
|
devp2pProtocolInfo.messages.copyTo(result.messages, 0)
|
|
|
|
for i in 0 ..< rlpxProtocols.len:
|
|
if result.protocolOffsets[i] != -1:
|
|
rlpxProtocols[i].messages.copyTo(result.messages,
|
|
result.protocolOffsets[i])
|
|
|
|
gDispatchers.incl result
|
|
|
|
# Protocol info objects
|
|
#
|
|
|
|
proc newProtocol(name: string, version: int,
|
|
peerInit: PeerStateInitializer,
|
|
networkInit: NetworkStateInitializer): ProtocolInfo =
|
|
new result
|
|
result.name[0] = name[0]
|
|
result.name[1] = name[1]
|
|
result.name[2] = name[2]
|
|
result.version = version
|
|
result.messages = @[]
|
|
result.peerStateInitializer = peerInit
|
|
result.networkStateInitializer = networkInit
|
|
|
|
proc setEventHandlers(p: ProtocolInfo,
|
|
handshake: HandshakeStep,
|
|
disconnectHandler: DisconnectionHandler) =
|
|
p.handshake = handshake
|
|
p.disconnectHandler = disconnectHandler
|
|
|
|
proc nameStr*(p: ProtocolInfo): string =
|
|
result = newStringOfCap(3)
|
|
for c in p.name: result.add(c)
|
|
|
|
proc cmp*(lhs, rhs: ProtocolInfo): int {.inline.} =
|
|
for i in 0..2:
|
|
if lhs.name[i] != rhs.name[i]:
|
|
return int16(lhs.name[i]) - int16(rhs.name[i])
|
|
return 0
|
|
|
|
proc messagePrinter[MsgType](msg: pointer): string =
|
|
result = $(cast[ptr MsgType](msg)[])
|
|
|
|
proc nextMsgResolver[MsgType](msgData: Rlp, future: FutureBase) =
|
|
var reader = msgData
|
|
Future[MsgType](future).complete reader.read(MsgType)
|
|
|
|
proc requestResolver[MsgType](msg: pointer, future: FutureBase) =
|
|
var f = Future[Option[MsgType]](future)
|
|
if not f.finished:
|
|
if msg != nil:
|
|
f.complete some(cast[ptr MsgType](msg)[])
|
|
else:
|
|
f.complete none(MsgType)
|
|
else:
|
|
# This future was already resolved, but let's do some sanity checks
|
|
# here. The only reasonable explanation is that the request should
|
|
# have timed out.
|
|
if msg != nil:
|
|
if f.read.isSome:
|
|
doAssert false, "trying to resolve a request twice"
|
|
else:
|
|
doAssert false, "trying to resolve a timed out request with a value"
|
|
else:
|
|
if not f.read.isSome:
|
|
doAssert false, "a request timed out twice"
|
|
|
|
proc registerMsg(protocol: var ProtocolInfo,
|
|
id: int, name: string,
|
|
thunk: MessageHandler,
|
|
printer: MessageContentPrinter,
|
|
requestResolver: RequestResolver,
|
|
nextMsgResolver: NextMsgResolver) =
|
|
protocol.messages.add MessageInfo(id: id,
|
|
name: name,
|
|
thunk: thunk,
|
|
printer: printer,
|
|
requestResolver: requestResolver,
|
|
nextMsgResolver: nextMsgResolver)
|
|
|
|
proc registerProtocol(protocol: ProtocolInfo) =
|
|
# TODO: This can be done at compile-time in the future
|
|
if protocol.version > 0:
|
|
if gProtocols.isNil: gProtocols = @[]
|
|
let pos = lowerBound(gProtocols, protocol)
|
|
gProtocols.insert(protocol, pos)
|
|
for i in 0 ..< gProtocols.len:
|
|
gProtocols[i].index = i
|
|
else:
|
|
devp2p = protocol
|
|
|
|
# Message composition and encryption
|
|
#
|
|
|
|
proc writeMsgId(p: ProtocolInfo, msgId: int, peer: Peer,
|
|
rlpOut: var RlpWriter) =
|
|
let baseMsgId = peer.dispatcher.protocolOffsets[p.index]
|
|
doAssert baseMsgId != -1
|
|
rlpOut.append(baseMsgId + msgId)
|
|
|
|
proc dispatchMsg(peer: Peer, msgId: int, msgData: var Rlp): Future[void] =
|
|
template invalidIdError: untyped =
|
|
raise newException(ValueError,
|
|
"RLPx message with an invalid id " & $msgId &
|
|
" on a connection supporting " & peer.dispatcher.describeProtocols)
|
|
|
|
if msgId >= peer.dispatcher.messages.len: invalidIdError()
|
|
let thunk = peer.dispatcher.messages[msgId].thunk
|
|
if thunk == nil: invalidIdError()
|
|
|
|
return thunk(peer, msgData)
|
|
|
|
proc sendMsg(p: Peer, data: BytesRange): Future[int] =
|
|
# var rlp = rlpFromBytes(data)
|
|
# echo "sending: ", rlp.read(int)
|
|
# echo "payload: ", rlp.inspect
|
|
var cipherText = encryptMsg(data, p.secretsState)
|
|
return p.transp.write(cipherText)
|
|
|
|
proc registerRequest(peer: Peer,
|
|
timeout: int,
|
|
responseFuture: FutureBase,
|
|
responseMsgId: int): int =
|
|
result = peer.nextReqId
|
|
inc peer.nextReqId
|
|
|
|
let timeoutAt = fastEpochTime() + uint64(timeout)
|
|
let req = OutstandingRequest(reqId: result,
|
|
future: responseFuture,
|
|
timeoutAt: timeoutAt)
|
|
peer.outstandingRequests[responseMsgId].addLast req
|
|
|
|
# XXX: is this safe?
|
|
let requestResolver = peer.dispatcher.messages[responseMsgId].requestResolver
|
|
proc timeoutExpired(udata: pointer) = requestResolver(nil, responseFuture)
|
|
|
|
addTimer(timeoutAt, timeoutExpired, nil)
|
|
|
|
proc resolveResponseFuture(peer: Peer, msgId: int, msg: pointer, reqId: int) =
|
|
logScope:
|
|
msg = peer.dispatcher.messages[msgId].name
|
|
msgContents = peer.dispatcher.messages[msgId].printer(msg)
|
|
receivedReqId = reqId
|
|
remotePeer = peer.remote
|
|
|
|
template resolve(future) =
|
|
peer.dispatcher.messages[msgId].requestResolver(msg, future)
|
|
|
|
template outstandingReqs: auto =
|
|
peer.outstandingRequests[msgId]
|
|
|
|
if reqId == -1:
|
|
# XXX: This is a response from an ETH-like protocol that doesn't feature
|
|
# request IDs. Handling the response is quite tricky here because this may
|
|
# be a late response to an already timed out request or a valid response
|
|
# from a more recent one.
|
|
#
|
|
# We can increase the robustness by recording enough features of the
|
|
# request so we can recognize the matching response, but this is not very
|
|
# easy to do because our peers are allowed to send partial responses.
|
|
#
|
|
# A more generally robust approach is to maintain a set of the wanted
|
|
# data items and then to periodically look for items that have been
|
|
# requested long time ago, but are still missing. New requests can be
|
|
# issues for such items potentially from another random peer.
|
|
var expiredRequests = 0
|
|
for req in outstandingReqs:
|
|
if not req.future.finished: break
|
|
inc expiredRequests
|
|
outstandingReqs.shrink(fromFirst = expiredRequests)
|
|
if outstandingReqs.len > 0:
|
|
let oldestReq = outstandingReqs.popFirst
|
|
assert oldestReq.reqId == -1
|
|
resolve oldestReq.future
|
|
else:
|
|
debug "late or duplicate reply for a RLPx request"
|
|
else:
|
|
# TODO: This is not completely sound because we are still using a global
|
|
# `reqId` sequence (the problem is that we might get a response ID that
|
|
# matches a request ID for a different type of request). To make the code
|
|
# correct, we can use a separate sequence per response type, but we have
|
|
# to first verify that the other Ethereum clients are supporting this
|
|
# correctly (because then, we'll be reusing the same reqIds for different
|
|
# types of requests). Alternatively, we can assign a separate interval in
|
|
# the `reqId` space for each type of response.
|
|
if reqId >= peer.nextReqId:
|
|
warn "RLPx response without a matching request"
|
|
return
|
|
|
|
var idx = 0
|
|
while idx < outstandingReqs.len:
|
|
template req: auto = outstandingReqs()[idx]
|
|
|
|
if req.future.finished:
|
|
assert req.timeoutAt < fastEpochTime()
|
|
# Here we'll remove the expired request by swapping
|
|
# it with the last one in the deque (if necessary):
|
|
if idx != outstandingReqs.len - 1:
|
|
req = outstandingReqs.popLast
|
|
else:
|
|
outstandingReqs.shrink(fromLast = 1)
|
|
# This was the last item, so we don't have any
|
|
# more work to do:
|
|
return
|
|
|
|
if req.reqId == reqId:
|
|
resolve req.future
|
|
# Here we'll remove the found request by swapping
|
|
# it with the last one in the deque (if necessary):
|
|
if idx != outstandingReqs.len - 1:
|
|
req = outstandingReqs.popLast
|
|
else:
|
|
outstandingReqs.shrink(fromLast = 1)
|
|
return
|
|
|
|
inc idx
|
|
|
|
debug "late or duplicate reply for a RLPx request"
|
|
|
|
proc recvMsg*(peer: Peer): Future[tuple[msgId: int, msgData: Rlp]] {.async.} =
|
|
## This procs awaits the next complete RLPx message in the TCP stream
|
|
|
|
var headerBytes: array[32, byte]
|
|
await peer.transp.readExactly(addr headerBytes[0], 32)
|
|
|
|
var msgSize: int
|
|
if decryptHeaderAndGetMsgSize(peer.secretsState,
|
|
headerBytes, msgSize) != RlpxStatus.Success:
|
|
return (-1, zeroBytesRlp)
|
|
|
|
let remainingBytes = encryptedLength(msgSize) - 32
|
|
# TODO: Migrate this to a thread-local seq
|
|
# JACEK:
|
|
# or pass it in, allowing the caller to choose - they'll likely be in a
|
|
# better position to decide if buffer should be reused or not. this will
|
|
# also be useuful for chunked messages where part of the buffer may have
|
|
# been processed and needs filling in
|
|
var encryptedBytes = newSeq[byte](remainingBytes)
|
|
await peer.transp.readExactly(addr encryptedBytes[0], len(encryptedBytes))
|
|
|
|
let decryptedMaxLength = decryptedLength(msgSize)
|
|
var
|
|
decryptedBytes = newSeq[byte](decryptedMaxLength)
|
|
decryptedBytesCount = 0
|
|
|
|
if decryptBody(peer.secretsState, encryptedBytes, msgSize,
|
|
decryptedBytes, decryptedBytesCount) != RlpxStatus.Success:
|
|
return (-1, zeroBytesRlp)
|
|
|
|
decryptedBytes.setLen(decryptedBytesCount)
|
|
var rlp = rlpFromBytes(decryptedBytes.toRange)
|
|
let msgId = rlp.read(int)
|
|
return (msgId, rlp)
|
|
|
|
proc waitSingleMsg(peer: Peer, MsgType: typedesc): Future[MsgType] {.async.} =
|
|
const wantedId = MsgType.msgId
|
|
while true:
|
|
var (nextMsgId, nextMsgData) = await peer.recvMsg()
|
|
if nextMsgId == wantedId:
|
|
return nextMsgData.read(MsgType)
|
|
|
|
proc nextMsg*(peer: Peer, MsgType: typedesc): Future[MsgType] {.async.} =
|
|
## This procs awaits a specific RLPx message.
|
|
## Any messages received while waiting will be dispatched to their
|
|
## respective handlers. The designated message handler will also run
|
|
## to completion before the future returned by `nextMsg` is resolved.
|
|
const wantedId = MsgType.msgId
|
|
if peer.awaitedMessages[wantedId] != nil:
|
|
return Future[MsgType](peer.awaitedMessages[wantedId])
|
|
|
|
new result
|
|
peer.awaitedMessages[wantedId] = result
|
|
|
|
proc dispatchMessages*(peer: Peer) {.async.} =
|
|
while true:
|
|
var (msgId, msgData) = await peer.recvMsg()
|
|
|
|
# echo "got msg(", msgId, "): ", msgData.inspect
|
|
if msgData.listLen != 0:
|
|
# TODO: this should be `enterList`
|
|
msgData = msgData.listElem(0)
|
|
|
|
await peer.dispatchMsg(msgId, msgData)
|
|
|
|
if peer.awaitedMessages[msgId] != nil:
|
|
let msgInfo = peer.dispatcher.messages[msgId]
|
|
msgInfo.nextMsgResolver(msgData, peer.awaitedMessages[msgId])
|
|
peer.awaitedMessages[msgId] = nil
|
|
|
|
iterator typedParams(n: NimNode, skip = 0): (NimNode, NimNode) =
|
|
for i in (1 + skip) ..< n.params.len:
|
|
let paramNodes = n.params[i]
|
|
let paramType = paramNodes[^2]
|
|
|
|
for j in 0 ..< paramNodes.len - 2:
|
|
yield (paramNodes[j], paramType)
|
|
|
|
proc chooseFieldType(n: NimNode): NimNode =
|
|
## Examines the parameter types used in the message signature
|
|
## and selects the corresponding field type for use in the
|
|
## message object type (i.e. `p2p.hello`).
|
|
##
|
|
## For now, only openarray types are remapped to sequences.
|
|
result = n
|
|
if n.kind == nnkBracketExpr and eqIdent(n[0], "openarray"):
|
|
result = n.copyNimTree
|
|
result[0] = newIdentNode("seq")
|
|
|
|
proc getState(peer: Peer, proto: ProtocolInfo): RootRef =
|
|
peer.protocolStates[proto.index]
|
|
|
|
template state*(connection: Peer, Protocol: typedesc): untyped =
|
|
## Returns the state object of a particular protocol for a
|
|
## particular connection.
|
|
cast[ref Protocol.State](connection.getState(Protocol.protocolInfo))
|
|
|
|
proc getNetworkState(peer: Peer, proto: ProtocolInfo): RootRef =
|
|
peer.network.protocolStates[proto.index]
|
|
|
|
template networkState*(connection: Peer, Protocol: typedesc): untyped =
|
|
## Returns the network state object of a particular protocol for a
|
|
## particular connection.
|
|
cast[ref Protocol.NetworkState](connection.getNetworkState(Protocol.protocolInfo))
|
|
|
|
proc initProtocolState*[T](state: var T, x: Peer|EthereumNode) = discard
|
|
|
|
proc createPeerState[ProtocolState](peer: Peer): RootRef =
|
|
var res = new ProtocolState
|
|
mixin initProtocolState
|
|
initProtocolState(res[], peer)
|
|
return cast[RootRef](res)
|
|
|
|
proc createNetworkState[NetworkState](network: EthereumNode): RootRef =
|
|
var res = new NetworkState
|
|
mixin initProtocolState
|
|
initProtocolState(res[], network)
|
|
return cast[RootRef](res)
|
|
|
|
proc popTimeoutParam(n: NimNode): NimNode =
|
|
var lastParam = n.params[^1]
|
|
if eqIdent(lastParam[0], "timeout"):
|
|
if lastParam[2].kind == nnkEmpty:
|
|
macros.error "You must specify a default value for the `timeout` parameter", lastParam
|
|
result = lastParam
|
|
n.params.del(n.params.len - 1)
|
|
|
|
macro rlpxProtocol*(protoIdentifier: untyped,
|
|
version: static[int],
|
|
body: untyped): untyped =
|
|
## The macro used to defined RLPx sub-protocols. See README.
|
|
var
|
|
nextId = 0
|
|
outTypes = newNimNode(nnkStmtList)
|
|
outSendProcs = newNimNode(nnkStmtList)
|
|
outRecvProcs = newNimNode(nnkStmtList)
|
|
outProcRegistrations = newNimNode(nnkStmtList)
|
|
protoName = $protoIdentifier
|
|
protoNameIdent = newIdentNode(protoName)
|
|
resultIdent = newIdentNode "result"
|
|
protocol = genSym(nskVar, protoName & "Proto")
|
|
isSubprotocol = version > 0
|
|
stateType: NimNode = nil
|
|
networkStateType: NimNode = nil
|
|
handshake = newNilLit()
|
|
disconnectHandler = newNilLit()
|
|
useRequestIds = true
|
|
Option = bindSym "Option"
|
|
# XXX: Binding the int type causes instantiation failure for some reason
|
|
# Int = bindSym "int"
|
|
Int = newIdentNode "int"
|
|
Peer = bindSym "Peer"
|
|
append = bindSym "append"
|
|
createNetworkState = bindSym "createNetworkState"
|
|
createPeerState = bindSym "createPeerState"
|
|
finish = bindSym "finish"
|
|
initRlpWriter = bindSym "initRlpWriter"
|
|
messagePrinter = bindSym "messagePrinter"
|
|
newProtocol = bindSym "newProtocol"
|
|
nextMsgResolver = bindSym "nextMsgResolver"
|
|
read = bindSym "read"
|
|
registerRequest = bindSym "registerRequest"
|
|
requestResolver = bindSym "requestResolver"
|
|
resolveResponseFuture = bindSym "resolveResponseFuture"
|
|
rlpFromBytes = bindSym "rlpFromBytes"
|
|
sendMsg = bindSym "sendMsg"
|
|
startList = bindSym "startList"
|
|
writeMsgId = bindSym "writeMsgId"
|
|
|
|
# By convention, all Ethereum protocol names must be abbreviated to 3 letters
|
|
assert protoName.len == 3
|
|
|
|
proc augmentUserHandler(userHandlerProc: NimNode) =
|
|
## Turns a regular proc definition into an async proc and adds
|
|
## the helpers for accessing the peer and network protocol states.
|
|
userHandlerProc.addPragma newIdentNode"async"
|
|
|
|
# Define local accessors for the peer and the network protocol states
|
|
# inside each user message handler proc (e.g. peer.state.foo = bar)
|
|
if stateType != nil:
|
|
var localStateAccessor = quote:
|
|
template state(p: `Peer`): ref `stateType` =
|
|
cast[ref `stateType`](p.getState(`protocol`))
|
|
|
|
userHandlerProc.body.insert 0, localStateAccessor
|
|
|
|
if networkStateType != nil:
|
|
var networkStateAccessor = quote:
|
|
template networkState(p: `Peer`): ref `networkStateType` =
|
|
cast[ref `networkStateType`](p.getNetworkState(`protocol`))
|
|
|
|
userHandlerProc.body.insert 0, networkStateAccessor
|
|
|
|
proc liftEventHandler(doBlock: NimNode, handlerName: string): NimNode =
|
|
## Turns a "named" do block to a regular async proc
|
|
## (e.g. onPeerConnected do ...)
|
|
var fn = newTree(nnkProcDef)
|
|
doBlock.copyChildrenTo(fn)
|
|
result = genSym(nskProc, protoName & handlerName)
|
|
fn.name = result
|
|
augmentUserHandler fn
|
|
outRecvProcs.add fn
|
|
|
|
proc addMsgHandler(msgId: int, n: NimNode,
|
|
msgKind = rlpxNotification,
|
|
responseMsgId = -1,
|
|
responseRecord: NimNode = nil): NimNode =
|
|
let
|
|
msgIdent = n.name
|
|
msgName = $n.name
|
|
|
|
var
|
|
paramCount = 0
|
|
|
|
# variables used in the sending procs
|
|
msgRecipient = genSym(nskParam, "msgRecipient")
|
|
reqTimeout: NimNode
|
|
rlpWriter = genSym(nskVar, "writer")
|
|
appendParams = newNimNode(nnkStmtList)
|
|
sentReqId = genSym(nskLet, "reqId")
|
|
|
|
# variables used in the receiving procs
|
|
msgSender = genSym(nskParam, "msgSender")
|
|
receivedRlp = genSym(nskVar, "rlp")
|
|
receivedMsg = genSym(nskVar, "msg")
|
|
readParams = newNimNode(nnkStmtList)
|
|
callResolvedResponseFuture = newNimNode(nnkStmtList)
|
|
|
|
# nodes to store the user-supplied message handling proc if present
|
|
userHandlerProc: NimNode = nil
|
|
userHandlerCall: NimNode = nil
|
|
awaitUserHandler = newStmtList()
|
|
|
|
# a record type associated with the message
|
|
msgRecord = genSym(nskType, msgName & "Obj")
|
|
msgRecordFields = newTree(nnkRecList)
|
|
msgRecordBody = newTree(nnkObjectTy,
|
|
newEmptyNode(),
|
|
newEmptyNode(),
|
|
msgRecordFields)
|
|
|
|
result = msgRecord
|
|
|
|
case msgKind
|
|
of rlpxNotification: discard
|
|
of rlpxRequest:
|
|
# If the request proc has a default timeout specified, remove it from
|
|
# the signature for now so we can generate the `thunk` proc without it.
|
|
# The parameter will be added back later only for to the sender proc.
|
|
# When the timeout is not specified, we use a default one.
|
|
reqTimeout = popTimeoutParam(n)
|
|
if reqTimeout == nil:
|
|
reqTimeout = newTree(nnkIdentDefs,
|
|
genSym(nskParam, "timeout"),
|
|
Int, newLit(defaultReqTimeout))
|
|
|
|
# Each request is registered so we can resolve it when the response
|
|
# arrives. There are two types of protocols: LES-like protocols use
|
|
# explicit `reqId` sent over the wire, while the ETH wire protocol
|
|
# assumes there is one outstanding request at a time (if there are
|
|
# multiple requests we'll resolve them in FIFO order).
|
|
let registerRequestCall = newCall(registerRequest, msgRecipient,
|
|
reqTimeout[0],
|
|
resultIdent,
|
|
newLit(responseMsgId))
|
|
if useRequestIds:
|
|
inc paramCount
|
|
appendParams.add quote do:
|
|
new `resultIdent`
|
|
let `sentReqId` = `registerRequestCall`
|
|
`append`(`rlpWriter`, `sentReqId`)
|
|
else:
|
|
appendParams.add quote do:
|
|
discard `registerRequestCall`
|
|
of rlpxResponse:
|
|
if useRequestIds:
|
|
var reqId = genSym(nskLet, "reqId")
|
|
|
|
# Messages using request Ids
|
|
readParams.add quote do:
|
|
let `reqId` = `read`(`receivedRlp`, int)
|
|
|
|
callResolvedResponseFuture.add quote do:
|
|
`resolveResponseFuture`(`msgSender`, `msgId`, addr(`receivedMsg`), `reqId`)
|
|
else:
|
|
callResolvedResponseFuture.add quote do:
|
|
`resolveResponseFuture`(`msgSender`, `msgId`, addr(`receivedMsg`), -1)
|
|
|
|
if n.body.kind != nnkEmpty:
|
|
# implement the receiving thunk proc that deserialzed the
|
|
# message parameters and calls the user proc:
|
|
userHandlerProc = n.copyNimTree
|
|
userHandlerProc.name = genSym(nskProc, msgName)
|
|
augmentUserHandler userHandlerProc
|
|
|
|
# This is the call to the user supplied handled. Here we add only the
|
|
# initial peer param, while the rest of the params will be added later.
|
|
userHandlerCall = newCall(userHandlerProc.name, msgSender)
|
|
|
|
# When there is a user handler, it must be awaited in the thunk proc.
|
|
# Above, by default `awaitUserHandler` is set to a no-op statement list.
|
|
awaitUserHandler = newCall("await", userHandlerCall)
|
|
|
|
outRecvProcs.add(userHandlerProc)
|
|
|
|
for param, paramType in n.typedParams(skip = 1):
|
|
inc paramCount
|
|
|
|
# This is a fragment of the sending proc that
|
|
# serializes each of the passed parameters:
|
|
appendParams.add quote do:
|
|
`append`(`rlpWriter`, `param`)
|
|
|
|
# Each message has a corresponding record type.
|
|
# Here, we create its fields one by one:
|
|
msgRecordFields.add newTree(nnkIdentDefs,
|
|
param, chooseFieldType(paramType), newEmptyNode())
|
|
|
|
# The received RLP data is deserialized to a local variable of
|
|
# the message-specific type. This is done field by field here:
|
|
readParams.add quote do:
|
|
`receivedMsg`.`param` = `read`(`receivedRlp`, `paramType`)
|
|
|
|
# If there is user message handler, we'll place a call to it by
|
|
# unpacking the fields of the received message:
|
|
if userHandlerCall != nil:
|
|
userHandlerCall.add newDotExpr(receivedMsg, param)
|
|
|
|
let thunkName = newIdentNode(msgName & "_thunk")
|
|
|
|
outRecvProcs.add quote do:
|
|
proc `thunkName`(`msgSender`: `Peer`, data: Rlp) {.async.} =
|
|
var `receivedRlp` = data
|
|
var `receivedMsg` {.noinit.}: `msgRecord`
|
|
`readParams`
|
|
`awaitUserHandler`
|
|
`callResolvedResponseFuture`
|
|
|
|
outTypes.add quote do:
|
|
# This is a type featuring a single field for each message param:
|
|
type `msgRecord`* = `msgRecordBody`
|
|
|
|
# Add a helper template for accessing the message type:
|
|
# e.g. p2p.hello:
|
|
template `msgIdent`*(T: type `protoNameIdent`): typedesc = `msgRecord`
|
|
|
|
# Add a helper template for obtaining the message Id for
|
|
# a particular message type:
|
|
template msgId*(T: type `msgRecord`): int = `msgId`
|
|
|
|
var msgSendProc = n
|
|
# TODO: check that the first param has the correct type
|
|
msgSendProc.params[1][0] = msgRecipient
|
|
|
|
# Add a timeout parameter for all request procs
|
|
if msgKind == rlpxRequest: msgSendProc.params.add reqTimeout
|
|
|
|
# We change the return type of the sending proc to a Future.
|
|
# If this is a request proc, the future will return the response record.
|
|
let rt = if msgKind != rlpxRequest: Int
|
|
else: newTree(nnkBracketExpr, Option, responseRecord)
|
|
msgSendProc.params[0] = newTree(nnkBracketExpr, newIdentNode("Future"), rt)
|
|
|
|
let writeMsgId = if isSubprotocol:
|
|
quote: `writeMsgId`(`protocol`, `msgId`, `msgRecipient`, `rlpWriter`)
|
|
else:
|
|
quote: `append`(`rlpWriter`, `msgId`)
|
|
|
|
var sendCall = newCall(sendMsg, msgRecipient, newCall(finish, rlpWriter))
|
|
let senderEpilogue = if msgKind == rlpxRequest:
|
|
# In RLPx requests, the returned future was allocated here and passed
|
|
# to `registerRequest`. It's already assigned to the result variable
|
|
# of the proc, so we just wait for the sending operation to complete
|
|
# and we return in a normal way. (the waiting is done, so we can catch
|
|
# any possible errors).
|
|
quote: discard waitFor(`sendCall`)
|
|
else:
|
|
# In normal RLPx messages, we are returning the future returned by the
|
|
# `sendMsg` call.
|
|
quote: return `sendCall`
|
|
|
|
# let paramCountNode = newLit(paramCount)
|
|
msgSendProc.body = quote do:
|
|
var `rlpWriter` = `initRlpWriter`()
|
|
`writeMsgId`
|
|
`startList`(`rlpWriter`, `paramCount`)
|
|
`appendParams`
|
|
`senderEpilogue`
|
|
|
|
outSendProcs.add msgSendProc
|
|
|
|
outProcRegistrations.add(
|
|
newCall(bindSym("registerMsg"),
|
|
protocol,
|
|
newIntLitNode(msgId),
|
|
newStrLitNode($n.name),
|
|
thunkName,
|
|
newTree(nnkBracketExpr, messagePrinter, msgRecord),
|
|
newTree(nnkBracketExpr, requestResolver, msgRecord),
|
|
newTree(nnkBracketExpr, nextMsgResolver, msgRecord)))
|
|
|
|
outTypes.add quote do:
|
|
# Create a type acting as a pseudo-object representing the protocol
|
|
# (e.g. p2p)
|
|
type `protoNameIdent`* = object
|
|
|
|
for n in body:
|
|
case n.kind
|
|
of {nnkCall, nnkCommand}:
|
|
if eqIdent(n[0], "nextID"):
|
|
# By default message IDs are assigned in increasing order
|
|
# `nextID` can be used to skip some of the numeric slots
|
|
if n.len == 2 and n[1].kind == nnkIntLit:
|
|
nextId = n[1].intVal.int
|
|
else:
|
|
macros.error("nextID expects a single int value", n)
|
|
elif eqIdent(n[0], "requestResponse"):
|
|
# `requestResponse` can be given a block of 2 or more procs.
|
|
# The last one is considered to be a response message, while
|
|
# all preceeding ones are requests triggering the response.
|
|
# The system makes sure to automatically insert a hidden `reqId`
|
|
# parameter used to discriminate the individual messages.
|
|
block processReqResp:
|
|
if n.len == 2 and n[1].kind == nnkStmtList:
|
|
var procs = newSeq[NimNode](0)
|
|
for def in n[1]:
|
|
if def.kind == nnkProcDef:
|
|
procs.add(def)
|
|
if procs.len > 1:
|
|
let responseMsgId = nextId + procs.len - 1
|
|
let responseRecord = addMsgHandler(responseMsgId,
|
|
procs[^1],
|
|
msgKind = rlpxResponse)
|
|
for i in 0 .. procs.len - 2:
|
|
discard addMsgHandler(nextId + i, procs[i],
|
|
msgKind = rlpxRequest,
|
|
responseMsgId = responseMsgId,
|
|
responseRecord = responseRecord)
|
|
|
|
inc nextId, procs.len
|
|
|
|
# we got all the way to here, so everything is fine.
|
|
# break the block so it doesn't reach the error call below
|
|
break processReqResp
|
|
macros.error("requestResponse expects a block with at least two proc definitions")
|
|
elif eqIdent(n[0], "onPeerConnected"):
|
|
handshake = liftEventHandler(n[1], "Handshake")
|
|
elif eqIdent(n[0], "onPeerDisconnected"):
|
|
discard
|
|
disconnectHandler = liftEventHandler(n[1], "PeerDisconnect")
|
|
else:
|
|
macros.error(repr(n) & " is not a recognized call in RLPx protocol definitions", n)
|
|
|
|
of nnkAsgn:
|
|
if eqIdent(n[0], "useRequestIds"):
|
|
useRequestIds = $n[1] == "true"
|
|
else:
|
|
macros.error(repr(n[0]) & " is not a recognized protocol option")
|
|
|
|
of nnkTypeSection:
|
|
outTypes.add n
|
|
for typ in n:
|
|
if eqIdent(typ[0], "State"):
|
|
stateType = genSym(nskType, protoName & "State")
|
|
typ[0] = stateType
|
|
outTypes.add quote do:
|
|
template State*(P: type `protoNameIdent`): typedesc =
|
|
`stateType`
|
|
|
|
elif eqIdent(typ[0], "NetworkState"):
|
|
networkStateType = genSym(nskType, protoName & "NetworkState")
|
|
typ[0] = networkStateType
|
|
outTypes.add quote do:
|
|
template NetworkState*(P: type `protoNameIdent`): typedesc =
|
|
`networkStateType`
|
|
|
|
else:
|
|
macros.error("The only type names allowed within a RLPx protocol definition are 'State' and 'NetworkState'")
|
|
|
|
of nnkProcDef:
|
|
discard addMsgHandler(nextId, n)
|
|
inc nextId
|
|
|
|
else:
|
|
macros.error("illegal syntax in a RLPx protocol definition", n)
|
|
|
|
let peerInit = if stateType == nil: newNilLit()
|
|
else: newTree(nnkBracketExpr, createPeerState, stateType)
|
|
|
|
let netInit = if networkStateType == nil: newNilLit()
|
|
else: newTree(nnkBracketExpr, createNetworkState, stateType)
|
|
|
|
result = newNimNode(nnkStmtList)
|
|
result.add outTypes
|
|
result.add quote do:
|
|
# One global variable per protocol holds the protocol run-time data
|
|
var `protocol` = `newProtocol`(`protoName`, `version`, `peerInit`, `netInit`)
|
|
|
|
# The protocol run-time data is available as a pseudo-field
|
|
# (e.g. `p2p.protocolInfo`)
|
|
template protocolInfo*(P: type `protoNameIdent`): ProtocolInfo = `protocol`
|
|
|
|
result.add outSendProcs, outRecvProcs, outProcRegistrations
|
|
result.add quote do:
|
|
setEventHandlers(`protocol`, `handshake`, `disconnectHandler`)
|
|
|
|
result.add newCall(bindSym("registerProtocol"), protocol)
|
|
when isMainModule: echo repr(result)
|
|
|
|
rlpxProtocol p2p, 0:
|
|
proc hello(peer: Peer,
|
|
version: uint,
|
|
clientId: string,
|
|
capabilities: seq[Capability],
|
|
listenPort: uint,
|
|
nodeId: array[RawPublicKeySize, byte])
|
|
|
|
proc sendDisconnectMsg(peer: Peer, reason: DisconnectionReason)
|
|
|
|
proc ping(peer: Peer) =
|
|
discard peer.pong()
|
|
|
|
proc pong(peer: Peer) =
|
|
discard
|
|
|
|
proc disconnect(peer: Peer, reason: DisconnectionReason) {.async.} =
|
|
discard await peer.sendDisconnectMsg(reason)
|
|
# TODO: Any other clean up required?
|
|
|
|
template `^`(arr): auto =
|
|
# passes a stack array with a matching `arrLen`
|
|
# variable as an open array
|
|
arr.toOpenArray(0, `arr Len` - 1)
|
|
|
|
proc validatePubKeyInHello(msg: p2p.hello, pubKey: PublicKey): bool =
|
|
var pk: PublicKey
|
|
recoverPublicKey(msg.nodeId, pk) == EthKeysStatus.Success and pk == pubKey
|
|
|
|
proc check(status: AuthStatus) =
|
|
if status != AuthStatus.Success:
|
|
raise newException(Exception, "Error: " & $status)
|
|
|
|
proc performSubProtocolHandshakes(peer: Peer) {.async.} =
|
|
var subProtocolsHandshakes = newSeqOfCap[Future[void]](rlpxProtocols.len)
|
|
for protocol in peer.dispatcher.activeProtocols:
|
|
if protocol.handshake != nil:
|
|
subProtocolsHandshakes.add protocol.handshake(peer)
|
|
|
|
await all(subProtocolsHandshakes)
|
|
peer.connectionState = Connected
|
|
|
|
proc postHelloSteps(peer: Peer, h: p2p.hello): Future[void] =
|
|
peer.dispatcher = getDispatcher(peer.network, h.capabilities)
|
|
|
|
# The dispatcher has determined our message ID sequence.
|
|
# For each message ID, we allocate a potential slot for
|
|
# tracking responses to requests.
|
|
# (yes, some of the slots won't be used).
|
|
peer.outstandingRequests.newSeq(peer.dispatcher.messages.len)
|
|
for d in mitems(peer.outstandingRequests):
|
|
d = initDeque[OutstandingRequest](0)
|
|
|
|
# Similarly, we need a bit of book-keeping data to keep track
|
|
# of the potentially concurrent calls to `nextMsg`.
|
|
peer.awaitedMessages.newSeq(peer.dispatcher.messages.len)
|
|
|
|
peer.nextReqId = 1
|
|
|
|
# Initialize all the active protocol states
|
|
newSeq(peer.protocolStates, rlpxProtocols.len)
|
|
for protocol in peer.dispatcher.activeProtocols:
|
|
let peerStateInit = protocol.peerStateInitializer
|
|
if peerStateInit != nil:
|
|
peer.protocolStates[protocol.index] = peerStateInit(peer)
|
|
|
|
return performSubProtocolHandshakes(peer)
|
|
|
|
proc initSecretState(hs: var Handshake, authMsg, ackMsg: openarray[byte],
|
|
p: Peer) =
|
|
var secrets: ConnectionSecret
|
|
check hs.getSecrets(authMsg, ackMsg, secrets)
|
|
initSecretState(secrets, p.secretsState)
|
|
burnMem(secrets)
|
|
|
|
proc rlpxConnect*(node: EthereumNode, remote: Node): Future[Peer] {.async.} =
|
|
new result
|
|
result.network = node
|
|
result.remote = remote
|
|
|
|
let ta = initTAddress(remote.node.address.ip, remote.node.address.tcpPort)
|
|
try:
|
|
result.transp = await connect(ta)
|
|
|
|
var handshake = newHandshake({Initiator})
|
|
handshake.host = node.keys
|
|
|
|
var authMsg: array[AuthMessageMaxEIP8, byte]
|
|
var authMsgLen = 0
|
|
check authMessage(handshake, remote.node.pubkey, authMsg, authMsgLen)
|
|
var res = result.transp.write(addr authMsg[0], authMsgLen)
|
|
|
|
let initialSize = handshake.expectedLength
|
|
var ackMsg = newSeqOfCap[byte](1024)
|
|
ackMsg.setLen(initialSize)
|
|
|
|
await result.transp.readExactly(addr ackMsg[0], len(ackMsg))
|
|
|
|
var ret = handshake.decodeAckMessage(ackMsg)
|
|
if ret == AuthStatus.IncompleteError:
|
|
ackMsg.setLen(handshake.expectedLength)
|
|
await result.transp.readExactly(addr ackMsg[initialSize],
|
|
len(ackMsg) - initialSize)
|
|
ret = handshake.decodeAckMessage(ackMsg)
|
|
check ret
|
|
|
|
initSecretState(handshake, ^authMsg, ackMsg, result)
|
|
|
|
# if handshake.remoteHPubkey != remote.node.pubKey:
|
|
# raise newException(Exception, "Remote pubkey is wrong")
|
|
|
|
asyncCheck result.hello(baseProtocolVersion,
|
|
node.clientId,
|
|
node.rlpxCapabilities,
|
|
uint(node.listeningPort),
|
|
node.keys.pubkey.getRaw())
|
|
|
|
var response = await result.waitSingleMsg(p2p.hello)
|
|
|
|
if not validatePubKeyInHello(response, remote.node.pubKey):
|
|
warn "Remote nodeId is not its public key" # XXX: Do we care?
|
|
|
|
await postHelloSteps(result, response)
|
|
except:
|
|
if not isNil(result.transp):
|
|
result.transp.close()
|
|
|
|
proc rlpxAccept*(node: EthereumNode,
|
|
transp: StreamTransport): Future[Peer] {.async.} =
|
|
new result
|
|
result.transp = transp
|
|
result.network = node
|
|
|
|
var handshake = newHandshake({Responder})
|
|
handshake.host = node.keys
|
|
|
|
try:
|
|
let initialSize = handshake.expectedLength
|
|
var authMsg = newSeqOfCap[byte](1024)
|
|
authMsg.setLen(initialSize)
|
|
await transp.readExactly(addr authMsg[0], len(authMsg))
|
|
var ret = handshake.decodeAuthMessage(authMsg)
|
|
if ret == AuthStatus.IncompleteError: # Eip8 auth message is likely
|
|
authMsg.setLen(handshake.expectedLength)
|
|
await transp.readExactly(addr authMsg[initialSize],
|
|
len(authMsg) - initialSize)
|
|
ret = handshake.decodeAuthMessage(authMsg)
|
|
check ret
|
|
|
|
var ackMsg: array[AckMessageMaxEIP8, byte]
|
|
var ackMsgLen: int
|
|
check handshake.ackMessage(ackMsg, ackMsgLen)
|
|
var res = transp.write(addr ackMsg[0], ackMsgLen)
|
|
|
|
initSecretState(handshake, authMsg, ^ackMsg, result)
|
|
|
|
var response = await result.waitSingleMsg(p2p.hello)
|
|
let listenPort = transp.localAddress().port
|
|
discard result.hello(baseProtocolVersion, node.clientId,
|
|
node.rlpxCapabilities, listenPort.uint,
|
|
node.keys.pubkey.getRaw())
|
|
|
|
if validatePubKeyInHello(response, handshake.remoteHPubkey):
|
|
warn "Remote nodeId is not its public key" # XXX: Do we care?
|
|
|
|
let port = Port(response.listenPort)
|
|
let remote = transp.remoteAddress()
|
|
let address = Address(ip: remote.address, tcpPort: remote.port,
|
|
udpPort: remote.port)
|
|
result.remote = newNode(initEnode(handshake.remoteHPubkey, address))
|
|
|
|
await postHelloSteps(result, response)
|
|
except:
|
|
transp.close()
|
|
|
|
# PeerPool attempts to keep connections to at least min_peers
|
|
# on the given network.
|
|
|
|
const
|
|
lookupInterval = 5
|
|
connectLoopSleepMs = 2000
|
|
|
|
proc newPeerPool*(network: EthereumNode,
|
|
chainDb: AbstractChainDB, networkId: int, keyPair: KeyPair,
|
|
discovery: DiscoveryProtocol, clientId: string,
|
|
listenPort = Port(30303), minPeers = 10): PeerPool =
|
|
new result
|
|
result.network = network
|
|
result.keyPair = keyPair
|
|
result.minPeers = minPeers
|
|
result.networkId = networkId
|
|
result.discovery = discovery
|
|
result.connectedNodes = initTable[Node, Peer]()
|
|
result.listenPort = listenPort
|
|
|
|
template ensureFuture(f: untyped) = asyncCheck f
|
|
|
|
proc nodesToConnect(p: PeerPool): seq[Node] {.inline.} =
|
|
p.discovery.randomNodes(p.minPeers)
|
|
|
|
# def subscribe(self, subscriber: PeerPoolSubscriber) -> None:
|
|
# self._subscribers.append(subscriber)
|
|
# for peer in self.connected_nodes.values():
|
|
# subscriber.register_peer(peer)
|
|
|
|
# def unsubscribe(self, subscriber: PeerPoolSubscriber) -> None:
|
|
# if subscriber in self._subscribers:
|
|
# self._subscribers.remove(subscriber)
|
|
|
|
proc stopAllPeers(p: PeerPool) {.async.} =
|
|
info "Stopping all peers ..."
|
|
# TODO: ...
|
|
# await asyncio.gather(
|
|
# *[peer.stop() for peer in self.connected_nodes.values()])
|
|
|
|
# async def stop(self) -> None:
|
|
# self.cancel_token.trigger()
|
|
# await self.stop_all_peers()
|
|
|
|
proc connect(p: PeerPool, remote: Node): Future[Peer] {.async.} =
|
|
## Connect to the given remote and return a Peer instance when successful.
|
|
## Returns nil if the remote is unreachable, times out or is useless.
|
|
if remote in p.connectedNodes:
|
|
debug "skipping_connection_to_already_connected_peer", remote
|
|
return nil
|
|
|
|
result = await p.network.rlpxConnect(remote)
|
|
|
|
# expected_exceptions = (
|
|
# UnreachablePeer, TimeoutError, PeerConnectionLost, HandshakeFailure)
|
|
# try:
|
|
# self.logger.debug("Connecting to %s...", remote)
|
|
# peer = await wait_with_token(
|
|
# handshake(remote, self.privkey, self.peer_class, self.chaindb, self.network_id),
|
|
# token=self.cancel_token,
|
|
# timeout=HANDSHAKE_TIMEOUT)
|
|
# return peer
|
|
# except OperationCancelled:
|
|
# # Pass it on to instruct our main loop to stop.
|
|
# raise
|
|
# except expected_exceptions as e:
|
|
# self.logger.debug("Could not complete handshake with %s: %s", remote, repr(e))
|
|
# except Exception:
|
|
# self.logger.exception("Unexpected error during auth/p2p handshake with %s", remote)
|
|
# return None
|
|
|
|
proc lookupRandomNode(p: PeerPool) {.async.} =
|
|
# This method runs in the background, so we must catch OperationCancelled
|
|
# ere otherwise asyncio will warn that its exception was never retrieved.
|
|
try:
|
|
discard await p.discovery.lookupRandom()
|
|
except: # OperationCancelled
|
|
discard
|
|
p.lastLookupTime = epochTime()
|
|
|
|
proc getRandomBootnode(p: PeerPool): seq[Node] =
|
|
@[p.discovery.bootstrapNodes.rand()]
|
|
|
|
proc peerFinished(p: PeerPool, peer: Peer) =
|
|
## Remove the given peer from our list of connected nodes.
|
|
## This is passed as a callback to be called when a peer finishes.
|
|
p.connectedNodes.del(peer.remote)
|
|
|
|
proc run(p: Peer, completionHandler: proc() = nil) {.async.} =
|
|
# TODO: This is a stub that should be implemented in rlpx.nim
|
|
await sleepAsync(20000) # sleep 20 sec
|
|
if not completionHandler.isNil: completionHandler()
|
|
|
|
proc connectToNodes(p: PeerPool, nodes: seq[Node]) {.async.} =
|
|
for node in nodes:
|
|
# TODO: Consider changing connect() to raise an exception instead of
|
|
# returning None, as discussed in
|
|
# https://github.com/ethereum/py-evm/pull/139#discussion_r152067425
|
|
let peer = await p.connect(node)
|
|
if not peer.isNil:
|
|
info "Successfully connected to ", peer
|
|
ensureFuture peer.run() do():
|
|
p.peerFinished(peer)
|
|
|
|
p.connectedNodes[peer.remote] = peer
|
|
# for subscriber in self._subscribers:
|
|
# subscriber.register_peer(peer)
|
|
if p.connectedNodes.len >= p.minPeers:
|
|
return
|
|
|
|
proc maybeConnectToMorePeers(p: PeerPool) {.async.} =
|
|
## Connect to more peers if we're not yet connected to at least self.minPeers.
|
|
if p.connectedNodes.len >= p.minPeers:
|
|
debug "pool already connected to enough peers (sleeping)", count = p.connectedNodes
|
|
return
|
|
|
|
if p.lastLookupTime + lookupInterval < epochTime():
|
|
ensureFuture p.lookupRandomNode()
|
|
|
|
await p.connectToNodes(p.nodesToConnect())
|
|
|
|
# In some cases (e.g ROPSTEN or private testnets), the discovery table might
|
|
# be full of bad peers, so if we can't connect to any peers we try a random
|
|
# bootstrap node as well.
|
|
if p.connectedNodes.len == 0:
|
|
await p.connectToNodes(p.getRandomBootnode())
|
|
|
|
proc run(p: PeerPool) {.async.} =
|
|
info "Running PeerPool..."
|
|
p.running = true
|
|
while p.running:
|
|
var dropConnections = false
|
|
try:
|
|
await p.maybeConnectToMorePeers()
|
|
except:
|
|
# Most unexpected errors should be transient, so we log and restart from
|
|
# scratch.
|
|
error "Unexpected error, restarting"
|
|
dropConnections = true
|
|
|
|
if dropConnections:
|
|
await p.stopAllPeers()
|
|
|
|
await sleepAsync(connectLoopSleepMs)
|
|
|
|
proc start*(p: PeerPool) =
|
|
if not p.running:
|
|
asyncCheck p.run()
|
|
|
|
# @property
|
|
# def peers(self) -> List[BasePeer]:
|
|
# peers = list(self.connected_nodes.values())
|
|
# # Shuffle the list of peers so that dumb callsites are less likely to send
|
|
# # all requests to
|
|
# # a single peer even if they always pick the first one from the list.
|
|
# random.shuffle(peers)
|
|
# return peers
|
|
|
|
# async def get_random_peer(self) -> BasePeer:
|
|
# while not self.peers:
|
|
# self.logger.debug("No connected peers, sleeping a bit")
|
|
# await asyncio.sleep(0.5)
|
|
# return random.choice(self.peers)
|
|
|
|
# Ethereum Node
|
|
#
|
|
|
|
proc addProtocol(n: var EthereumNode, p: ProtocolInfo) =
|
|
assert n.connectionState == ConnectionState.None
|
|
let pos = lowerBound(n.rlpxProtocols, p)
|
|
n.rlpxProtocols.insert(p, pos)
|
|
n.rlpxCapabilities.insert(Capability(name: p.name, version: p.version), pos)
|
|
|
|
template addCapability*(n: var EthereumNode, Protocol: typedesc) =
|
|
addProtocol(n, Protocol.protocolInfo)
|
|
|
|
proc newEthereumNode*(keys: KeyPair,
|
|
chain: AbstractChainDB,
|
|
clientId = clientId,
|
|
addAllCapabilities = true): EthereumNode =
|
|
result.keys = keys
|
|
result.clientId = clientId
|
|
result.rlpxProtocols.newSeq 0
|
|
result.rlpxCapabilities.newSeq 0
|
|
result.connectionState = ConnectionState.None
|
|
|
|
if addAllCapabilities:
|
|
for p in rlpxProtocols:
|
|
result.addProtocol(p)
|
|
|
|
proc processIncoming(server: StreamServer,
|
|
remote: StreamTransport): Future[void] {.async, gcsafe.} =
|
|
var node = getUserData[EthereumNode](server)
|
|
let peerfut = node.rlpxAccept(remote)
|
|
yield peerfut
|
|
if not peerfut.failed:
|
|
let peer = peerfut.read()
|
|
echo "TODO: Add peer to the pool..."
|
|
else:
|
|
echo "Could not establish connection with incoming peer ",
|
|
$remote.remoteAddress()
|
|
remote.close()
|
|
|
|
proc connectToNetwork*(node: var EthereumNode,
|
|
address: Address,
|
|
listeningPort = Port(30303),
|
|
bootstrapNodes: openarray[ENode],
|
|
networkId: int,
|
|
startListening = true) =
|
|
assert node.connectionState == ConnectionState.None
|
|
|
|
node.connectionState = Connecting
|
|
node.networkId = networkId
|
|
node.listeningPort = listeningPort
|
|
node.address = address
|
|
node.discovery = newDiscoveryProtocol(node.keys.seckey, address, bootstrapNodes)
|
|
node.peerPool = newPeerPool(node, node.chain, networkId,
|
|
node.keys, node.discovery,
|
|
node.clientId, address.tcpPort)
|
|
|
|
let ta = initTAddress(address.ip, address.tcpPort)
|
|
node.listeningServer = createStreamServer(ta, processIncoming,
|
|
{ReuseAddr},
|
|
udata = addr(node))
|
|
|
|
node.protocolStates.newSeq(rlpxProtocols.len)
|
|
for p in node.rlpxProtocols:
|
|
if p.networkStateInitializer != nil:
|
|
node.protocolStates[p.index] = p.networkStateInitializer(node)
|
|
|
|
if startListening:
|
|
node.listeningServer.start()
|
|
|
|
proc startListening*(s: EthereumNode) =
|
|
s.listeningServer.start()
|
|
|
|
proc stopListening*(s: EthereumNode) =
|
|
s.listeningServer.stop()
|
|
|
|
when isMainModule:
|
|
import rlp, strformat
|
|
|
|
rlpxProtocol aaa, 1:
|
|
type State = object
|
|
peerName: string
|
|
|
|
onPeerConnected do (peer: Peer):
|
|
discard await peer.hi "Bob"
|
|
|
|
onPeerDisconnected do (peer: Peer, reason: DisconnectionReason):
|
|
debug "peer disconnected", peer
|
|
|
|
requestResponse:
|
|
proc aaaReq(p: Peer, n: int) =
|
|
debug "got req ", n
|
|
discard await p.aaaRes &"response to {n}"
|
|
|
|
proc aaaRes(p: Peer, data: string) =
|
|
debug "got response ", data
|
|
|
|
proc hi(p: Peer, name: string) =
|
|
p.state.peerName = name
|
|
var r = await p.aaaReq(10)
|
|
echo r.get.data
|
|
|
|
rlpxProtocol bbb, 1:
|
|
type State = object
|
|
messages: int
|
|
|
|
useRequestIds = false
|
|
|
|
proc foo(p: Peer, s: string, a, z: int) =
|
|
p.state.messages += 1
|
|
echo p.state(aaa).peerName
|
|
|
|
proc bar(p: Peer, i: int, s: string)
|
|
|
|
requestResponse:
|
|
proc bbbReq(p: Peer, n: int, timeout = 3000) =
|
|
echo "got req ", n
|
|
|
|
proc bbbRes(p: Peer, data: string) =
|
|
echo "got response ", data
|
|
|
|
var p = Peer()
|
|
discard p.bar(10, "test")
|
|
var resp = waitFor p.bbbReq(10)
|
|
echo "B response: ", resp.get.data
|
|
|
|
when false:
|
|
# The assignments below can be used to investigate if the RLPx procs
|
|
# are considered GcSafe. The short answer is that they aren't, because
|
|
# they dispatch into user code that might use the GC.
|
|
type
|
|
GcSafeDispatchMsg = proc (peer: Peer, msgId: int, msgData: var Rlp)
|
|
|
|
GcSafeRecvMsg = proc (peer: Peer):
|
|
Future[tuple[msgId: int, msgData: Rlp]] {.gcsafe.}
|
|
|
|
GcSafeAccept = proc (transp: StreamTransport, myKeys: KeyPair):
|
|
Future[Peer] {.gcsafe.}
|
|
|
|
var
|
|
dispatchMsgPtr = dispatchMsg
|
|
recvMsgPtr: GcSafeRecvMsg = recvMsg
|
|
acceptPtr: GcSafeAccept = rlpxAccept
|