485 lines
16 KiB
Nim
485 lines
16 KiB
Nim
#
|
|
# Ethereum P2P
|
|
# (c) Copyright 2018
|
|
# Status Research & Development GmbH
|
|
#
|
|
# Licensed under either of
|
|
# Apache License, version 2.0, (LICENSE-APACHEv2)
|
|
# MIT license (LICENSE-MIT)
|
|
#
|
|
|
|
import uri, logging, tables, hashes, times, algorithm, sets, sequtils, random
|
|
from strutils import parseInt
|
|
import asyncdispatch2, eth_keys, stint, nimcrypto, enode
|
|
|
|
export sets # TODO: This should not be needed, but compilation fails otherwise
|
|
|
|
type
|
|
KademliaProtocol* [Wire] = ref object
|
|
wire: Wire
|
|
thisNode: Node
|
|
routing: RoutingTable
|
|
pongFutures: Table[seq[byte], Future[bool]]
|
|
pingFutures: Table[Node, Future[bool]]
|
|
neighboursCallbacks: Table[Node, proc(n: seq[Node]) {.gcsafe.}]
|
|
|
|
NodeId* = UInt256
|
|
|
|
Node* = ref object
|
|
node*: ENode
|
|
id*: NodeId
|
|
|
|
RoutingTable = object
|
|
thisNode: Node
|
|
buckets: seq[KBucket]
|
|
|
|
KBucket = ref object
|
|
istart, iend: UInt256
|
|
nodes: seq[Node]
|
|
replacementCache: seq[Node]
|
|
lastUpdated: float # epochTime
|
|
|
|
const
|
|
BUCKET_SIZE = 16
|
|
BITS_PER_HOP = 8
|
|
REQUEST_TIMEOUT = 900 # timeout of message round trips
|
|
FIND_CONCURRENCY = 3 # parallel find node lookups
|
|
ID_SIZE = 256
|
|
|
|
proc toNodeId(pk: PublicKey): NodeId =
|
|
readUintBE[256](keccak256.digest(pk.getRaw()).data)
|
|
|
|
proc newNode*(pk: PublicKey, address: Address): Node =
|
|
result.new()
|
|
result.node = initENode(pk, address)
|
|
result.id = pk.toNodeId()
|
|
|
|
proc newNode*(uriString: string): Node =
|
|
result.new()
|
|
result.node = initENode(uriString)
|
|
result.id = result.node.pubkey.toNodeId()
|
|
|
|
proc newNode*(enode: ENode): Node =
|
|
result.new()
|
|
result.node = enode
|
|
result.id = result.node.pubkey.toNodeId()
|
|
|
|
proc distanceTo(n: Node, id: NodeId): UInt256 = n.id xor id
|
|
|
|
proc `$`*(n: Node): string =
|
|
"Node[" & $n.node.address.ip & ":" & $n.node.address.udpPort & "]"
|
|
|
|
proc hash*(n: Node): hashes.Hash = hash(n.node.pubkey.data)
|
|
proc `==`*(a, b: Node): bool = a.node.pubkey == b.node.pubkey
|
|
|
|
proc newKBucket(istart, iend: NodeId): KBucket =
|
|
result.new()
|
|
result.istart = istart
|
|
result.iend = iend
|
|
result.nodes = @[]
|
|
result.replacementCache = @[]
|
|
|
|
proc midpoint(k: KBucket): NodeId =
|
|
k.istart + (k.iend - k.istart) div 2.u256
|
|
|
|
proc distanceTo(k: KBucket, id: NodeId): UInt256 = k.midpoint xor id
|
|
proc nodesByDistanceTo(k: KBucket, id: NodeId): seq[Node] =
|
|
sortedByIt(k.nodes, it.distanceTo(id))
|
|
|
|
proc len(k: KBucket): int {.inline.} = k.nodes.len
|
|
proc head(k: KBucket): Node {.inline.} = k.nodes[0]
|
|
|
|
proc add(k: KBucket, n: Node): Node =
|
|
## Try to add the given node to this bucket.
|
|
|
|
## If the node is already present, it is moved to the tail of the list, and we return None.
|
|
|
|
## If the node is not already present and the bucket has fewer than k entries, it is inserted
|
|
## at the tail of the list, and we return None.
|
|
|
|
## If the bucket is full, we add the node to the bucket's replacement cache and return the
|
|
## node at the head of the list (i.e. the least recently seen), which should be evicted if it
|
|
## fails to respond to a ping.
|
|
k.lastUpdated = epochTime()
|
|
let nodeIdx = k.nodes.find(n)
|
|
if nodeIdx != -1:
|
|
k.nodes.delete(nodeIdx)
|
|
k.nodes.add(n)
|
|
elif k.len < BUCKET_SIZE:
|
|
k.nodes.add(n)
|
|
else:
|
|
k.replacementCache.add(n)
|
|
return k.head
|
|
return nil
|
|
|
|
proc removeNode(k: KBucket, n: Node) =
|
|
let i = k.nodes.find(n)
|
|
if i != -1: k.nodes.delete(i)
|
|
|
|
proc split(k: KBucket): tuple[lower, upper: KBucket] =
|
|
## Split at the median id
|
|
let splitid = k.midpoint
|
|
result.lower = newKBucket(k.istart, splitid)
|
|
result.upper = newKBucket(splitid + 1.u256, k.iend)
|
|
for node in k.nodes:
|
|
let bucket = if node.id <= splitid: result.lower else: result.upper
|
|
discard bucket.add(node)
|
|
for node in k.replacementCache:
|
|
let bucket = if node.id <= splitid: result.lower else: result.upper
|
|
bucket.replacementCache.add(node)
|
|
|
|
proc inRange(k: KBucket, n: Node): bool {.inline.} =
|
|
k.istart <= n.id and n.id <= k.iend
|
|
|
|
proc isFull(k: KBucket): bool = k.len == BUCKET_SIZE
|
|
|
|
proc contains(k: KBucket, n: Node): bool = n in k.nodes
|
|
|
|
proc binaryGetBucketForNode(buckets: openarray[KBucket],
|
|
n: Node): KBucket {.inline.} =
|
|
## Given a list of ordered buckets, returns the bucket for a given node.
|
|
let bucketPos = lowerBound(buckets, n.id) do(a: KBucket, b: NodeId) -> int:
|
|
cmp(a.iend, b)
|
|
# Prevents edge cases where bisect_left returns an out of range index
|
|
if bucketPos < buckets.len:
|
|
let bucket = buckets[bucketPos]
|
|
if bucket.istart <= n.id and n.id <= bucket.iend:
|
|
result = bucket
|
|
|
|
if result.isNil:
|
|
raise newException(ValueError, "No bucket found for node with id " & $n.id)
|
|
|
|
proc computeSharedPrefixBits(nodes: openarray[Node]): int =
|
|
## Count the number of prefix bits shared by all nodes.
|
|
if nodes.len < 2:
|
|
return ID_SIZE
|
|
|
|
var mask = zero(UInt256)
|
|
let one = one(UInt256)
|
|
|
|
for i in 1 .. ID_SIZE:
|
|
mask = mask or (one shl (ID_SIZE - i))
|
|
let reference = nodes[0].id and mask
|
|
for j in 1 .. nodes.high:
|
|
if (nodes[j].id and mask) != reference: return i - 1
|
|
|
|
assert(false, "Unable to calculate number of shared prefix bits")
|
|
|
|
proc init(r: var RoutingTable, thisNode: Node) {.inline.} =
|
|
r.thisNode = thisNode
|
|
r.buckets = @[newKBucket(0.u256, high(Uint256))]
|
|
|
|
proc splitBucket(r: var RoutingTable, index: int) =
|
|
let bucket = r.buckets[index]
|
|
let (a, b) = bucket.split()
|
|
r.buckets[index] = a
|
|
r.buckets.insert(b, index + 1)
|
|
|
|
proc bucketForNode(r: RoutingTable, n: Node): KBucket =
|
|
binaryGetBucketForNode(r.buckets, n)
|
|
|
|
proc removeNode(r: var RoutingTable, n: Node) =
|
|
r.bucketForNode(n).removeNode(n)
|
|
|
|
proc addNode(r: var RoutingTable, n: Node): Node =
|
|
assert(n != r.thisNode)
|
|
let bucket = r.bucketForNode(n)
|
|
let evictionCandidate = bucket.add(n)
|
|
if not evictionCandidate.isNil:
|
|
# Split if the bucket has the local node in its range or if the depth is not congruent
|
|
# to 0 mod BITS_PER_HOP
|
|
|
|
let depth = computeSharedPrefixBits(bucket.nodes)
|
|
if bucket.inRange(r.thisNode) or (depth mod BITS_PER_HOP != 0 and depth != ID_SIZE):
|
|
r.splitBucket(r.buckets.find(bucket))
|
|
return r.addNode(n) # retry
|
|
|
|
# Nothing added, ping evictionCandidate
|
|
return evictionCandidate
|
|
|
|
proc contains(r: RoutingTable, n: Node): bool = n in r.bucketForNode(n)
|
|
|
|
proc bucketsByDistanceTo(r: RoutingTable, id: NodeId): seq[KBucket] =
|
|
sortedByIt(r.buckets, it.distanceTo(id))
|
|
|
|
proc notFullBuckets(r: RoutingTable): seq[KBucket] =
|
|
r.buckets.filterIt(not it.isFull)
|
|
|
|
proc neighbours(r: RoutingTable, id: NodeId, k: int = BUCKET_SIZE): seq[Node] =
|
|
## Return up to k neighbours of the given node.
|
|
result = newSeqOfCap[Node](k * 2)
|
|
for bucket in r.bucketsByDistanceTo(id):
|
|
for n in bucket.nodesByDistanceTo(id):
|
|
if n.id != id:
|
|
result.add(n)
|
|
if result.len == k * 2:
|
|
break
|
|
result = sortedByIt(result, it.distanceTo(id))
|
|
if result.len > k:
|
|
result.setLen(k)
|
|
|
|
proc len(r: RoutingTable): int =
|
|
for b in r.buckets: result += b.len
|
|
|
|
proc newKademliaProtocol*[Wire](thisNode: Node,
|
|
wire: Wire): KademliaProtocol[Wire] =
|
|
result.new()
|
|
result.thisNode = thisNode
|
|
result.wire = wire
|
|
result.pongFutures = initTable[seq[byte], Future[bool]]()
|
|
result.pingFutures = initTable[Node, Future[bool]]()
|
|
result.neighboursCallbacks = initTable[Node, proc(n: seq[Node])]()
|
|
result.routing.init(thisNode)
|
|
|
|
proc bond(k: KademliaProtocol, n: Node): Future[bool] {.async.}
|
|
|
|
proc updateRoutingTable(k: KademliaProtocol, n: Node) =
|
|
## Update the routing table entry for the given node.
|
|
let evictionCandidate = k.routing.addNode(n)
|
|
if not evictionCandidate.isNil:
|
|
# This means we couldn't add the node because its bucket is full, so schedule a bond()
|
|
# with the least recently seen node on that bucket. If the bonding fails the node will
|
|
# be removed from the bucket and a new one will be picked from the bucket's
|
|
# replacement cache.
|
|
asyncCheck k.bond(evictionCandidate)
|
|
|
|
proc doSleep(p: proc()) {.async.} =
|
|
await sleepAsync(REQUEST_TIMEOUT)
|
|
p()
|
|
|
|
template onTimeout(b: untyped) =
|
|
asyncCheck doSleep() do():
|
|
b
|
|
|
|
proc waitPong(k: KademliaProtocol, n: Node, token: seq[byte]): Future[bool] =
|
|
let pingid = token & @(n.node.pubkey.data)
|
|
assert(pingid notin k.pongFutures, "Already waiting for pong from " & $n)
|
|
result = newFuture[bool]("waitPong")
|
|
let fut = result
|
|
k.pongFutures[pingid] = result
|
|
onTimeout:
|
|
if not fut.finished:
|
|
k.pongFutures.del(pingid)
|
|
fut.complete(false)
|
|
|
|
proc ping(k: KademliaProtocol, n: Node): seq[byte] =
|
|
assert(n != k.thisNode)
|
|
result = k.wire.sendPing(n)
|
|
|
|
proc waitPing(k: KademliaProtocol, n: Node): Future[bool] =
|
|
result = newFuture[bool]("waitPing")
|
|
assert(n notin k.pingFutures)
|
|
k.pingFutures[n] = result
|
|
let fut = result
|
|
onTimeout:
|
|
if not fut.finished:
|
|
k.pingFutures.del(n)
|
|
fut.complete(false)
|
|
|
|
proc waitNeighbours(k: KademliaProtocol, remote: Node): Future[seq[Node]] =
|
|
assert(remote notin k.neighboursCallbacks)
|
|
result = newFuture[seq[Node]]("waitNeighbours")
|
|
let fut = result
|
|
var neighbours = newSeqOfCap[Node](BUCKET_SIZE)
|
|
k.neighboursCallbacks[remote] = proc(n: seq[Node]) =
|
|
# This callback is expected to be called multiple times because nodes usually
|
|
# split the neighbours replies into multiple packets, so we only complete the
|
|
# future event.set() we've received enough neighbours.
|
|
|
|
for i in n:
|
|
if i != k.thisNode:
|
|
neighbours.add(i)
|
|
if neighbours.len == BUCKET_SIZE:
|
|
k.neighboursCallbacks.del(remote)
|
|
assert(not fut.finished)
|
|
fut.complete(neighbours)
|
|
|
|
onTimeout:
|
|
if not fut.finished:
|
|
k.neighboursCallbacks.del(remote)
|
|
fut.complete(neighbours)
|
|
|
|
proc populateNotFullBuckets(k: KademliaProtocol) =
|
|
## Go through all buckets that are not full and try to fill them.
|
|
##
|
|
## For every node in the replacement cache of every non-full bucket, try to bond.
|
|
## When the bonding succeeds the node is automatically added to the bucket.
|
|
for bucket in k.routing.notFullBuckets:
|
|
for node in bucket.replacementCache:
|
|
asyncCheck k.bond(node)
|
|
|
|
proc bond(k: KademliaProtocol, n: Node): Future[bool] {.async.} =
|
|
## Bond with the given node.
|
|
##
|
|
## Bonding consists of pinging the node, waiting for a pong and maybe a ping as well.
|
|
## It is necessary to do this at least once before we send findNode requests to a node.
|
|
if n in k.routing:
|
|
return true
|
|
|
|
let token = k.ping(n)
|
|
let gotPong = await k.waitPong(n, token)
|
|
if not gotPong:
|
|
debug "bonding failed, didn't receive pong from ", n
|
|
# Drop the failing node and schedule a populateNotFullBuckets() call to try and
|
|
# fill its spot.
|
|
k.routing.removeNode(n)
|
|
k.populateNotFullBuckets()
|
|
return false
|
|
|
|
# Give the remote node a chance to ping us before we move on and start sending findNode
|
|
# requests. It is ok for waitPing() to timeout and return false here as that just means
|
|
# the remote remembers us.
|
|
discard await k.waitPing(n)
|
|
|
|
debug "bonding completed successfully with ", n
|
|
k.updateRoutingTable(n)
|
|
return true
|
|
|
|
proc sortByDistance(nodes: var seq[Node], nodeId: NodeId, maxResults = 0) =
|
|
nodes = nodes.sortedByIt(it.distanceTo(nodeId))
|
|
if maxResults != 0 and nodes.len > maxResults:
|
|
nodes.setLen(maxResults)
|
|
|
|
proc lookup*(k: KademliaProtocol, nodeId: NodeId): Future[seq[Node]] {.async.} =
|
|
## Lookup performs a network search for nodes close to the given target.
|
|
|
|
## It approaches the target by querying nodes that are closer to it on each iteration. The
|
|
## given target does not need to be an actual node identifier.
|
|
var nodesAsked = initSet[Node]()
|
|
var nodesSeen = initSet[Node]()
|
|
|
|
proc findNode(nodeId: NodeId, remote: Node): Future[seq[Node]] {.async.} =
|
|
k.wire.sendFindNode(remote, nodeId)
|
|
var candidates = await k.waitNeighbours(remote)
|
|
if candidates.len == 0:
|
|
debug "got no candidates from ", remote, ", returning"
|
|
result = candidates
|
|
else:
|
|
# The following line:
|
|
# 1. Add new candidates to nodesSeen so that we don't attempt to bond with failing ones
|
|
# in the future
|
|
# 2. Removes all previously seen nodes from candidates
|
|
# 3. Deduplicates candidates
|
|
candidates.keepItIf(not nodesSeen.containsOrIncl(it))
|
|
debug "got ", candidates.len, " new candidates"
|
|
let bonded = await all(candidates.mapIt(k.bond(it)))
|
|
for i in 0 ..< bonded.len:
|
|
if not bonded[i]: candidates[i] = nil
|
|
candidates.keepItIf(not it.isNil)
|
|
debug "bonded with ", candidates.len, " candidates"
|
|
result = candidates
|
|
|
|
proc excludeIfAsked(nodes: seq[Node]): seq[Node] =
|
|
result = toSeq(items(nodes.toSet() - nodesAsked))
|
|
sortByDistance(result, nodeId, FIND_CONCURRENCY)
|
|
|
|
var closest = k.routing.neighbours(nodeId)
|
|
debug "starting lookup; initial neighbours: ", closest
|
|
var nodesToAsk = excludeIfAsked(closest)
|
|
while nodesToAsk.len != 0:
|
|
debug "node lookup; querying ", nodesToAsk
|
|
nodesAsked.incl(nodesToAsk.toSet())
|
|
let results = await all(nodesToAsk.mapIt(findNode(nodeId, it)))
|
|
for candidates in results:
|
|
closest.add(candidates)
|
|
sortByDistance(closest, nodeId, BUCKET_SIZE)
|
|
nodesToAsk = excludeIfAsked(closest)
|
|
|
|
info "lookup finished for ", nodeId.toHex, ": ", closest
|
|
result = closest
|
|
|
|
proc lookupRandom*(k: KademliaProtocol): Future[seq[Node]] =
|
|
var id: NodeId
|
|
discard randomBytes(addr id, id.sizeof)
|
|
k.lookup(id)
|
|
|
|
proc resolve*(k: KademliaProtocol, id: NodeId): Future[Node] {.async.} =
|
|
let closest = await k.lookup(id)
|
|
for n in closest:
|
|
if n.id == id: return n
|
|
|
|
proc bootstrap*(k: KademliaProtocol, bootstrapNodes: seq[Node]) {.async.} =
|
|
let bonded = await all(bootstrapNodes.mapIt(k.bond(it)))
|
|
if true notin bonded:
|
|
info "Failed to bond with bootstrap nodes "
|
|
return
|
|
discard await k.lookupRandom()
|
|
|
|
proc recvPong*(k: KademliaProtocol, n: Node, token: seq[byte]) =
|
|
debug "<<< pong from ", n
|
|
let pingid = token & @(n.node.pubkey.data)
|
|
var future: Future[bool]
|
|
if k.pongFutures.take(pingid, future):
|
|
future.complete(true)
|
|
|
|
proc recvPing*(k: KademliaProtocol, n: Node, msgHash: any) =
|
|
debug "<<< ping from ", n
|
|
k.updateRoutingTable(n)
|
|
k.wire.sendPong(n, msgHash)
|
|
|
|
var future: Future[bool]
|
|
if k.pingFutures.take(n, future):
|
|
future.complete(true)
|
|
|
|
proc recvNeighbours*(k: KademliaProtocol, remote: Node, neighbours: seq[Node]) =
|
|
## Process a neighbours response.
|
|
##
|
|
## Neighbours responses should only be received as a reply to a find_node, and that is only
|
|
## done as part of node lookup, so the actual processing is left to the callback from
|
|
## neighbours_callbacks, which is added (and removed after it's done or timed out) in
|
|
## wait_neighbours().
|
|
debug "<<< neighbours from ", remote, ": ", neighbours
|
|
let cb = k.neighboursCallbacks.getOrDefault(remote)
|
|
if not cb.isNil:
|
|
cb(neighbours)
|
|
else:
|
|
debug "unexpected neighbours from ", remote, ", probably came too late"
|
|
|
|
proc recvFindNode*(k: KademliaProtocol, remote: Node, nodeId: NodeId) =
|
|
if remote notin k.routing:
|
|
# FIXME: This is not correct; a node we've bonded before may have become unavailable
|
|
# and thus removed from self.routing, but once it's back online we should accept
|
|
# find_nodes from them.
|
|
debug "Ignoring find_node request from unknown node ", remote
|
|
return
|
|
k.updateRoutingTable(remote)
|
|
var found = k.routing.neighbours(nodeId)
|
|
found.sort() do(x, y: Node) -> int: cmp(x.id, y.id)
|
|
k.wire.sendNeighbours(remote, found)
|
|
|
|
proc randomNodes*(k: KademliaProtocol, count: int): seq[Node] =
|
|
var count = count
|
|
let sz = k.routing.len
|
|
if count > sz:
|
|
warn "Cannot get ", count, " nodes as RoutingTable contains only ", sz, " nodes"
|
|
count = sz
|
|
|
|
result = newSeqOfCap[Node](count)
|
|
var seen = initSet[Node]()
|
|
|
|
# This is a rather inneficient way of randomizing nodes from all buckets, but even if we
|
|
# iterate over all nodes in the routing table, the time it takes would still be
|
|
# insignificant compared to the time it takes for the network roundtrips when connecting
|
|
# to nodes.
|
|
while len(seen) < count:
|
|
let bucket = k.routing.buckets.rand()
|
|
let node = bucket.nodes.rand()
|
|
if node notin seen:
|
|
result.add(node)
|
|
seen.incl(node)
|
|
|
|
when isMainModule:
|
|
proc randomNode(): Node =
|
|
newNode("enode://aa36fdf33dd030378a0168efe6ed7d5cc587fafa3cdd375854fe735a2e11ea3650ba29644e2db48368c46e1f60e716300ba49396cd63778bf8a818c09bded46f@13.93.211.84:30303")
|
|
|
|
var nodes = @[randomNode()]
|
|
doAssert(computeSharedPrefixBits(nodes) == ID_SIZE)
|
|
nodes.add(randomNode())
|
|
nodes[0].id = 0b1.u256
|
|
nodes[1].id = 0b0.u256
|
|
doAssert(computeSharedPrefixBits(nodes) == ID_SIZE - 1)
|
|
|
|
nodes[0].id = 0b010.u256
|
|
nodes[1].id = 0b110.u256
|
|
doAssert(computeSharedPrefixBits(nodes) == ID_SIZE - 3)
|