nim-eth-p2p/eth_p2p/rlpx.nim
Zahary Karadjov 4d17ab1ee5 Added various smaller features
* Perform per-protocol handshakes after connecting

* Initialize the per-protocol Peer and Network states properly

* Add an `EthereumNode` object that can be configured with specific
  capabilities and connected to a specific network.
2018-07-09 01:17:00 +03:00

1434 lines
50 KiB
Nim

#
# Ethereum P2P
# (c) Copyright 2018
# Status Research & Development GmbH
#
# Licensed under either of
# Apache License, version 2.0, (LICENSE-APACHEv2)
# MIT license (LICENSE-MIT)
#
import
tables, deques, macros, sets, algorithm, hashes, times, random, options,
asyncdispatch2, asyncdispatch2/timer,
rlp, ranges/[stackarrays, ptr_arith], nimcrypto, chronicles,
eth_keys, eth_common,
kademlia, discovery, auth, rlpxcrypt, enode
type
EthereumNode* = ref object
networkId*: int
chain*: AbstractChainDB
clientId*: string
connectionState: ConnectionState
keys: KeyPair
listeningPort: Port
address: Address
rlpxCapabilities: seq[Capability]
rlpxProtocols: seq[ProtocolInfo]
listeningServer: StreamServer
protocolStates: seq[RootRef]
discovery: DiscoveryProtocol
peerPool: PeerPool
Peer* = ref object
transp: StreamTransport
dispatcher: Dispatcher
nextReqId: int
network: EthereumNode
secretsState: SecretState
connectionState: ConnectionState
remote*: Node
protocolStates: seq[RootRef]
outstandingRequests: seq[Deque[OutstandingRequest]]
awaitedMessages: seq[FutureBase]
OutstandingRequest = object
reqId: int
future: FutureBase
timeoutAt: uint64
PeerPool* = ref object
network: EthereumNode
keyPair: KeyPair
networkId: int
minPeers: int
clientId: string
discovery: DiscoveryProtocol
lastLookupTime: float
connectedNodes: Table[Node, Peer]
running: bool
listenPort*: Port
MessageInfo* = object
id*: int
name*: string
thunk*: MessageHandler
printer*: MessageContentPrinter
requestResolver: RequestResolver
nextMsgResolver: NextMsgResolver
CapabilityName* = array[3, char]
Capability* = object
name*: CapabilityName
version*: int
ProtocolInfo* = ref object
name*: CapabilityName
version*: int
messages*: seq[MessageInfo]
index: int # the position of the protocol in the
# ordered list of supported protocols
peerStateInitializer: PeerStateInitializer
networkStateInitializer: NetworkStateInitializer
handshake: HandshakeStep
disconnectHandler: DisconnectionHandler
Dispatcher = ref object
# The dispatcher stores the mapping of negotiated message IDs between
# two connected peers. The dispatcher objects are shared between
# connections running with the same set of supported protocols.
#
# `protocolOffsets` will hold one slot of each locally supported
# protocol. If the other peer also supports the protocol, the stored
# offset indicates the numeric value of the first message of the protocol
# (for this particular connection). If the other peer doesn't support the
# particular protocol, the stored offset is -1.
#
# `messages` holds a mapping from valid message IDs to their handler procs.
#
protocolOffsets: seq[int]
messages: seq[ptr MessageInfo]
MessageHandler = proc(x: Peer, data: Rlp): Future[void]
MessageContentPrinter = proc(msg: pointer): string
RequestResolver = proc(msg: pointer, future: FutureBase)
NextMsgResolver = proc(msgData: Rlp, future: FutureBase)
PeerStateInitializer = proc(peer: Peer): RootRef
NetworkStateInitializer = proc(network: EthereumNode): RootRef
HandshakeStep = proc(peer: Peer): Future[void]
DisconnectionHandler = proc(peer: Peer,
reason: DisconnectionReason): Future[void]
RlpxMessageKind* = enum
rlpxNotification,
rlpxRequest,
rlpxResponse
ConnectionState* = enum
None,
Connecting,
Connected,
Disconnecting,
Disconnected
DisconnectionReason* = enum
DisconnectRequested,
TcpError,
BreachOfProtocol,
UselessPeer,
TooManyPeers,
AlreadyConnected,
IncompatibleProtocolVersion,
NullNodeIdentityReceived,
ClientQuitting,
UnexpectedIdentity,
SelfConnection,
MessageTimeout,
SubprotocolReason = 0x10
UnsupportedProtocol* = object of Exception
# This is raised when you attempt to send a message from a particular
# protocol to a peer that doesn't support the protocol.
MalformedMessageError* = object of Exception
logScope:
topic = "rlpx"
const
baseProtocolVersion = 4
clientId = "nim-eth-p2p/0.2.0"
defaultReqTimeout = 10000
var
gProtocols: seq[ProtocolInfo]
gDispatchers = initSet[Dispatcher]()
devp2p: ProtocolInfo
# The variables above are immutable RTTI information. We need to tell
# Nim to not consider them GcSafe violations:
template rlpxProtocols: auto = {.gcsafe.}: gProtocols
template devp2pProtocolInfo: auto = {.gcsafe.}: devp2p
# Dispatcher
#
proc `$`*(p: Peer): string {.inline.} =
$p.remote
proc hash(d: Dispatcher): int =
hash(d.protocolOffsets)
proc `==`(lhs, rhs: Dispatcher): bool =
lhs.protocolOffsets == rhs.protocolOffsets
iterator activeProtocols(d: Dispatcher): ProtocolInfo =
for i in 0 ..< rlpxProtocols.len:
if d.protocolOffsets[i] != -1:
yield rlpxProtocols[i]
proc describeProtocols(d: Dispatcher): string =
result = ""
for protocol in d.activeProtocols:
if result.len != 0: result.add(',')
for c in protocol.name: result.add(c)
proc getDispatcher(node: EthereumNode,
otherPeerCapabilities: openarray[Capability]): Dispatcher =
# TODO: sub-optimal solution until progress is made here:
# https://github.com/nim-lang/Nim/issues/7457
# We should be able to find an existing dispatcher without allocating a new one
new(result)
newSeq(result.protocolOffsets, rlpxProtocols.len)
var nextUserMsgId = 0x10
for i in 0 ..< rlpxProtocols.len:
let localProtocol = rlpxProtocols[i]
if not node.rlpxProtocols.contains(localProtocol):
result.protocolOffsets[i] = -1
continue
block findMatchingProtocol:
for remoteCapability in otherPeerCapabilities:
if localProtocol.name == remoteCapability.name and
localProtocol.version == remoteCapability.version:
result.protocolOffsets[i] = nextUserMsgId
nextUserMsgId += localProtocol.messages.len
break findMatchingProtocol
# the local protocol is not supported by the other peer
# indicate this by a -1 offset:
result.protocolOffsets[i] = -1
if result in gDispatchers:
return gDispatchers[result]
else:
template copyTo(src, dest; index: int) =
for i in 0 ..< src.len:
dest[index + i] = addr src[i]
result.messages = newSeq[ptr MessageInfo](nextUserMsgId)
devp2pProtocolInfo.messages.copyTo(result.messages, 0)
for i in 0 ..< rlpxProtocols.len:
if result.protocolOffsets[i] != -1:
rlpxProtocols[i].messages.copyTo(result.messages,
result.protocolOffsets[i])
gDispatchers.incl result
# Protocol info objects
#
proc newProtocol(name: string, version: int,
peerInit: PeerStateInitializer,
networkInit: NetworkStateInitializer): ProtocolInfo =
new result
result.name[0] = name[0]
result.name[1] = name[1]
result.name[2] = name[2]
result.version = version
result.messages = @[]
result.peerStateInitializer = peerInit
result.networkStateInitializer = networkInit
proc setEventHandlers(p: ProtocolInfo,
handshake: HandshakeStep,
disconnectHandler: DisconnectionHandler) =
p.handshake = handshake
p.disconnectHandler = disconnectHandler
proc nameStr*(p: ProtocolInfo): string =
result = newStringOfCap(3)
for c in p.name: result.add(c)
proc cmp*(lhs, rhs: ProtocolInfo): int {.inline.} =
for i in 0..2:
if lhs.name[i] != rhs.name[i]:
return int16(lhs.name[i]) - int16(rhs.name[i])
return 0
proc messagePrinter[MsgType](msg: pointer): string =
result = $(cast[ptr MsgType](msg)[])
proc nextMsgResolver[MsgType](msgData: Rlp, future: FutureBase) =
var reader = msgData
Future[MsgType](future).complete reader.read(MsgType)
proc requestResolver[MsgType](msg: pointer, future: FutureBase) =
var f = Future[Option[MsgType]](future)
if not f.finished:
if msg != nil:
f.complete some(cast[ptr MsgType](msg)[])
else:
f.complete none(MsgType)
else:
# This future was already resolved, but let's do some sanity checks
# here. The only reasonable explanation is that the request should
# have timed out.
if msg != nil:
if f.read.isSome:
doAssert false, "trying to resolve a request twice"
else:
doAssert false, "trying to resolve a timed out request with a value"
else:
if not f.read.isSome:
doAssert false, "a request timed out twice"
proc registerMsg(protocol: var ProtocolInfo,
id: int, name: string,
thunk: MessageHandler,
printer: MessageContentPrinter,
requestResolver: RequestResolver,
nextMsgResolver: NextMsgResolver) =
protocol.messages.add MessageInfo(id: id,
name: name,
thunk: thunk,
printer: printer,
requestResolver: requestResolver,
nextMsgResolver: nextMsgResolver)
proc registerProtocol(protocol: ProtocolInfo) =
# TODO: This can be done at compile-time in the future
if protocol.version > 0:
if gProtocols.isNil: gProtocols = @[]
let pos = lowerBound(gProtocols, protocol)
gProtocols.insert(protocol, pos)
for i in 0 ..< gProtocols.len:
gProtocols[i].index = i
else:
devp2p = protocol
# Message composition and encryption
#
proc writeMsgId(p: ProtocolInfo, msgId: int, peer: Peer,
rlpOut: var RlpWriter) =
let baseMsgId = peer.dispatcher.protocolOffsets[p.index]
doAssert baseMsgId != -1
rlpOut.append(baseMsgId + msgId)
proc dispatchMsg(peer: Peer, msgId: int, msgData: var Rlp): Future[void] =
template invalidIdError: untyped =
raise newException(ValueError,
"RLPx message with an invalid id " & $msgId &
" on a connection supporting " & peer.dispatcher.describeProtocols)
if msgId >= peer.dispatcher.messages.len: invalidIdError()
let thunk = peer.dispatcher.messages[msgId].thunk
if thunk == nil: invalidIdError()
return thunk(peer, msgData)
proc sendMsg(p: Peer, data: BytesRange): Future[int] =
# var rlp = rlpFromBytes(data)
# echo "sending: ", rlp.read(int)
# echo "payload: ", rlp.inspect
var cipherText = encryptMsg(data, p.secretsState)
return p.transp.write(cipherText)
proc registerRequest(peer: Peer,
timeout: int,
responseFuture: FutureBase,
responseMsgId: int): int =
result = peer.nextReqId
inc peer.nextReqId
let timeoutAt = fastEpochTime() + uint64(timeout)
let req = OutstandingRequest(reqId: result,
future: responseFuture,
timeoutAt: timeoutAt)
peer.outstandingRequests[responseMsgId].addLast req
# XXX: is this safe?
let requestResolver = peer.dispatcher.messages[responseMsgId].requestResolver
proc timeoutExpired(udata: pointer) = requestResolver(nil, responseFuture)
addTimer(timeoutAt, timeoutExpired, nil)
proc resolveResponseFuture(peer: Peer, msgId: int, msg: pointer, reqId: int) =
logScope:
msg = peer.dispatcher.messages[msgId].name
msgContents = peer.dispatcher.messages[msgId].printer(msg)
receivedReqId = reqId
remotePeer = peer.remote
template resolve(future) =
peer.dispatcher.messages[msgId].requestResolver(msg, future)
template outstandingReqs: auto =
peer.outstandingRequests[msgId]
if reqId == -1:
# XXX: This is a response from an ETH-like protocol that doesn't feature
# request IDs. Handling the response is quite tricky here because this may
# be a late response to an already timed out request or a valid response
# from a more recent one.
#
# We can increase the robustness by recording enough features of the
# request so we can recognize the matching response, but this is not very
# easy to do because our peers are allowed to send partial responses.
#
# A more generally robust approach is to maintain a set of the wanted
# data items and then to periodically look for items that have been
# requested long time ago, but are still missing. New requests can be
# issues for such items potentially from another random peer.
var expiredRequests = 0
for req in outstandingReqs:
if not req.future.finished: break
inc expiredRequests
outstandingReqs.shrink(fromFront = expiredRequests)
if outstandingReqs.len > 0:
let oldestReq = outstandingReqs.popFirst
assert oldestReq.reqId == -1
resolve oldestReq.future
else:
debug "late or duplicate reply for a RLPx request"
else:
# TODO: This is not completely sound because we are still using a global
# `reqId` sequence (the problem is that we might get a response ID that
# matches a request ID for a different type of request). To make the code
# correct, we can use a separate sequence per response type, but we have
# to first verify that the other Ethereum clients are supporting this
# correctly (because then, we'll be reusing the same reqIds for different
# types of requests). Alternatively, we can assign a separate interval in
# the `reqId` space for each type of response.
if reqId >= peer.nextReqId:
warn "RLPx response without a matching request"
return
var idx = 0
while idx < outstandingReqs.len:
template req: auto = outstandingReqs()[idx]
if req.future.finished:
assert req.timeoutAt < fastEpochTime()
# Here we'll remove the expired request by swapping
# it with the last one in the deque (if necessary):
if idx != outstandingReqs.len - 1:
req = outstandingReqs.popLast
else:
outstandingReqs.shrink(fromEnd = 1)
# This was the last item, so we don't have any
# more work to do:
return
if req.reqId == reqId:
resolve req.future
# Here we'll remove the found request by swapping
# it with the last one in the deque (if necessary):
if idx != outstandingReqs.len - 1:
req = outstandingReqs.popLast
else:
outstandingReqs.shrink(fromEnd = 1)
return
inc idx
debug "late or duplicate reply for a RLPx request"
proc recvMsg*(peer: Peer): Future[tuple[msgId: int, msgData: Rlp]] {.async.} =
## This procs awaits the next complete RLPx message in the TCP stream
var headerBytes: array[32, byte]
await peer.transp.readExactly(addr headerBytes[0], 32)
var msgSize: int
if decryptHeaderAndGetMsgSize(peer.secretsState,
headerBytes, msgSize) != RlpxStatus.Success:
return (-1, zeroBytesRlp)
let remainingBytes = encryptedLength(msgSize) - 32
# TODO: Migrate this to a thread-local seq
# JACEK:
# or pass it in, allowing the caller to choose - they'll likely be in a
# better position to decide if buffer should be reused or not. this will
# also be useuful for chunked messages where part of the buffer may have
# been processed and needs filling in
var encryptedBytes = newSeq[byte](remainingBytes)
await peer.transp.readExactly(addr encryptedBytes[0], len(encryptedBytes))
let decryptedMaxLength = decryptedLength(msgSize)
var
decryptedBytes = newSeq[byte](decryptedMaxLength)
decryptedBytesCount = 0
if decryptBody(peer.secretsState, encryptedBytes, msgSize,
decryptedBytes, decryptedBytesCount) != RlpxStatus.Success:
return (-1, zeroBytesRlp)
decryptedBytes.setLen(decryptedBytesCount)
var rlp = rlpFromBytes(decryptedBytes.toRange)
let msgId = rlp.read(int)
return (msgId, rlp)
proc waitSingleMsg(peer: Peer, MsgType: typedesc): Future[MsgType] {.async.} =
const wantedId = MsgType.msgId
while true:
var (nextMsgId, nextMsgData) = await peer.recvMsg()
if nextMsgId == wantedId:
return nextMsgData.read(MsgType)
proc nextMsg*(peer: Peer, MsgType: typedesc): Future[MsgType] {.async.} =
## This procs awaits a specific RLPx message.
## Any messages received while waiting will be dispatched to their
## respective handlers. The designated message handler will also run
## to completion before the future returned by `nextMsg` is resolved.
const wantedId = MsgType.msgId
if peer.awaitedMessages[wantedId] != nil:
return Future[MsgType](peer.awaitedMessages[wantedId])
new result
peer.awaitedMessages[wantedId] = result
proc dispatchMessages*(peer: Peer) {.async.} =
while true:
var (msgId, msgData) = await peer.recvMsg()
# echo "got msg(", msgId, "): ", msgData.inspect
if msgData.listLen != 0:
# TODO: this should be `enterList`
msgData = msgData.listElem(0)
await peer.dispatchMsg(msgId, msgData)
if peer.awaitedMessages[msgId] != nil:
let msgInfo = peer.dispatcher.messages[msgId]
msgInfo.nextMsgResolver(msgData, peer.awaitedMessages[msgId])
peer.awaitedMessages[msgId] = nil
iterator typedParams(n: NimNode, skip = 0): (NimNode, NimNode) =
for i in (1 + skip) ..< n.params.len:
let paramNodes = n.params[i]
let paramType = paramNodes[^2]
for j in 0 ..< paramNodes.len - 2:
yield (paramNodes[j], paramType)
proc chooseFieldType(n: NimNode): NimNode =
## Examines the parameter types used in the message signature
## and selects the corresponding field type for use in the
## message object type (i.e. `p2p.hello`).
##
## For now, only openarray types are remapped to sequences.
result = n
if n.kind == nnkBracketExpr and eqIdent(n[0], "openarray"):
result = n.copyNimTree
result[0] = newIdentNode("seq")
proc getState(peer: Peer, proto: ProtocolInfo): RootRef =
peer.protocolStates[proto.index]
template state*(connection: Peer, Protocol: typedesc): untyped =
## Returns the state object of a particular protocol for a
## particular connection.
cast[ref Protocol.State](connection.getState(Protocol.protocolInfo))
proc getNetworkState(peer: Peer, proto: ProtocolInfo): RootRef =
peer.network.protocolStates[proto.index]
template networkState*(connection: Peer, Protocol: typedesc): untyped =
## Returns the network state object of a particular protocol for a
## particular connection.
cast[ref Protocol.NetworkState](connection.getNetworkState(Protocol.protocolInfo))
proc initProtocolState*[T](state: var T, x: Peer|EthereumNode) = discard
proc createPeerState[ProtocolState](peer: Peer): RootRef =
var res = new ProtocolState
mixin initProtocolState
initProtocolState(res[], peer)
return cast[RootRef](res)
proc createNetworkState[NetworkState](network: EthereumNode): RootRef =
var res = new NetworkState
mixin initProtocolState
initProtocolState(res[], network)
return cast[RootRef](res)
proc popTimeoutParam(n: NimNode): NimNode =
var lastParam = n.params[^1]
if eqIdent(lastParam[0], "timeout"):
if lastParam[2].kind == nnkEmpty:
macros.error "You must specify a default value for the `timeout` parameter", lastParam
result = lastParam
n.params.del(n.params.len - 1)
macro rlpxProtocol*(protoIdentifier: untyped,
version: static[int],
body: untyped): untyped =
## The macro used to defined RLPx sub-protocols. See README.
var
nextId = 0
outTypes = newNimNode(nnkStmtList)
outSendProcs = newNimNode(nnkStmtList)
outRecvProcs = newNimNode(nnkStmtList)
outProcRegistrations = newNimNode(nnkStmtList)
protoName = $protoIdentifier
protoNameIdent = newIdentNode(protoName)
resultIdent = newIdentNode "result"
protocol = genSym(nskVar, protoName & "Proto")
isSubprotocol = version > 0
stateType: NimNode = nil
networkStateType: NimNode = nil
handshake = newNilLit()
disconnectHandler = newNilLit()
useRequestIds = true
Option = bindSym "Option"
# XXX: Binding the int type causes instantiation failure for some reason
# Int = bindSym "int"
Int = newIdentNode "int"
Peer = bindSym "Peer"
append = bindSym "append"
createNetworkState = bindSym "createNetworkState"
createPeerState = bindSym "createPeerState"
finish = bindSym "finish"
initRlpWriter = bindSym "initRlpWriter"
messagePrinter = bindSym "messagePrinter"
newProtocol = bindSym "newProtocol"
nextMsgResolver = bindSym "nextMsgResolver"
read = bindSym "read"
registerRequest = bindSym "registerRequest"
requestResolver = bindSym "requestResolver"
resolveResponseFuture = bindSym "resolveResponseFuture"
rlpFromBytes = bindSym "rlpFromBytes"
sendMsg = bindSym "sendMsg"
startList = bindSym "startList"
writeMsgId = bindSym "writeMsgId"
# By convention, all Ethereum protocol names must be abbreviated to 3 letters
assert protoName.len == 3
proc augmentUserHandler(userHandlerProc: NimNode) =
## Turns a regular proc definition into an async proc and adds
## the helpers for accessing the peer and network protocol states.
userHandlerProc.addPragma newIdentNode"async"
# Define local accessors for the peer and the network protocol states
# inside each user message handler proc (e.g. peer.state.foo = bar)
if stateType != nil:
var localStateAccessor = quote:
template state(p: `Peer`): ref `stateType` =
cast[ref `stateType`](p.getState(`protocol`))
userHandlerProc.body.insert 0, localStateAccessor
if networkStateType != nil:
var networkStateAccessor = quote:
template networkState(p: `Peer`): ref `networkStateType` =
cast[ref `networkStateType`](p.getNetworkState(`protocol`))
userHandlerProc.body.insert 0, networkStateAccessor
proc liftEventHandler(doBlock: NimNode, handlerName: string): NimNode =
## Turns a "named" do block to a regular async proc
## (e.g. onPeerConnected do ...)
var fn = newTree(nnkProcDef)
doBlock.copyChildrenTo(fn)
result = genSym(nskProc, protoName & handlerName)
fn.name = result
augmentUserHandler fn
outRecvProcs.add fn
proc addMsgHandler(msgId: int, n: NimNode,
msgKind = rlpxNotification,
responseMsgId = -1,
responseRecord: NimNode = nil): NimNode =
let
msgIdent = n.name
msgName = $n.name
var
paramCount = 0
# variables used in the sending procs
msgRecipient = genSym(nskParam, "msgRecipient")
reqTimeout: NimNode
rlpWriter = genSym(nskVar, "writer")
appendParams = newNimNode(nnkStmtList)
sentReqId = genSym(nskLet, "reqId")
# variables used in the receiving procs
msgSender = genSym(nskParam, "msgSender")
receivedRlp = genSym(nskVar, "rlp")
receivedMsg = genSym(nskVar, "msg")
readParams = newNimNode(nnkStmtList)
callResolvedResponseFuture = newNimNode(nnkStmtList)
# nodes to store the user-supplied message handling proc if present
userHandlerProc: NimNode = nil
userHandlerCall: NimNode = nil
awaitUserHandler = newStmtList()
# a record type associated with the message
msgRecord = genSym(nskType, msgName & "Obj")
msgRecordFields = newTree(nnkRecList)
msgRecordBody = newTree(nnkObjectTy,
newEmptyNode(),
newEmptyNode(),
msgRecordFields)
result = msgRecord
case msgKind
of rlpxNotification: discard
of rlpxRequest:
# If the request proc has a default timeout specified, remove it from
# the signature for now so we can generate the `thunk` proc without it.
# The parameter will be added back later only for to the sender proc.
# When the timeout is not specified, we use a default one.
reqTimeout = popTimeoutParam(n)
if reqTimeout == nil:
reqTimeout = newTree(nnkIdentDefs,
genSym(nskParam, "timeout"),
Int, newLit(defaultReqTimeout))
# Each request is registered so we can resolve it when the response
# arrives. There are two types of protocols: LES-like protocols use
# explicit `reqId` sent over the wire, while the ETH wire protocol
# assumes there is one outstanding request at a time (if there are
# multiple requests we'll resolve them in FIFO order).
let registerRequestCall = newCall(registerRequest, msgRecipient,
reqTimeout[0],
resultIdent,
newLit(responseMsgId))
if useRequestIds:
inc paramCount
appendParams.add quote do:
new `resultIdent`
let `sentReqId` = `registerRequestCall`
`append`(`rlpWriter`, `sentReqId`)
else:
appendParams.add quote do:
discard `registerRequestCall`
of rlpxResponse:
if useRequestIds:
var reqId = genSym(nskLet, "reqId")
# Messages using request Ids
readParams.add quote do:
let `reqId` = `read`(`receivedRlp`, int)
callResolvedResponseFuture.add quote do:
`resolveResponseFuture`(`msgSender`, `msgId`, addr(`receivedMsg`), `reqId`)
else:
callResolvedResponseFuture.add quote do:
`resolveResponseFuture`(`msgSender`, `msgId`, addr(`receivedMsg`), -1)
if n.body.kind != nnkEmpty:
# implement the receiving thunk proc that deserialzed the
# message parameters and calls the user proc:
userHandlerProc = n.copyNimTree
userHandlerProc.name = genSym(nskProc, msgName)
augmentUserHandler userHandlerProc
# This is the call to the user supplied handled. Here we add only the
# initial peer param, while the rest of the params will be added later.
userHandlerCall = newCall(userHandlerProc.name, msgSender)
# When there is a user handler, it must be awaited in the thunk proc.
# Above, by default `awaitUserHandler` is set to a no-op statement list.
awaitUserHandler = newCall("await", userHandlerCall)
outRecvProcs.add(userHandlerProc)
for param, paramType in n.typedParams(skip = 1):
inc paramCount
# This is a fragment of the sending proc that
# serializes each of the passed parameters:
appendParams.add quote do:
`append`(`rlpWriter`, `param`)
# Each message has a corresponding record type.
# Here, we create its fields one by one:
msgRecordFields.add newTree(nnkIdentDefs,
param, chooseFieldType(paramType), newEmptyNode())
# The received RLP data is deserialized to a local variable of
# the message-specific type. This is done field by field here:
readParams.add quote do:
`receivedMsg`.`param` = `read`(`receivedRlp`, `paramType`)
# If there is user message handler, we'll place a call to it by
# unpacking the fields of the received message:
if userHandlerCall != nil:
userHandlerCall.add newDotExpr(receivedMsg, param)
let thunkName = newIdentNode(msgName & "_thunk")
outRecvProcs.add quote do:
proc `thunkName`(`msgSender`: `Peer`, data: Rlp) {.async.} =
var `receivedRlp` = data
var `receivedMsg` {.noinit.}: `msgRecord`
`readParams`
`awaitUserHandler`
`callResolvedResponseFuture`
outTypes.add quote do:
# This is a type featuring a single field for each message param:
type `msgRecord`* = `msgRecordBody`
# Add a helper template for accessing the message type:
# e.g. p2p.hello:
template `msgIdent`*(T: type `protoNameIdent`): typedesc = `msgRecord`
# Add a helper template for obtaining the message Id for
# a particular message type:
template msgId*(T: type `msgRecord`): int = `msgId`
var msgSendProc = n
# TODO: check that the first param has the correct type
msgSendProc.params[1][0] = msgRecipient
# Add a timeout parameter for all request procs
if msgKind == rlpxRequest: msgSendProc.params.add reqTimeout
# We change the return type of the sending proc to a Future.
# If this is a request proc, the future will return the response record.
let rt = if msgKind != rlpxRequest: Int
else: newTree(nnkBracketExpr, Option, responseRecord)
msgSendProc.params[0] = newTree(nnkBracketExpr, newIdentNode("Future"), rt)
let writeMsgId = if isSubprotocol:
quote: `writeMsgId`(`protocol`, `msgId`, `msgRecipient`, `rlpWriter`)
else:
quote: `append`(`rlpWriter`, `msgId`)
var sendCall = newCall(sendMsg, msgRecipient, newCall(finish, rlpWriter))
let senderEpilogue = if msgKind == rlpxRequest:
# In RLPx requests, the returned future was allocated here and passed
# to `registerRequest`. It's already assigned to the result variable
# of the proc, so we just wait for the sending operation to complete
# and we return in a normal way. (the waiting is done, so we can catch
# any possible errors).
quote: discard waitFor(`sendCall`)
else:
# In normal RLPx messages, we are returning the future returned by the
# `sendMsg` call.
quote: return `sendCall`
# let paramCountNode = newLit(paramCount)
msgSendProc.body = quote do:
var `rlpWriter` = `initRlpWriter`()
`writeMsgId`
`startList`(`rlpWriter`, `paramCount`)
`appendParams`
`senderEpilogue`
outSendProcs.add msgSendProc
outProcRegistrations.add(
newCall(bindSym("registerMsg"),
protocol,
newIntLitNode(msgId),
newStrLitNode($n.name),
thunkName,
newTree(nnkBracketExpr, messagePrinter, msgRecord),
newTree(nnkBracketExpr, requestResolver, msgRecord),
newTree(nnkBracketExpr, nextMsgResolver, msgRecord)))
outTypes.add quote do:
# Create a type acting as a pseudo-object representing the protocol
# (e.g. p2p)
type `protoNameIdent`* = object
for n in body:
case n.kind
of {nnkCall, nnkCommand}:
if eqIdent(n[0], "nextID"):
# By default message IDs are assigned in increasing order
# `nextID` can be used to skip some of the numeric slots
if n.len == 2 and n[1].kind == nnkIntLit:
nextId = n[1].intVal.int
else:
macros.error("nextID expects a single int value", n)
elif eqIdent(n[0], "requestResponse"):
# `requestResponse` can be given a block of 2 or more procs.
# The last one is considered to be a response message, while
# all preceeding ones are requests triggering the response.
# The system makes sure to automatically insert a hidden `reqId`
# parameter used to discriminate the individual messages.
block processReqResp:
if n.len == 2 and n[1].kind == nnkStmtList:
var procs = newSeq[NimNode](0)
for def in n[1]:
if def.kind == nnkProcDef:
procs.add(def)
if procs.len > 1:
let responseMsgId = nextId + procs.len - 1
let responseRecord = addMsgHandler(responseMsgId,
procs[^1],
msgKind = rlpxResponse)
for i in 0 .. procs.len - 2:
discard addMsgHandler(nextId + i, procs[i],
msgKind = rlpxRequest,
responseMsgId = responseMsgId,
responseRecord = responseRecord)
inc nextId, procs.len
# we got all the way to here, so everything is fine.
# break the block so it doesn't reach the error call below
break processReqResp
macros.error("requestResponse expects a block with at least two proc definitions")
elif eqIdent(n[0], "onPeerConnected"):
handshake = liftEventHandler(n[1], "Handshake")
elif eqIdent(n[0], "onPeerDisconnected"):
discard
disconnectHandler = liftEventHandler(n[1], "PeerDisconnect")
else:
macros.error(repr(n) & " is not a recognized call in RLPx protocol definitions", n)
of nnkAsgn:
if eqIdent(n[0], "useRequestIds"):
useRequestIds = $n[1] == "true"
else:
macros.error(repr(n[0]) & " is not a recognized protocol option")
of nnkTypeSection:
outTypes.add n
for typ in n:
if eqIdent(typ[0], "State"):
stateType = genSym(nskType, protoName & "State")
typ[0] = stateType
outTypes.add quote do:
template State*(P: type `protoNameIdent`): typedesc =
`stateType`
elif eqIdent(typ[0], "NetworkState"):
networkStateType = genSym(nskType, protoName & "NetworkState")
typ[0] = networkStateType
outTypes.add quote do:
template NetworkState*(P: type `protoNameIdent`): typedesc =
`networkStateType`
else:
macros.error("The only type names allowed within a RLPx protocol definition are 'State' and 'NetworkState'")
of nnkProcDef:
discard addMsgHandler(nextId, n)
inc nextId
else:
macros.error("illegal syntax in a RLPx protocol definition", n)
let peerInit = if stateType == nil: newNilLit()
else: newTree(nnkBracketExpr, createPeerState, stateType)
let netInit = if networkStateType == nil: newNilLit()
else: newTree(nnkBracketExpr, createNetworkState, stateType)
result = newNimNode(nnkStmtList)
result.add outTypes
result.add quote do:
# One global variable per protocol holds the protocol run-time data
var `protocol` = `newProtocol`(`protoName`, `version`, `peerInit`, `netInit`)
# The protocol run-time data is available as a pseudo-field
# (e.g. `p2p.protocolInfo`)
template protocolInfo*(P: type `protoNameIdent`): ProtocolInfo = `protocol`
result.add outSendProcs, outRecvProcs, outProcRegistrations
result.add quote do:
setEventHandlers(`protocol`, `handshake`, `disconnectHandler`)
result.add newCall(bindSym("registerProtocol"), protocol)
when isMainModule: echo repr(result)
rlpxProtocol p2p, 0:
proc hello(peer: Peer,
version: uint,
clientId: string,
capabilities: seq[Capability],
listenPort: uint,
nodeId: array[RawPublicKeySize, byte])
proc sendDisconnectMsg(peer: Peer, reason: DisconnectionReason)
proc ping(peer: Peer) =
discard peer.pong()
proc pong(peer: Peer) =
discard
proc disconnect(peer: Peer, reason: DisconnectionReason) {.async.} =
discard await peer.sendDisconnectMsg(reason)
# TODO: Any other clean up required?
template `^`(arr): auto =
# passes a stack array with a matching `arrLen`
# variable as an open array
arr.toOpenArray(0, `arr Len` - 1)
proc validatePubKeyInHello(msg: p2p.hello, pubKey: PublicKey): bool =
var pk: PublicKey
recoverPublicKey(msg.nodeId, pk) == EthKeysStatus.Success and pk == pubKey
proc check(status: AuthStatus) =
if status != AuthStatus.Success:
raise newException(Exception, "Error: " & $status)
proc performSubProtocolHandshakes(peer: Peer) {.async.} =
var subProtocolsHandshakes = newSeqOfCap[Future[void]](rlpxProtocols.len)
for protocol in peer.dispatcher.activeProtocols:
if protocol.handshake != nil:
subProtocolsHandshakes.add protocol.handshake(peer)
await all(subProtocolsHandshakes)
peer.connectionState = Connected
proc postHelloSteps(peer: Peer, h: p2p.hello): Future[void] =
peer.dispatcher = getDispatcher(peer.network, h.capabilities)
# The dispatcher has determined our message ID sequence.
# For each message ID, we allocate a potential slot for
# tracking responses to requests.
# (yes, some of the slots won't be used).
peer.outstandingRequests.newSeq(peer.dispatcher.messages.len)
for d in mitems(peer.outstandingRequests):
d = initDeque[OutstandingRequest](0)
# Similarly, we need a bit of book-keeping data to keep track
# of the potentially concurrent calls to `nextMsg`.
peer.awaitedMessages.newSeq(peer.dispatcher.messages.len)
peer.nextReqId = 1
# Initialize all the active protocol states
newSeq(peer.protocolStates, rlpxProtocols.len)
for protocol in peer.dispatcher.activeProtocols:
let peerStateInit = protocol.peerStateInitializer
if peerStateInit != nil:
peer.protocolStates[protocol.index] = peerStateInit(peer)
return performSubProtocolHandshakes(peer)
proc initSecretState(hs: var Handshake, authMsg, ackMsg: openarray[byte],
p: Peer) =
var secrets: ConnectionSecret
check hs.getSecrets(authMsg, ackMsg, secrets)
initSecretState(secrets, p.secretsState)
burnMem(secrets)
proc rlpxConnect*(node: EthereumNode, remote: Node): Future[Peer] {.async.} =
new result
result.network = node
result.remote = remote
let ta = initTAddress(remote.node.address.ip, remote.node.address.tcpPort)
try:
result.transp = await connect(ta)
var handshake = newHandshake({Initiator})
handshake.host = node.keys
var authMsg: array[AuthMessageMaxEIP8, byte]
var authMsgLen = 0
check authMessage(handshake, remote.node.pubkey, authMsg, authMsgLen)
var res = result.transp.write(addr authMsg[0], authMsgLen)
let initialSize = handshake.expectedLength
var ackMsg = newSeqOfCap[byte](1024)
ackMsg.setLen(initialSize)
await result.transp.readExactly(addr ackMsg[0], len(ackMsg))
var ret = handshake.decodeAckMessage(ackMsg)
if ret == AuthStatus.IncompleteError:
ackMsg.setLen(handshake.expectedLength)
await result.transp.readExactly(addr ackMsg[initialSize],
len(ackMsg) - initialSize)
ret = handshake.decodeAckMessage(ackMsg)
check ret
initSecretState(handshake, ^authMsg, ackMsg, result)
# if handshake.remoteHPubkey != remote.node.pubKey:
# raise newException(Exception, "Remote pubkey is wrong")
asyncCheck result.hello(baseProtocolVersion,
node.clientId,
node.rlpxCapabilities,
uint(node.listeningPort),
node.keys.pubkey.getRaw())
var response = await result.waitSingleMsg(p2p.hello)
if not validatePubKeyInHello(response, remote.node.pubKey):
warn "Remote nodeId is not its public key" # XXX: Do we care?
await postHelloSteps(result, response)
except:
if not isNil(result.transp):
result.transp.close()
proc rlpxAccept*(node: EthereumNode,
transp: StreamTransport): Future[Peer] {.async.} =
new result
result.transp = transp
result.network = node
var handshake = newHandshake({Responder})
handshake.host = node.keys
try:
let initialSize = handshake.expectedLength
var authMsg = newSeqOfCap[byte](1024)
authMsg.setLen(initialSize)
await transp.readExactly(addr authMsg[0], len(authMsg))
var ret = handshake.decodeAuthMessage(authMsg)
if ret == AuthStatus.IncompleteError: # Eip8 auth message is likely
authMsg.setLen(handshake.expectedLength)
await transp.readExactly(addr authMsg[initialSize],
len(authMsg) - initialSize)
ret = handshake.decodeAuthMessage(authMsg)
check ret
var ackMsg: array[AckMessageMaxEIP8, byte]
var ackMsgLen: int
check handshake.ackMessage(ackMsg, ackMsgLen)
var res = transp.write(addr ackMsg[0], ackMsgLen)
initSecretState(handshake, authMsg, ^ackMsg, result)
var response = await result.waitSingleMsg(p2p.hello)
let listenPort = transp.localAddress().port
discard result.hello(baseProtocolVersion, node.clientId,
node.rlpxCapabilities, listenPort.uint,
node.keys.pubkey.getRaw())
if validatePubKeyInHello(response, handshake.remoteHPubkey):
warn "Remote nodeId is not its public key" # XXX: Do we care?
let port = Port(response.listenPort)
let remote = transp.remoteAddress()
let address = Address(ip: remote.address, tcpPort: remote.port,
udpPort: remote.port)
result.remote = newNode(initEnode(handshake.remoteHPubkey, address))
await postHelloSteps(result, response)
except:
transp.close()
# PeerPool attempts to keep connections to at least min_peers
# on the given network.
const
lookupInterval = 5
connectLoopSleepMs = 2000
proc newPeerPool*(network: EthereumNode,
chainDb: AbstractChainDB, networkId: int, keyPair: KeyPair,
discovery: DiscoveryProtocol, clientId: string,
listenPort = Port(30303), minPeers = 10): PeerPool =
new result
result.network = network
result.keyPair = keyPair
result.minPeers = minPeers
result.networkId = networkId
result.discovery = discovery
result.connectedNodes = initTable[Node, Peer]()
result.listenPort = listenPort
template ensureFuture(f: untyped) = asyncCheck f
proc nodesToConnect(p: PeerPool): seq[Node] {.inline.} =
p.discovery.randomNodes(p.minPeers)
# def subscribe(self, subscriber: PeerPoolSubscriber) -> None:
# self._subscribers.append(subscriber)
# for peer in self.connected_nodes.values():
# subscriber.register_peer(peer)
# def unsubscribe(self, subscriber: PeerPoolSubscriber) -> None:
# if subscriber in self._subscribers:
# self._subscribers.remove(subscriber)
proc stopAllPeers(p: PeerPool) {.async.} =
info "Stopping all peers ..."
# TODO: ...
# await asyncio.gather(
# *[peer.stop() for peer in self.connected_nodes.values()])
# async def stop(self) -> None:
# self.cancel_token.trigger()
# await self.stop_all_peers()
proc connect(p: PeerPool, remote: Node): Future[Peer] {.async.} =
## Connect to the given remote and return a Peer instance when successful.
## Returns nil if the remote is unreachable, times out or is useless.
if remote in p.connectedNodes:
debug "skipping_connection_to_already_connected_peer", remote
return nil
result = await p.network.rlpxConnect(remote)
# expected_exceptions = (
# UnreachablePeer, TimeoutError, PeerConnectionLost, HandshakeFailure)
# try:
# self.logger.debug("Connecting to %s...", remote)
# peer = await wait_with_token(
# handshake(remote, self.privkey, self.peer_class, self.chaindb, self.network_id),
# token=self.cancel_token,
# timeout=HANDSHAKE_TIMEOUT)
# return peer
# except OperationCancelled:
# # Pass it on to instruct our main loop to stop.
# raise
# except expected_exceptions as e:
# self.logger.debug("Could not complete handshake with %s: %s", remote, repr(e))
# except Exception:
# self.logger.exception("Unexpected error during auth/p2p handshake with %s", remote)
# return None
proc lookupRandomNode(p: PeerPool) {.async.} =
# This method runs in the background, so we must catch OperationCancelled
# ere otherwise asyncio will warn that its exception was never retrieved.
try:
discard await p.discovery.lookupRandom()
except: # OperationCancelled
discard
p.lastLookupTime = epochTime()
proc getRandomBootnode(p: PeerPool): seq[Node] =
@[p.discovery.bootstrapNodes.rand()]
proc peerFinished(p: PeerPool, peer: Peer) =
## Remove the given peer from our list of connected nodes.
## This is passed as a callback to be called when a peer finishes.
p.connectedNodes.del(peer.remote)
proc run(p: Peer, completionHandler: proc() = nil) {.async.} =
# TODO: This is a stub that should be implemented in rlpx.nim
await sleepAsync(20000) # sleep 20 sec
if not completionHandler.isNil: completionHandler()
proc connectToNodes(p: PeerPool, nodes: seq[Node]) {.async.} =
for node in nodes:
# TODO: Consider changing connect() to raise an exception instead of
# returning None, as discussed in
# https://github.com/ethereum/py-evm/pull/139#discussion_r152067425
let peer = await p.connect(node)
if not peer.isNil:
info "Successfully connected to ", peer
ensureFuture peer.run() do():
p.peerFinished(peer)
p.connectedNodes[peer.remote] = peer
# for subscriber in self._subscribers:
# subscriber.register_peer(peer)
if p.connectedNodes.len >= p.minPeers:
return
proc maybeConnectToMorePeers(p: PeerPool) {.async.} =
## Connect to more peers if we're not yet connected to at least self.minPeers.
if p.connectedNodes.len >= p.minPeers:
debug "pool already connected to enough peers (sleeping)", count = p.connectedNodes
return
if p.lastLookupTime + lookupInterval < epochTime():
ensureFuture p.lookupRandomNode()
await p.connectToNodes(p.nodesToConnect())
# In some cases (e.g ROPSTEN or private testnets), the discovery table might
# be full of bad peers, so if we can't connect to any peers we try a random
# bootstrap node as well.
if p.connectedNodes.len == 0:
await p.connectToNodes(p.getRandomBootnode())
proc run(p: PeerPool) {.async.} =
info "Running PeerPool..."
p.running = true
while p.running:
var dropConnections = false
try:
await p.maybeConnectToMorePeers()
except:
# Most unexpected errors should be transient, so we log and restart from
# scratch.
error "Unexpected error, restarting"
dropConnections = true
if dropConnections:
await p.stopAllPeers()
await sleepAsync(connectLoopSleepMs)
proc start*(p: PeerPool) =
if not p.running:
asyncCheck p.run()
# @property
# def peers(self) -> List[BasePeer]:
# peers = list(self.connected_nodes.values())
# # Shuffle the list of peers so that dumb callsites are less likely to send
# # all requests to
# # a single peer even if they always pick the first one from the list.
# random.shuffle(peers)
# return peers
# async def get_random_peer(self) -> BasePeer:
# while not self.peers:
# self.logger.debug("No connected peers, sleeping a bit")
# await asyncio.sleep(0.5)
# return random.choice(self.peers)
# Ethereum Node
#
proc addProtocol(n: var EthereumNode, p: ProtocolInfo) =
assert n.connectionState == ConnectionState.None
let pos = lowerBound(n.rlpxProtocols, p)
n.rlpxProtocols.insert(p, pos)
n.rlpxCapabilities.insert(Capability(name: p.name, version: p.version), pos)
template addCapability*(n: var EthereumNode, Protocol: typedesc) =
addProtocol(n, Protocol.protocolInfo)
proc newEthereumNode*(keys: KeyPair,
chain: AbstractChainDB,
clientId = clientId,
addAllCapabilities = true): EthereumNode =
result.keys = keys
result.clientId = clientId
result.rlpxProtocols.newSeq 0
result.rlpxCapabilities.newSeq 0
result.connectionState = ConnectionState.None
if addAllCapabilities:
for p in rlpxProtocols:
result.addProtocol(p)
proc processIncoming(server: StreamServer,
remote: StreamTransport): Future[void] {.async, gcsafe.} =
var node = getUserData[EthereumNode](server)
let peerfut = node.rlpxAccept(remote)
yield peerfut
if not peerfut.failed:
let peer = peerfut.read()
echo "TODO: Add peer to the pool..."
else:
echo "Could not establish connection with incoming peer ",
$remote.remoteAddress()
remote.close()
proc connectToNetwork*(node: var EthereumNode,
address: Address,
listeningPort = Port(30303),
bootstrapNodes: openarray[ENode],
networkId: int,
startListening = true) =
assert node.connectionState == ConnectionState.None
node.connectionState = Connecting
node.networkId = networkId
node.listeningPort = listeningPort
node.address = address
node.discovery = newDiscoveryProtocol(node.keys.seckey, address, bootstrapNodes)
node.peerPool = newPeerPool(node, node.chain, networkId,
node.keys, node.discovery,
node.clientId, address.tcpPort)
let ta = initTAddress(address.ip, address.tcpPort)
node.listeningServer = createStreamServer(ta, processIncoming,
{ReuseAddr},
udata = addr(node))
node.protocolStates.newSeq(rlpxProtocols.len)
for p in node.rlpxProtocols:
if p.networkStateInitializer != nil:
node.protocolStates[p.index] = p.networkStateInitializer(node)
if startListening:
node.listeningServer.start()
proc startListening*(s: EthereumNode) =
s.listeningServer.start()
proc stopListening*(s: EthereumNode) =
s.listeningServer.stop()
when isMainModule:
import rlp, strformat
rlpxProtocol aaa, 1:
type State = object
peerName: string
onPeerConnected do (peer: Peer):
discard await peer.hi "Bob"
onPeerDisconnected do (peer: Peer, reason: DisconnectionReason):
debug "peer disconnected", peer
requestResponse:
proc aaaReq(p: Peer, n: int) =
debug "got req ", n
discard await p.aaaRes &"response to {n}"
proc aaaRes(p: Peer, data: string) =
debug "got response ", data
proc hi(p: Peer, name: string) =
p.state.peerName = name
var r = await p.aaaReq(10)
echo r.get.data
rlpxProtocol bbb, 1:
type State = object
messages: int
useRequestIds = false
proc foo(p: Peer, s: string, a, z: int) =
p.state.messages += 1
echo p.state(aaa).peerName
proc bar(p: Peer, i: int, s: string)
requestResponse:
proc bbbReq(p: Peer, n: int, timeout = 3000) =
echo "got req ", n
proc bbbRes(p: Peer, data: string) =
echo "got response ", data
var p = Peer()
discard p.bar(10, "test")
var resp = waitFor p.bbbReq(10)
echo "B response: ", resp.get.data
when false:
# The assignments below can be used to investigate if the RLPx procs
# are considered GcSafe. The short answer is that they aren't, because
# they dispatch into user code that might use the GC.
type
GcSafeDispatchMsg = proc (peer: Peer, msgId: int, msgData: var Rlp)
GcSafeRecvMsg = proc (peer: Peer):
Future[tuple[msgId: int, msgData: Rlp]] {.gcsafe.}
GcSafeAccept = proc (transp: StreamTransport, myKeys: KeyPair):
Future[Peer] {.gcsafe.}
var
dispatchMsgPtr = dispatchMsg
recvMsgPtr: GcSafeRecvMsg = recvMsg
acceptPtr: GcSafeAccept = rlpxAccept