mirror of
https://github.com/status-im/nim-eth-p2p.git
synced 2025-01-17 18:30:58 +00:00
7828ef0481
This also restores the old module structure of having separate `peer_pool` and `rlpx` modules. This is made possible by the new Nim package `package_visible_types` (please refer to its README for an explanation). Also introduces more error handling in the low-level RLPx routines. All detected errors will result in immediate disconnection of the corresponding peer, which may be detected in the protocols though the `onPeerDisconnected` event handler.
1308 lines
47 KiB
Nim
1308 lines
47 KiB
Nim
import
|
|
macros, tables, algorithm, deques, hashes, options, typetraits,
|
|
chronicles, nimcrypto, asyncdispatch2, rlp, eth_common, eth_keys,
|
|
private/types, kademlia, auth, rlpxcrypt, enode
|
|
|
|
logScope:
|
|
topics = "rlpx"
|
|
|
|
const
|
|
devp2pVersion* = 4
|
|
defaultReqTimeout = 10000
|
|
maxMsgSize = 1024 * 1024
|
|
|
|
var
|
|
gProtocols: seq[ProtocolInfo]
|
|
gDispatchers = initSet[Dispatcher]()
|
|
devp2p: ProtocolInfo
|
|
|
|
# The variables above are immutable RTTI information. We need to tell
|
|
# Nim to not consider them GcSafe violations:
|
|
template rlpxProtocols*: auto = {.gcsafe.}: gProtocols
|
|
template devp2pProtocolInfo: auto = {.gcsafe.}: devp2p
|
|
|
|
proc newFuture[T](location: var Future[T]) =
|
|
location = newFuture[T]()
|
|
|
|
proc `$`*(p: Peer): string {.inline.} =
|
|
$p.remote
|
|
|
|
proc disconnect*(peer: Peer, reason: DisconnectionReason) {.async.}
|
|
|
|
template raisePeerDisconnected(msg: string, r: DisconnectionReason) =
|
|
var e = newException(PeerDisconnected, msg)
|
|
e.reason = r
|
|
raise e
|
|
|
|
proc disconnectAndRaise(peer: Peer,
|
|
reason: DisconnectionReason,
|
|
msg: string) {.async.} =
|
|
let r = reason
|
|
await peer.disconnect(r)
|
|
raisePeerDisconnected(msg, r)
|
|
|
|
# Dispatcher
|
|
#
|
|
|
|
proc hash(d: Dispatcher): int =
|
|
hash(d.protocolOffsets)
|
|
|
|
proc `==`(lhs, rhs: Dispatcher): bool =
|
|
lhs.activeProtocols == rhs.activeProtocols
|
|
|
|
proc describeProtocols(d: Dispatcher): string =
|
|
result = ""
|
|
for protocol in d.activeProtocols:
|
|
if result.len != 0: result.add(',')
|
|
for c in protocol.name: result.add(c)
|
|
|
|
proc numProtocols(d: Dispatcher): int =
|
|
d.activeProtocols.len
|
|
|
|
proc getDispatcher(node: EthereumNode,
|
|
otherPeerCapabilities: openarray[Capability]): Dispatcher =
|
|
# TODO: sub-optimal solution until progress is made here:
|
|
# https://github.com/nim-lang/Nim/issues/7457
|
|
# We should be able to find an existing dispatcher without allocating a new one
|
|
|
|
new(result)
|
|
newSeq(result.protocolOffsets, rlpxProtocols.len)
|
|
result.protocolOffsets.fill -1
|
|
|
|
var nextUserMsgId = 0x10
|
|
|
|
for localProtocol in node.rlpxProtocols:
|
|
let idx = localProtocol.index
|
|
block findMatchingProtocol:
|
|
for remoteCapability in otherPeerCapabilities:
|
|
if localProtocol.name == remoteCapability.name and
|
|
localProtocol.version == remoteCapability.version:
|
|
result.protocolOffsets[idx] = nextUserMsgId
|
|
nextUserMsgId += localProtocol.messages.len
|
|
break findMatchingProtocol
|
|
|
|
if result in gDispatchers:
|
|
return gDispatchers[result]
|
|
else:
|
|
template copyTo(src, dest; index: int) =
|
|
for i in 0 ..< src.len:
|
|
dest[index + i] = addr src[i]
|
|
|
|
result.messages = newSeq[ptr MessageInfo](nextUserMsgId)
|
|
devp2pProtocolInfo.messages.copyTo(result.messages, 0)
|
|
|
|
for localProtocol in node.rlpxProtocols:
|
|
let idx = localProtocol.index
|
|
if result.protocolOffsets[idx] != -1:
|
|
result.activeProtocols.add localProtocol
|
|
localProtocol.messages.copyTo(result.messages,
|
|
result.protocolOffsets[idx])
|
|
|
|
gDispatchers.incl result
|
|
|
|
proc getMsgName*(peer: Peer, msgId: int): string =
|
|
if not peer.dispatcher.isNil and
|
|
msgId < peer.dispatcher.messages.len:
|
|
return peer.dispatcher.messages[msgId].name
|
|
else:
|
|
return case msgId
|
|
of 0: "hello"
|
|
of 1: "disconnect"
|
|
of 2: "ping"
|
|
of 3: "pong"
|
|
else: $msgId
|
|
|
|
proc getMsgMetadata*(peer: Peer, msgId: int): (ProtocolInfo, ptr MessageInfo) =
|
|
doAssert msgId >= 0
|
|
|
|
if msgId <= devp2p.messages[^1].id:
|
|
return (devp2p, addr devp2p.messages[msgId])
|
|
|
|
if msgId < peer.dispatcher.messages.len:
|
|
for i in 0 ..< rlpxProtocols.len:
|
|
let offset = peer.dispatcher.protocolOffsets[i]
|
|
if offset != -1 and
|
|
offset + rlpxProtocols[i].messages[^1].id >= msgId:
|
|
return (rlpxProtocols[i], peer.dispatcher.messages[msgId])
|
|
|
|
# Protocol info objects
|
|
#
|
|
|
|
proc newProtocol(name: string, version: int,
|
|
peerInit: PeerStateInitializer,
|
|
networkInit: NetworkStateInitializer): ProtocolInfo =
|
|
new result
|
|
result.name[0] = name[0]
|
|
result.name[1] = name[1]
|
|
result.name[2] = name[2]
|
|
result.version = version
|
|
result.messages = @[]
|
|
result.peerStateInitializer = peerInit
|
|
result.networkStateInitializer = networkInit
|
|
|
|
proc setEventHandlers(p: ProtocolInfo,
|
|
handshake: HandshakeStep,
|
|
disconnectHandler: DisconnectionHandler) =
|
|
p.handshake = handshake
|
|
p.disconnectHandler = disconnectHandler
|
|
|
|
func asCapability*(p: ProtocolInfo): Capability =
|
|
result.name = p.name
|
|
result.version = p.version
|
|
|
|
func nameStr*(p: ProtocolInfo): string =
|
|
result = newStringOfCap(3)
|
|
for c in p.name: result.add(c)
|
|
|
|
# XXX: this used to be inline, but inline procs
|
|
# cannot be passed to closure params
|
|
proc cmp*(lhs, rhs: ProtocolInfo): int =
|
|
for i in 0..2:
|
|
if lhs.name[i] != rhs.name[i]:
|
|
return int16(lhs.name[i]) - int16(rhs.name[i])
|
|
return 0
|
|
|
|
proc messagePrinter[MsgType](msg: pointer): string =
|
|
result = ""
|
|
# TODO: uncommenting the line below increases the compile-time
|
|
# tremendously (for reasons not yet known)
|
|
# result = $(cast[ptr MsgType](msg)[])
|
|
|
|
proc nextMsgResolver[MsgType](msgData: Rlp, future: FutureBase) =
|
|
var reader = msgData
|
|
Future[MsgType](future).complete reader.readRecordType(MsgType, MsgType.rlpFieldsCount > 1)
|
|
|
|
proc requestResolver[MsgType](msg: pointer, future: FutureBase) =
|
|
var f = Future[Option[MsgType]](future)
|
|
if not f.finished:
|
|
if msg != nil:
|
|
f.complete some(cast[ptr MsgType](msg)[])
|
|
else:
|
|
f.complete none(MsgType)
|
|
else:
|
|
# This future was already resolved, but let's do some sanity checks
|
|
# here. The only reasonable explanation is that the request should
|
|
# have timed out.
|
|
if msg != nil:
|
|
if f.read.isSome:
|
|
doAssert false, "trying to resolve a request twice"
|
|
else:
|
|
doAssert false, "trying to resolve a timed out request with a value"
|
|
else:
|
|
if not f.read.isSome:
|
|
doAssert false, "a request timed out twice"
|
|
|
|
proc registerMsg(protocol: var ProtocolInfo,
|
|
id: int, name: string,
|
|
thunk: MessageHandler,
|
|
printer: MessageContentPrinter,
|
|
requestResolver: RequestResolver,
|
|
nextMsgResolver: NextMsgResolver) =
|
|
if protocol.messages.len <= id:
|
|
protocol.messages.setLen(id + 1)
|
|
protocol.messages[id] = MessageInfo.init(id = id,
|
|
name = name,
|
|
thunk = thunk,
|
|
printer = printer,
|
|
requestResolver = requestResolver,
|
|
nextMsgResolver = nextMsgResolver)
|
|
|
|
proc registerProtocol(protocol: ProtocolInfo) =
|
|
# TODO: This can be done at compile-time in the future
|
|
if protocol.version > 0:
|
|
let pos = lowerBound(gProtocols, protocol)
|
|
gProtocols.insert(protocol, pos)
|
|
for i in 0 ..< gProtocols.len:
|
|
gProtocols[i].index = i
|
|
else:
|
|
devp2p = protocol
|
|
|
|
# Message composition and encryption
|
|
#
|
|
|
|
proc protocolOffset(peer: Peer, Protocol: type): int =
|
|
peer.dispatcher.protocolOffsets[Protocol.protocolInfo.index]
|
|
|
|
proc perPeerMsgId(peer: Peer, proto: type, msgId: int): int {.inline.} =
|
|
result = msgId
|
|
if not peer.dispatcher.isNil:
|
|
result += peer.protocolOffset(proto)
|
|
|
|
proc perPeerMsgId*(peer: Peer, MsgType: type): int {.inline.} =
|
|
peer.perPeerMsgId(MsgType.msgProtocol, MsgType.msgId)
|
|
|
|
proc writeMsgId(p: ProtocolInfo, msgId: int, peer: Peer,
|
|
rlpOut: var RlpWriter) =
|
|
let baseMsgId = peer.dispatcher.protocolOffsets[p.index]
|
|
doAssert baseMsgId != -1
|
|
rlpOut.append(baseMsgId + msgId)
|
|
|
|
proc invokeThunk*(peer: Peer, msgId: int, msgData: var Rlp): Future[void] =
|
|
template invalidIdError: untyped =
|
|
raise newException(ValueError,
|
|
"RLPx message with an invalid id " & $msgId &
|
|
" on a connection supporting " & peer.dispatcher.describeProtocols)
|
|
|
|
if msgId >= peer.dispatcher.messages.len: invalidIdError()
|
|
let thunk = peer.dispatcher.messages[msgId].thunk
|
|
if thunk == nil: invalidIdError()
|
|
|
|
return thunk(peer, msgId, msgData)
|
|
|
|
proc linkSendFailureToReqFuture[S, R](sendFut: Future[S], resFut: Future[R]) =
|
|
sendFut.addCallback() do(arg: pointer):
|
|
if not sendFut.error.isNil:
|
|
resFut.fail(sendFut.error)
|
|
|
|
proc sendMsg*(peer: Peer, data: Bytes) {.async.} =
|
|
trace "sending msg", peer, msg = getMsgName(peer, rlpFromBytes(data).read(int))
|
|
|
|
var cipherText = encryptMsg(data, peer.secretsState)
|
|
try:
|
|
discard await peer.transport.write(cipherText)
|
|
except:
|
|
await peer.disconnect(TcpError)
|
|
raise
|
|
|
|
proc send*[Msg](peer: Peer, msg: Msg): Future[void] =
|
|
var rlpWriter = initRlpWriter()
|
|
rlpWriter.append perPeerMsgId(peer, Msg)
|
|
rlpWriter.appendRecordType(msg, Msg.rlpFieldsCount > 1)
|
|
peer.sendMsg rlpWriter.finish
|
|
|
|
proc registerRequest*(peer: Peer,
|
|
timeout: int,
|
|
responseFuture: FutureBase,
|
|
responseMsgId: int): int =
|
|
inc peer.lastReqId
|
|
result = peer.lastReqId
|
|
|
|
let timeoutAt = fastEpochTime() + uint64(timeout)
|
|
let req = OutstandingRequest.init(id = result,
|
|
future = responseFuture,
|
|
timeoutAt = timeoutAt)
|
|
peer.outstandingRequests[responseMsgId].addLast req
|
|
|
|
assert(not peer.dispatcher.isNil)
|
|
let requestResolver = peer.dispatcher.messages[responseMsgId].requestResolver
|
|
proc timeoutExpired(udata: pointer) = requestResolver(nil, responseFuture)
|
|
|
|
addTimer(timeoutAt, timeoutExpired, nil)
|
|
|
|
proc resolveResponseFuture(peer: Peer, msgId: int, msg: pointer, reqId: int) =
|
|
logScope:
|
|
msg = peer.dispatcher.messages[msgId].name
|
|
msgContents = peer.dispatcher.messages[msgId].printer(msg)
|
|
receivedReqId = reqId
|
|
remotePeer = peer.remote
|
|
|
|
template resolve(future) =
|
|
(peer.dispatcher.messages[msgId].requestResolver)(msg, future)
|
|
|
|
template outstandingReqs: auto =
|
|
peer.outstandingRequests[msgId]
|
|
|
|
if reqId == -1:
|
|
# XXX: This is a response from an ETH-like protocol that doesn't feature
|
|
# request IDs. Handling the response is quite tricky here because this may
|
|
# be a late response to an already timed out request or a valid response
|
|
# from a more recent one.
|
|
#
|
|
# We can increase the robustness by recording enough features of the
|
|
# request so we can recognize the matching response, but this is not very
|
|
# easy to do because our peers are allowed to send partial responses.
|
|
#
|
|
# A more generally robust approach is to maintain a set of the wanted
|
|
# data items and then to periodically look for items that have been
|
|
# requested long time ago, but are still missing. New requests can be
|
|
# issues for such items potentially from another random peer.
|
|
var expiredRequests = 0
|
|
for req in outstandingReqs:
|
|
if not req.future.finished: break
|
|
inc expiredRequests
|
|
outstandingReqs.shrink(fromFirst = expiredRequests)
|
|
if outstandingReqs.len > 0:
|
|
let oldestReq = outstandingReqs.popFirst
|
|
resolve oldestReq.future
|
|
else:
|
|
debug "late or duplicate reply for a RLPx request"
|
|
else:
|
|
# TODO: This is not completely sound because we are still using a global
|
|
# `reqId` sequence (the problem is that we might get a response ID that
|
|
# matches a request ID for a different type of request). To make the code
|
|
# correct, we can use a separate sequence per response type, but we have
|
|
# to first verify that the other Ethereum clients are supporting this
|
|
# correctly (because then, we'll be reusing the same reqIds for different
|
|
# types of requests). Alternatively, we can assign a separate interval in
|
|
# the `reqId` space for each type of response.
|
|
if reqId > peer.lastReqId:
|
|
warn "RLPx response without a matching request"
|
|
return
|
|
|
|
var idx = 0
|
|
while idx < outstandingReqs.len:
|
|
template req: auto = outstandingReqs()[idx]
|
|
|
|
if req.future.finished:
|
|
assert req.timeoutAt < fastEpochTime()
|
|
# Here we'll remove the expired request by swapping
|
|
# it with the last one in the deque (if necessary):
|
|
if idx != outstandingReqs.len - 1:
|
|
req = outstandingReqs.popLast
|
|
else:
|
|
outstandingReqs.shrink(fromLast = 1)
|
|
# This was the last item, so we don't have any
|
|
# more work to do:
|
|
return
|
|
|
|
if req.id == reqId:
|
|
resolve req.future
|
|
# Here we'll remove the found request by swapping
|
|
# it with the last one in the deque (if necessary):
|
|
if idx != outstandingReqs.len - 1:
|
|
req = outstandingReqs.popLast
|
|
else:
|
|
outstandingReqs.shrink(fromLast = 1)
|
|
return
|
|
|
|
inc idx
|
|
|
|
debug "late or duplicate reply for a RLPx request"
|
|
|
|
proc recvMsg*(peer: Peer): Future[tuple[msgId: int, msgData: Rlp]] {.async.} =
|
|
## This procs awaits the next complete RLPx message in the TCP stream
|
|
|
|
var headerBytes: array[32, byte]
|
|
await peer.transport.readExactly(addr headerBytes[0], 32)
|
|
|
|
var msgSize: int
|
|
if decryptHeaderAndGetMsgSize(peer.secretsState,
|
|
headerBytes, msgSize) != RlpxStatus.Success:
|
|
await peer.disconnectAndRaise(BreachOfProtocol,
|
|
"Cannot decrypt RLPx frame header")
|
|
|
|
trace "waiting for message bytes", peer, msgSize
|
|
if msgSize > maxMsgSize:
|
|
await peer.disconnectAndRaise(BreachOfProtocol,
|
|
"RLPx message exceeds maximum size")
|
|
|
|
let remainingBytes = encryptedLength(msgSize) - 32
|
|
# TODO: Migrate this to a thread-local seq
|
|
# JACEK:
|
|
# or pass it in, allowing the caller to choose - they'll likely be in a
|
|
# better position to decide if buffer should be reused or not. this will
|
|
# also be useuful for chunked messages where part of the buffer may have
|
|
# been processed and needs filling in
|
|
var encryptedBytes = newSeq[byte](remainingBytes)
|
|
await peer.transport.readExactly(addr encryptedBytes[0], len(encryptedBytes))
|
|
|
|
let decryptedMaxLength = decryptedLength(msgSize)
|
|
var
|
|
decryptedBytes = newSeq[byte](decryptedMaxLength)
|
|
decryptedBytesCount = 0
|
|
|
|
if decryptBody(peer.secretsState, encryptedBytes, msgSize,
|
|
decryptedBytes, decryptedBytesCount) != RlpxStatus.Success:
|
|
await peer.disconnectAndRaise(BreachOfProtocol,
|
|
"Cannot decrypt RLPx frame body")
|
|
|
|
decryptedBytes.setLen(decryptedBytesCount)
|
|
var rlp = rlpFromBytes(decryptedBytes.toRange)
|
|
|
|
try:
|
|
let msgid = rlp.read(int)
|
|
return (msgId, rlp)
|
|
except RlpError:
|
|
await peer.disconnectAndRaise(BreachOfProtocol,
|
|
"Cannot read RLPx message id")
|
|
|
|
proc checkedRlpRead(peer: Peer, r: var Rlp, MsgType: type): auto {.inline.} =
|
|
let tmp = r
|
|
when defined(release):
|
|
return r.read(MsgType)
|
|
else:
|
|
try:
|
|
return r.read(MsgType)
|
|
except:
|
|
# echo "Failed rlp.read:", tmp.inspect
|
|
error "Failed rlp.read",
|
|
peer = peer,
|
|
msg = MsgType.name,
|
|
exception = getCurrentExceptionMsg()
|
|
# dataHex = r.rawData.toSeq().toHex()
|
|
|
|
raise
|
|
|
|
proc waitSingleMsg(peer: Peer, MsgType: type): Future[MsgType] {.async.} =
|
|
let wantedId = peer.perPeerMsgId(MsgType)
|
|
while true:
|
|
var (nextMsgId, nextMsgData) = await peer.recvMsg()
|
|
|
|
if nextMsgId == wantedId:
|
|
try:
|
|
return checkedRlpRead(peer, nextMsgData, MsgType)
|
|
except RlpError:
|
|
await peer.disconnectAndRaise(BreachOfProtocol,
|
|
"Invalid RLPx message body")
|
|
|
|
elif nextMsgId == 1: # p2p.disconnect
|
|
raisePeerDisconnected("Unexpected disconnect",
|
|
DisconnectionReason nextMsgData.listElem(0).toInt(uint32))
|
|
else:
|
|
warn "Dropped RLPX message",
|
|
msg = peer.dispatcher.messages[nextMsgId].name
|
|
|
|
proc nextMsg*(peer: Peer, MsgType: type): Future[MsgType] =
|
|
## This procs awaits a specific RLPx message.
|
|
## Any messages received while waiting will be dispatched to their
|
|
## respective handlers. The designated message handler will also run
|
|
## to completion before the future returned by `nextMsg` is resolved.
|
|
let wantedId = peer.perPeerMsgId(MsgType)
|
|
let f = peer.awaitedMessages[wantedId]
|
|
if not f.isNil:
|
|
return Future[MsgType](f)
|
|
|
|
newFuture result
|
|
peer.awaitedMessages[wantedId] = result
|
|
|
|
proc dispatchMessages*(peer: Peer) {.async.} =
|
|
while true:
|
|
var (msgId, msgData) = await peer.recvMsg()
|
|
trace "received msg ", peer, msg = getMsgName(peer, msgId)
|
|
# rpl = msgData.inspect
|
|
|
|
if msgId == 1: # p2p.disconnect
|
|
await peer.transport.closeWait()
|
|
debug "remote peer disconnected", peer,
|
|
reason = msgData.listElem(0).toInt(uint32).DisconnectionReason
|
|
break
|
|
|
|
try:
|
|
await peer.invokeThunk(msgId, msgData)
|
|
except RlpError:
|
|
error "endind dispatchMessages loop", peer, err = getCurrentExceptionMsg()
|
|
await peer.disconnect(BreachOfProtocol)
|
|
return
|
|
|
|
if peer.awaitedMessages[msgId] != nil:
|
|
let msgInfo = peer.dispatcher.messages[msgId]
|
|
(msgInfo.nextMsgResolver)(msgData, peer.awaitedMessages[msgId])
|
|
peer.awaitedMessages[msgId] = nil
|
|
|
|
iterator typedParams(n: NimNode, skip = 0): (NimNode, NimNode) =
|
|
for i in (1 + skip) ..< n.params.len:
|
|
let paramNodes = n.params[i]
|
|
let paramType = paramNodes[^2]
|
|
|
|
for j in 0 ..< paramNodes.len - 2:
|
|
yield (paramNodes[j], paramType)
|
|
|
|
proc chooseFieldType(n: NimNode): NimNode =
|
|
## Examines the parameter types used in the message signature
|
|
## and selects the corresponding field type for use in the
|
|
## message object type (i.e. `p2p.hello`).
|
|
##
|
|
## For now, only openarray types are remapped to sequences.
|
|
result = n
|
|
if n.kind == nnkBracketExpr and eqIdent(n[0], "openarray"):
|
|
result = n.copyNimTree
|
|
result[0] = ident("seq")
|
|
|
|
proc getState(peer: Peer, proto: ProtocolInfo): RootRef =
|
|
peer.protocolStates[proto.index]
|
|
|
|
proc supports*(peer: Peer, Protocol: type): bool {.inline.} =
|
|
## Checks whether a Peer supports a particular protocol
|
|
peer.protocolOffset(Protocol) != -1
|
|
|
|
template state*(peer: Peer, Protocol: type): untyped =
|
|
## Returns the state object of a particular protocol for a
|
|
## particular connection.
|
|
bind getState
|
|
cast[Protocol.State](getState(peer, Protocol.protocolInfo))
|
|
|
|
proc getNetworkState(node: EthereumNode, proto: ProtocolInfo): RootRef =
|
|
node.protocolStates[proto.index]
|
|
|
|
template protocolState*(node: EthereumNode, Protocol: type): untyped =
|
|
bind getNetworkState
|
|
cast[Protocol.NetworkState](getNetworkState(node, Protocol.protocolInfo))
|
|
|
|
template networkState*(connection: Peer, Protocol: type): untyped =
|
|
## Returns the network state object of a particular protocol for a
|
|
## particular connection.
|
|
protocolState(connection.network, Protocol)
|
|
|
|
proc initProtocolState*[T](state: T, x: Peer|EthereumNode) = discard
|
|
|
|
proc createPeerState[ProtocolState](peer: Peer): RootRef =
|
|
var res = new ProtocolState
|
|
mixin initProtocolState
|
|
initProtocolState(res, peer)
|
|
return cast[RootRef](res)
|
|
|
|
proc createNetworkState[NetworkState](network: EthereumNode): RootRef =
|
|
var res = new NetworkState
|
|
mixin initProtocolState
|
|
initProtocolState(res, network)
|
|
return cast[RootRef](res)
|
|
|
|
proc popTimeoutParam(n: NimNode): NimNode =
|
|
var lastParam = n.params[^1]
|
|
if eqIdent(lastParam[0], "timeout"):
|
|
if lastParam[2].kind == nnkEmpty:
|
|
macros.error "You must specify a default value for the `timeout` parameter", lastParam
|
|
result = lastParam
|
|
n.params.del(n.params.len - 1)
|
|
|
|
proc verifyStateType(t: NimNode): NimNode =
|
|
result = t[1]
|
|
if result.kind == nnkSym and $result == "nil":
|
|
return nil
|
|
if result.kind != nnkBracketExpr or $result[0] != "ref":
|
|
macros.error($result & " must be a ref type")
|
|
|
|
macro rlpxProtocolImpl(name: static[string],
|
|
version: static[uint],
|
|
body: untyped,
|
|
useRequestIds: static[bool] = true,
|
|
timeout: static[int] = defaultReqTimeout,
|
|
shortName: static[string] = "",
|
|
outgoingRequestDecorator: untyped = nil,
|
|
incomingRequestDecorator: untyped = nil,
|
|
incomingRequestThunkDecorator: untyped = nil,
|
|
incomingResponseDecorator: untyped = nil,
|
|
incomingResponseThunkDecorator: untyped = nil,
|
|
peerState = type(nil),
|
|
networkState = type(nil)): untyped =
|
|
## The macro used to defined RLPx sub-protocols. See README.
|
|
var
|
|
# XXX: deal with a Nim bug causing the macro params to be
|
|
# zero when they are captured by a closure:
|
|
outgoingRequestDecorator = outgoingRequestDecorator
|
|
incomingRequestDecorator = incomingRequestDecorator
|
|
incomingRequestThunkDecorator = incomingRequestThunkDecorator
|
|
incomingResponseDecorator = incomingResponseDecorator
|
|
incomingResponseThunkDecorator = incomingResponseThunkDecorator
|
|
useRequestIds = useRequestIds
|
|
version = version
|
|
defaultTimeout = timeout
|
|
|
|
nextId = 0
|
|
protoName = name
|
|
shortName = if shortName.len > 0: shortName else: protoName
|
|
outTypes = newNimNode(nnkStmtList)
|
|
outSendProcs = newNimNode(nnkStmtList)
|
|
outRecvProcs = newNimNode(nnkStmtList)
|
|
outProcRegistrations = newNimNode(nnkStmtList)
|
|
protoNameIdent = ident(protoName)
|
|
resultIdent = ident "result"
|
|
perProtocolMsgId = ident"perProtocolMsgId"
|
|
protocol = ident(protoName & "Protocol")
|
|
isSubprotocol = version > 0'u
|
|
peerState = verifyStateType peerState.getType
|
|
networkState = verifyStateType networkState.getType
|
|
handshake = newNilLit()
|
|
disconnectHandler = newNilLit()
|
|
Option = bindSym "Option"
|
|
# XXX: Binding the int type causes instantiation failure for some reason
|
|
# Int = bindSym "int"
|
|
Int = ident "int"
|
|
Peer = bindSym "Peer"
|
|
append = bindSym "append"
|
|
createNetworkState = bindSym "createNetworkState"
|
|
createPeerState = bindSym "createPeerState"
|
|
finish = bindSym "finish"
|
|
initRlpWriter = bindSym "initRlpWriter"
|
|
enterList = bindSym "enterList"
|
|
messagePrinter = bindSym "messagePrinter"
|
|
newProtocol = bindSym "newProtocol"
|
|
nextMsgResolver = bindSym "nextMsgResolver"
|
|
read = bindSym "read"
|
|
registerRequest = bindSym "registerRequest"
|
|
requestResolver = bindSym "requestResolver"
|
|
resolveResponseFuture = bindSym "resolveResponseFuture"
|
|
rlpFromBytes = bindSym "rlpFromBytes"
|
|
checkedRlpRead = bindSym "checkedRlpRead"
|
|
sendMsg = bindSym "sendMsg"
|
|
startList = bindSym "startList"
|
|
writeMsgId = bindSym "writeMsgId"
|
|
getState = bindSym "getState"
|
|
getNetworkState = bindSym "getNetworkState"
|
|
perPeerMsgId = bindSym "perPeerMsgId"
|
|
linkSendFailureToReqFuture = bindSym "linkSendFailureToReqFuture"
|
|
|
|
# By convention, all Ethereum protocol names must be abbreviated to 3 letters
|
|
assert shortName.len == 3
|
|
|
|
template applyDecorator(p: NimNode, decorator: NimNode) =
|
|
if decorator.kind != nnkNilLit: p.addPragma decorator
|
|
|
|
proc augmentUserHandler(userHandlerProc: NimNode, msgId = -1, msgKind = rlpxNotification) =
|
|
## Turns a regular proc definition into an async proc and adds
|
|
## the helpers for accessing the peer and network protocol states.
|
|
case msgKind
|
|
of rlpxRequest: userHandlerProc.applyDecorator incomingRequestDecorator
|
|
of rlpxResponse: userHandlerProc.applyDecorator incomingResponseDecorator
|
|
else: discard
|
|
|
|
userHandlerProc.addPragma ident"async"
|
|
|
|
# We allow the user handler to use `openarray` params, but we turn
|
|
# those into sequences to make the `async` pragma happy.
|
|
for i in 1 ..< userHandlerProc.params.len:
|
|
var param = userHandlerProc.params[i]
|
|
param[^2] = chooseFieldType(param[^2])
|
|
|
|
var userHandlerDefinitions = newStmtList()
|
|
|
|
if msgId >= 0:
|
|
userHandlerDefinitions.add quote do:
|
|
const `perProtocolMsgId` = `msgId`
|
|
|
|
# Define local accessors for the peer and the network protocol states
|
|
# inside each user message handler proc (e.g. peer.state.foo = bar)
|
|
if peerState != nil:
|
|
userHandlerDefinitions.add quote do:
|
|
template state(p: `Peer`): `peerState` =
|
|
cast[`peerState`](`getState`(p, `protocol`))
|
|
|
|
if networkState != nil:
|
|
userHandlerDefinitions.add quote do:
|
|
template networkState(p: `Peer`): `networkState` =
|
|
cast[`networkState`](`getNetworkState`(p.network, `protocol`))
|
|
|
|
userHandlerProc.body.insert 0, userHandlerDefinitions
|
|
|
|
proc liftEventHandler(doBlock: NimNode, handlerName: string): NimNode =
|
|
## Turns a "named" do block to a regular async proc
|
|
## (e.g. onPeerConnected do ...)
|
|
var fn = newTree(nnkProcDef)
|
|
doBlock.copyChildrenTo(fn)
|
|
result = genSym(nskProc, protoName & handlerName)
|
|
fn.name = result
|
|
augmentUserHandler fn
|
|
outRecvProcs.add fn
|
|
|
|
proc addMsgHandler(msgId: int, n: NimNode,
|
|
msgKind = rlpxNotification,
|
|
responseMsgId = -1,
|
|
responseRecord: NimNode = nil): NimNode =
|
|
if n[0].kind == nnkPostfix:
|
|
macros.error("rlpxProcotol procs are public by default. " &
|
|
"Please remove the postfix `*`.", n)
|
|
|
|
let
|
|
msgIdent = n.name
|
|
msgName = $n.name
|
|
hasReqIds = useRequestIds and msgKind in {rlpxRequest, rlpxResponse}
|
|
|
|
var
|
|
paramCount = 0
|
|
userPragmas = n.pragma
|
|
|
|
# variables used in the sending procs
|
|
msgRecipient = ident"msgRecipient"
|
|
reqTimeout: NimNode
|
|
rlpWriter = ident"writer"
|
|
appendParams = newNimNode(nnkStmtList)
|
|
reqId = ident"reqId"
|
|
perPeerMsgIdVar = ident"perPeerMsgId"
|
|
|
|
# variables used in the receiving procs
|
|
msgSender = ident"msgSender"
|
|
receivedRlp = ident"rlp"
|
|
receivedMsg = ident"msg"
|
|
readParams = newNimNode(nnkStmtList)
|
|
readParamsPrelude = newNimNode(nnkStmtList)
|
|
callResolvedResponseFuture = newNimNode(nnkStmtList)
|
|
|
|
# nodes to store the user-supplied message handling proc if present
|
|
userHandlerProc: NimNode = nil
|
|
userHandlerCall: NimNode = nil
|
|
awaitUserHandler = newStmtList()
|
|
|
|
# a record type associated with the message
|
|
msgRecord = newIdentNode(msgName & "Obj")
|
|
msgRecordFields = newTree(nnkRecList)
|
|
msgRecordBody = newTree(nnkObjectTy,
|
|
newEmptyNode(),
|
|
newEmptyNode(),
|
|
msgRecordFields)
|
|
|
|
result = msgRecord
|
|
if hasReqIds:
|
|
# Messages using request Ids
|
|
readParamsPrelude.add quote do:
|
|
let `reqId` = `read`(`receivedRlp`, int)
|
|
|
|
case msgKind
|
|
of rlpxNotification: discard
|
|
of rlpxRequest:
|
|
# If the request proc has a default timeout specified, remove it from
|
|
# the signature for now so we can generate the `thunk` proc without it.
|
|
# The parameter will be added back later only for to the sender proc.
|
|
# When the timeout is not specified, we use a default one.
|
|
reqTimeout = popTimeoutParam(n)
|
|
if reqTimeout == nil:
|
|
reqTimeout = newTree(nnkIdentDefs,
|
|
ident"timeout",
|
|
Int, newLit(defaultTimeout))
|
|
|
|
let reqToResponseOffset = responseMsgId - msgId
|
|
let responseMsgId = quote do: `perPeerMsgIdVar` + `reqToResponseOffset`
|
|
|
|
# Each request is registered so we can resolve it when the response
|
|
# arrives. There are two types of protocols: LES-like protocols use
|
|
# explicit `reqId` sent over the wire, while the ETH wire protocol
|
|
# assumes there is one outstanding request at a time (if there are
|
|
# multiple requests we'll resolve them in FIFO order).
|
|
let registerRequestCall = newCall(registerRequest, msgRecipient,
|
|
reqTimeout[0],
|
|
resultIdent,
|
|
responseMsgId)
|
|
if hasReqIds:
|
|
appendParams.add quote do:
|
|
newFuture `resultIdent`
|
|
let `reqId` = `registerRequestCall`
|
|
`append`(`rlpWriter`, `reqId`)
|
|
else:
|
|
appendParams.add quote do:
|
|
newFuture `resultIdent`
|
|
discard `registerRequestCall`
|
|
|
|
of rlpxResponse:
|
|
let reqIdVal = if hasReqIds: `reqId` else: newLit(-1)
|
|
callResolvedResponseFuture.add quote do:
|
|
`resolveResponseFuture`(`msgSender`,
|
|
`perPeerMsgId`(`msgSender`, `msgRecord`),
|
|
addr(`receivedMsg`),
|
|
`reqIdVal`)
|
|
if hasReqIds:
|
|
appendParams.add newCall(append, rlpWriter, reqId)
|
|
|
|
if n.body.kind != nnkEmpty:
|
|
# implement the receiving thunk proc that deserialzed the
|
|
# message parameters and calls the user proc:
|
|
userHandlerProc = n.copyNimTree
|
|
userHandlerProc.name = genSym(nskProc, msgName)
|
|
augmentUserHandler userHandlerProc, msgId, msgKind
|
|
|
|
# This is the call to the user supplied handled. Here we add only the
|
|
# initial peer param, while the rest of the params will be added later.
|
|
userHandlerCall = newCall(userHandlerProc.name, msgSender)
|
|
|
|
if hasReqIds:
|
|
userHandlerProc.params.insert(2, newIdentDefs(reqId, ident"int"))
|
|
userHandlerCall.add reqId
|
|
|
|
# When there is a user handler, it must be awaited in the thunk proc.
|
|
# Above, by default `awaitUserHandler` is set to a no-op statement list.
|
|
awaitUserHandler = newCall("await", userHandlerCall)
|
|
|
|
outRecvProcs.add(userHandlerProc)
|
|
|
|
for param, paramType in n.typedParams(skip = 1):
|
|
inc paramCount
|
|
|
|
# This is a fragment of the sending proc that
|
|
# serializes each of the passed parameters:
|
|
appendParams.add newCall(append, rlpWriter, param)
|
|
|
|
# Each message has a corresponding record type.
|
|
# Here, we create its fields one by one:
|
|
msgRecordFields.add newTree(nnkIdentDefs,
|
|
newTree(nnkPostfix, ident("*"), param), # The fields are public
|
|
chooseFieldType(paramType), # some types such as openarray
|
|
# are automatically remapped
|
|
newEmptyNode())
|
|
|
|
# The received RLP data is deserialized to a local variable of
|
|
# the message-specific type. This is done field by field here:
|
|
let msgNameLit = newLit(msgName)
|
|
readParams.add quote do:
|
|
`receivedMsg`.`param` = `checkedRlpRead`(`msgSender`, `receivedRlp`, `paramType`)
|
|
|
|
# If there is user message handler, we'll place a call to it by
|
|
# unpacking the fields of the received message:
|
|
if userHandlerCall != nil:
|
|
userHandlerCall.add newDotExpr(receivedMsg, param)
|
|
|
|
if paramCount > 1:
|
|
readParamsPrelude.add newCall(enterList, receivedRlp)
|
|
|
|
let thunkName = ident(msgName & "_thunk")
|
|
var thunkProc = quote do:
|
|
proc `thunkName`(`msgSender`: `Peer`, _: int, data: Rlp) =
|
|
var `receivedRlp` = data
|
|
var `receivedMsg` {.noinit.}: `msgRecord`
|
|
`readParamsPrelude`
|
|
`readParams`
|
|
`awaitUserHandler`
|
|
`callResolvedResponseFuture`
|
|
|
|
for p in userPragmas: thunkProc.addPragma p
|
|
|
|
case msgKind
|
|
of rlpxRequest: thunkProc.applyDecorator incomingRequestThunkDecorator
|
|
of rlpxResponse: thunkProc.applyDecorator incomingResponseThunkDecorator
|
|
else: discard
|
|
|
|
thunkProc.addPragma ident"async"
|
|
|
|
outRecvProcs.add thunkProc
|
|
|
|
outTypes.add quote do:
|
|
# This is a type featuring a single field for each message param:
|
|
type `msgRecord`* = `msgRecordBody`
|
|
|
|
# Add a helper template for accessing the message type:
|
|
# e.g. p2p.hello:
|
|
template `msgIdent`*(T: type `protoNameIdent`): type = `msgRecord`
|
|
|
|
# Add a helper template for obtaining the message Id for
|
|
# a particular message type:
|
|
template msgId*(T: type `msgRecord`): int = `msgId`
|
|
template msgProtocol*(T: type `msgRecord`): type = `protoNameIdent`
|
|
|
|
var msgSendProc = n
|
|
# TODO: check that the first param has the correct type
|
|
msgSendProc.params[1][0] = msgRecipient
|
|
|
|
# Add a timeout parameter for all request procs
|
|
case msgKind
|
|
of rlpxRequest:
|
|
msgSendProc.params.add reqTimeout
|
|
of rlpxResponse:
|
|
if useRequestIds:
|
|
msgSendProc.params.insert 2, newIdentDefs(reqId, ident"int")
|
|
else: discard
|
|
|
|
# We change the return type of the sending proc to a Future.
|
|
# If this is a request proc, the future will return the response record.
|
|
let rt = if msgKind != rlpxRequest: ident"void"
|
|
else: newTree(nnkBracketExpr, Option, responseRecord)
|
|
msgSendProc.params[0] = newTree(nnkBracketExpr, ident("Future"), rt)
|
|
|
|
let msgBytes = ident"msgBytes"
|
|
|
|
let finalizeRequest = quote do:
|
|
let `msgBytes` = `finish`(`rlpWriter`)
|
|
|
|
var sendCall = newCall(sendMsg, msgRecipient, msgBytes)
|
|
let senderEpilogue = if msgKind == rlpxRequest:
|
|
# In RLPx requests, the returned future was allocated here and passed
|
|
# to `registerRequest`. It's already assigned to the result variable
|
|
# of the proc, so we just wait for the sending operation to complete
|
|
# and we return in a normal way. (the waiting is done, so we can catch
|
|
# any possible errors).
|
|
quote: `linkSendFailureToReqFuture`(`sendCall`, `resultIdent`)
|
|
else:
|
|
# In normal RLPx messages, we are returning the future returned by the
|
|
# `sendMsg` call.
|
|
quote: return `sendCall`
|
|
|
|
let `perPeerMsgIdValue` = if isSubprotocol:
|
|
newCall(perPeerMsgId, msgRecipient, protoNameIdent, perProtocolMsgId)
|
|
else:
|
|
perProtocolMsgId
|
|
|
|
if paramCount > 1:
|
|
# In case there are more than 1 parameter,
|
|
# the params must be wrapped in a list:
|
|
appendParams = newStmtList(
|
|
newCall(startList, rlpWriter, newLit(paramCount)),
|
|
appendParams)
|
|
|
|
# Make the send proc public
|
|
msgSendProc.name = newTree(nnkPostfix, ident("*"), msgSendProc.name)
|
|
|
|
# let paramCountNode = newLit(paramCount)
|
|
msgSendProc.body = quote do:
|
|
var `rlpWriter` = `initRlpWriter`()
|
|
let `perProtocolMsgId` = `msgId`
|
|
let `perPeerMsgIdVar` = `perPeerMsgIdValue`
|
|
|
|
`append`(`rlpWriter`, `perPeerMsgIdVar`)
|
|
`appendParams`
|
|
|
|
`finalizeRequest`
|
|
`senderEpilogue`
|
|
|
|
if msgKind == rlpxRequest:
|
|
msgSendProc.applyDecorator outgoingRequestDecorator
|
|
|
|
outSendProcs.add msgSendProc
|
|
|
|
outProcRegistrations.add(
|
|
newCall(bindSym("registerMsg"),
|
|
protocol,
|
|
newIntLitNode(msgId),
|
|
newStrLitNode($n.name),
|
|
thunkName,
|
|
newTree(nnkBracketExpr, messagePrinter, msgRecord),
|
|
newTree(nnkBracketExpr, requestResolver, msgRecord),
|
|
newTree(nnkBracketExpr, nextMsgResolver, msgRecord)))
|
|
|
|
outTypes.add quote do:
|
|
# Create a type acting as a pseudo-object representing the protocol
|
|
# (e.g. p2p)
|
|
type `protoNameIdent`* = object
|
|
|
|
if peerState != nil:
|
|
outTypes.add quote do:
|
|
template State*(P: type `protoNameIdent`): type = `peerState`
|
|
|
|
if networkState != nil:
|
|
outTypes.add quote do:
|
|
template NetworkState*(P: type `protoNameIdent`): type = `networkState`
|
|
|
|
for n in body:
|
|
case n.kind
|
|
of {nnkCall, nnkCommand}:
|
|
if eqIdent(n[0], "nextID"):
|
|
# By default message IDs are assigned in increasing order
|
|
# `nextID` can be used to skip some of the numeric slots
|
|
if n.len == 2 and n[1].kind == nnkIntLit:
|
|
nextId = n[1].intVal.int
|
|
else:
|
|
macros.error("nextID expects a single int value", n)
|
|
elif eqIdent(n[0], "requestResponse"):
|
|
# `requestResponse` can be given a block of 2 or more procs.
|
|
# The last one is considered to be a response message, while
|
|
# all preceeding ones are requests triggering the response.
|
|
# The system makes sure to automatically insert a hidden `reqId`
|
|
# parameter used to discriminate the individual messages.
|
|
block processReqResp:
|
|
if n.len == 2 and n[1].kind == nnkStmtList:
|
|
var procs = newSeq[NimNode](0)
|
|
for def in n[1]:
|
|
if def.kind == nnkProcDef:
|
|
procs.add(def)
|
|
if procs.len > 1:
|
|
let responseMsgId = nextId + procs.len - 1
|
|
let responseRecord = addMsgHandler(responseMsgId,
|
|
procs[^1],
|
|
msgKind = rlpxResponse)
|
|
for i in 0 .. procs.len - 2:
|
|
discard addMsgHandler(nextId + i, procs[i],
|
|
msgKind = rlpxRequest,
|
|
responseMsgId = responseMsgId,
|
|
responseRecord = responseRecord)
|
|
|
|
inc nextId, procs.len
|
|
|
|
# we got all the way to here, so everything is fine.
|
|
# break the block so it doesn't reach the error call below
|
|
break processReqResp
|
|
macros.error("requestResponse expects a block with at least two proc definitions")
|
|
elif eqIdent(n[0], "onPeerConnected"):
|
|
handshake = liftEventHandler(n[1], "Handshake")
|
|
elif eqIdent(n[0], "onPeerDisconnected"):
|
|
disconnectHandler = liftEventHandler(n[1], "PeerDisconnect")
|
|
else:
|
|
macros.error(repr(n) & " is not a recognized call in RLPx protocol definitions", n)
|
|
of nnkProcDef:
|
|
discard addMsgHandler(nextId, n)
|
|
inc nextId
|
|
|
|
of nnkCommentStmt:
|
|
discard
|
|
|
|
else:
|
|
macros.error("illegal syntax in a RLPx protocol definition", n)
|
|
|
|
let peerInit = if peerState == nil: newNilLit()
|
|
else: newTree(nnkBracketExpr, createPeerState, peerState)
|
|
|
|
let netInit = if networkState == nil: newNilLit()
|
|
else: newTree(nnkBracketExpr, createNetworkState, networkState)
|
|
|
|
result = newNimNode(nnkStmtList)
|
|
result.add outTypes
|
|
result.add quote do:
|
|
# One global variable per protocol holds the protocol run-time data
|
|
var `protocol` = `newProtocol`(`shortName`, `version`, `peerInit`, `netInit`)
|
|
|
|
# The protocol run-time data is available as a pseudo-field
|
|
# (e.g. `p2p.protocolInfo`)
|
|
template protocolInfo*(P: type `protoNameIdent`): ProtocolInfo = `protocol`
|
|
|
|
result.add outSendProcs, outRecvProcs, outProcRegistrations
|
|
result.add quote do:
|
|
setEventHandlers(`protocol`, `handshake`, `disconnectHandler`)
|
|
|
|
result.add newCall(bindSym("registerProtocol"), protocol)
|
|
when isMainModule: echo repr(result)
|
|
# echo repr(result)
|
|
|
|
macro rlpxProtocol*(protocolOptions: untyped, body: untyped): untyped =
|
|
let protoName = $(protocolOptions[0])
|
|
result = protocolOptions
|
|
result[0] = bindSym"rlpxProtocolImpl"
|
|
result.add(newTree(nnkExprEqExpr,
|
|
ident("name"),
|
|
newLit(protoName)))
|
|
result.add(newTree(nnkExprEqExpr,
|
|
ident("body"),
|
|
body))
|
|
|
|
rlpxProtocol p2p(version = 0):
|
|
proc hello(peer: Peer,
|
|
version: uint,
|
|
clientId: string,
|
|
capabilities: seq[Capability],
|
|
listenPort: uint,
|
|
nodeId: array[RawPublicKeySize, byte])
|
|
|
|
proc sendDisconnectMsg(peer: Peer, reason: DisconnectionReason)
|
|
|
|
proc ping(peer: Peer) =
|
|
discard peer.pong()
|
|
|
|
proc pong(peer: Peer) =
|
|
discard
|
|
|
|
proc removePeer(network: EthereumNode, peer: Peer) =
|
|
if network.peerPool != nil:
|
|
network.peerPool.connectedNodes.del(peer.remote)
|
|
|
|
for observer in network.peerPool.observers.values:
|
|
if not observer.onPeerDisconnected.isNil:
|
|
observer.onPeerDisconnected(peer)
|
|
|
|
proc callDisconnectHandlers(peer: Peer, reason: DisconnectionReason): Future[void] =
|
|
var futures = newSeqOfCap[Future[void]](rlpxProtocols.len)
|
|
|
|
for protocol in peer.dispatcher.activeProtocols:
|
|
if protocol.disconnectHandler != nil:
|
|
futures.add((protocol.disconnectHandler)(peer, reason))
|
|
|
|
return all(futures)
|
|
|
|
proc disconnect*(peer: Peer, reason: DisconnectionReason) {.async.} =
|
|
if peer.connectionState notin {Disconnecting, Disconnected}:
|
|
peer.connectionState = Disconnecting
|
|
try:
|
|
# TODO: investigate the failure here
|
|
if not peer.transport.closed and false:
|
|
await peer.sendDisconnectMsg(reason)
|
|
finally:
|
|
if not peer.dispatcher.isNil:
|
|
await callDisconnectHandlers(peer, reason)
|
|
peer.connectionState = Disconnected
|
|
removePeer(peer.network, peer)
|
|
|
|
proc validatePubKeyInHello(msg: p2p.hello, pubKey: PublicKey): bool =
|
|
var pk: PublicKey
|
|
recoverPublicKey(msg.nodeId, pk) == EthKeysStatus.Success and pk == pubKey
|
|
|
|
proc performSubProtocolHandshakes(peer: Peer) {.async.} =
|
|
var subProtocolsHandshakes = newSeqOfCap[Future[void]](rlpxProtocols.len)
|
|
for protocol in peer.dispatcher.activeProtocols:
|
|
if protocol.handshake != nil:
|
|
subProtocolsHandshakes.add((protocol.handshake)(peer))
|
|
|
|
await all(subProtocolsHandshakes)
|
|
peer.connectionState = Connected
|
|
|
|
proc checkUselessPeer(peer: Peer) {.inline.} =
|
|
if peer.dispatcher.numProtocols == 0:
|
|
# XXX: Send disconnect + UselessPeer
|
|
raise newException(UselessPeerError, "Useless peer")
|
|
|
|
proc initPeerState*(peer: Peer, capabilities: openarray[Capability]) =
|
|
peer.dispatcher = getDispatcher(peer.network, capabilities)
|
|
checkUselessPeer(peer)
|
|
|
|
# The dispatcher has determined our message ID sequence.
|
|
# For each message ID, we allocate a potential slot for
|
|
# tracking responses to requests.
|
|
# (yes, some of the slots won't be used).
|
|
peer.outstandingRequests.newSeq(peer.dispatcher.messages.len)
|
|
for d in mitems(peer.outstandingRequests):
|
|
d = initDeque[OutstandingRequest]()
|
|
|
|
# Similarly, we need a bit of book-keeping data to keep track
|
|
# of the potentially concurrent calls to `nextMsg`.
|
|
peer.awaitedMessages.newSeq(peer.dispatcher.messages.len)
|
|
|
|
peer.lastReqId = 0
|
|
|
|
# Initialize all the active protocol states
|
|
newSeq(peer.protocolStates, rlpxProtocols.len)
|
|
for protocol in peer.dispatcher.activeProtocols:
|
|
let peerStateInit = protocol.peerStateInitializer
|
|
if peerStateInit != nil:
|
|
peer.protocolStates[protocol.index] = peerStateInit(peer)
|
|
|
|
proc postHelloSteps(peer: Peer, h: p2p.hello): Future[void] =
|
|
initPeerState(peer, h.capabilities)
|
|
|
|
var messageProcessingLoop = peer.dispatchMessages()
|
|
|
|
messageProcessingLoop.callback = proc(p: pointer) {.gcsafe.} =
|
|
if messageProcessingLoop.failed:
|
|
asyncCheck peer.disconnect(ClientQuitting)
|
|
|
|
return performSubProtocolHandshakes(peer)
|
|
|
|
template `^`(arr): auto =
|
|
# passes a stack array with a matching `arrLen`
|
|
# variable as an open array
|
|
arr.toOpenArray(0, `arr Len` - 1)
|
|
|
|
proc check(status: AuthStatus) =
|
|
if status != AuthStatus.Success:
|
|
raise newException(Exception, "Error: " & $status)
|
|
|
|
proc initSecretState(hs: var Handshake, authMsg, ackMsg: openarray[byte],
|
|
p: Peer) =
|
|
var secrets: ConnectionSecret
|
|
check hs.getSecrets(authMsg, ackMsg, secrets)
|
|
initSecretState(secrets, p.secretsState)
|
|
burnMem(secrets)
|
|
|
|
proc rlpxConnect*(node: EthereumNode, remote: Node): Future[Peer] {.async.} =
|
|
new result
|
|
result.network = node
|
|
result.remote = remote
|
|
|
|
let ta = initTAddress(remote.node.address.ip, remote.node.address.tcpPort)
|
|
var ok = false
|
|
try:
|
|
result.transport = await connect(ta)
|
|
|
|
var handshake = newHandshake({Initiator, EIP8})
|
|
handshake.host = node.keys
|
|
|
|
var authMsg: array[AuthMessageMaxEIP8, byte]
|
|
var authMsgLen = 0
|
|
check authMessage(handshake, remote.node.pubkey, authMsg, authMsgLen)
|
|
var res = result.transport.write(addr authMsg[0], authMsgLen)
|
|
|
|
let initialSize = handshake.expectedLength
|
|
var ackMsg = newSeqOfCap[byte](1024)
|
|
ackMsg.setLen(initialSize)
|
|
|
|
await result.transport.readExactly(addr ackMsg[0], len(ackMsg))
|
|
|
|
var ret = handshake.decodeAckMessage(ackMsg)
|
|
if ret == AuthStatus.IncompleteError:
|
|
ackMsg.setLen(handshake.expectedLength)
|
|
await result.transport.readExactly(addr ackMsg[initialSize],
|
|
len(ackMsg) - initialSize)
|
|
ret = handshake.decodeAckMessage(ackMsg)
|
|
check ret
|
|
|
|
initSecretState(handshake, ^authMsg, ackMsg, result)
|
|
|
|
# if handshake.remoteHPubkey != remote.node.pubKey:
|
|
# raise newException(Exception, "Remote pubkey is wrong")
|
|
|
|
asyncCheck result.hello(devp2pVersion,
|
|
node.clientId,
|
|
node.rlpxCapabilities,
|
|
uint(node.address.tcpPort),
|
|
node.keys.pubkey.getRaw())
|
|
|
|
var response = await result.waitSingleMsg(p2p.hello)
|
|
|
|
if not validatePubKeyInHello(response, remote.node.pubKey):
|
|
warn "Remote nodeId is not its public key" # XXX: Do we care?
|
|
|
|
await postHelloSteps(result, response)
|
|
ok = true
|
|
except PeerDisconnected as e:
|
|
if e.reason != TooManyPeers:
|
|
debug "Unexpected disconnect during rlpxConnect", reason = e.reason
|
|
except TransportIncompleteError:
|
|
debug "Connection dropped in rlpxConnect", remote
|
|
except UselessPeerError:
|
|
debug "Useless peer ", peer = remote
|
|
except RlpTypeMismatch:
|
|
# Some peers report capabilities with names longer than 3 chars. We ignore
|
|
# those for now. Maybe we should allow this though.
|
|
debug "Rlp error in rlpxConnect"
|
|
except:
|
|
info "Exception in rlpxConnect", remote,
|
|
exc = getCurrentException().name,
|
|
err = getCurrentExceptionMsg()
|
|
|
|
if not ok:
|
|
if not isNil(result.transport):
|
|
result.transport.close()
|
|
result = nil
|
|
|
|
proc rlpxAccept*(node: EthereumNode,
|
|
transport: StreamTransport): Future[Peer] {.async.} =
|
|
new result
|
|
result.transport = transport
|
|
result.network = node
|
|
|
|
var handshake = newHandshake({Responder})
|
|
handshake.host = node.keys
|
|
|
|
try:
|
|
let initialSize = handshake.expectedLength
|
|
var authMsg = newSeqOfCap[byte](1024)
|
|
authMsg.setLen(initialSize)
|
|
await transport.readExactly(addr authMsg[0], len(authMsg))
|
|
var ret = handshake.decodeAuthMessage(authMsg)
|
|
if ret == AuthStatus.IncompleteError: # Eip8 auth message is likely
|
|
authMsg.setLen(handshake.expectedLength)
|
|
await transport.readExactly(addr authMsg[initialSize],
|
|
len(authMsg) - initialSize)
|
|
ret = handshake.decodeAuthMessage(authMsg)
|
|
check ret
|
|
|
|
var ackMsg: array[AckMessageMaxEIP8, byte]
|
|
var ackMsgLen: int
|
|
check handshake.ackMessage(ackMsg, ackMsgLen)
|
|
var res = transport.write(addr ackMsg[0], ackMsgLen)
|
|
|
|
initSecretState(handshake, authMsg, ^ackMsg, result)
|
|
|
|
let listenPort = transport.localAddress().port
|
|
await result.hello(devp2pVersion, node.clientId,
|
|
node.rlpxCapabilities, listenPort.uint,
|
|
node.keys.pubkey.getRaw())
|
|
|
|
var response = await result.waitSingleMsg(p2p.hello)
|
|
if not validatePubKeyInHello(response, handshake.remoteHPubkey):
|
|
warn "A Remote nodeId is not its public key" # XXX: Do we care?
|
|
|
|
let remote = transport.remoteAddress()
|
|
let address = Address(ip: remote.address, tcpPort: remote.port,
|
|
udpPort: remote.port)
|
|
result.remote = newNode(initEnode(handshake.remoteHPubkey, address))
|
|
|
|
await postHelloSteps(result, response)
|
|
except:
|
|
error "Exception in rlpxAccept",
|
|
err = getCurrentExceptionMsg(),
|
|
stackTrace = getCurrentException().getStackTrace()
|
|
transport.close()
|
|
result = nil
|
|
|
|
when isMainModule:
|
|
|
|
when false:
|
|
# The assignments below can be used to investigate if the RLPx procs
|
|
# are considered GcSafe. The short answer is that they aren't, because
|
|
# they dispatch into user code that might use the GC.
|
|
type
|
|
GcSafeDispatchMsg = proc (peer: Peer, msgId: int, msgData: var Rlp)
|
|
|
|
GcSafeRecvMsg = proc (peer: Peer):
|
|
Future[tuple[msgId: int, msgData: Rlp]] {.gcsafe.}
|
|
|
|
GcSafeAccept = proc (transport: StreamTransport, myKeys: KeyPair):
|
|
Future[Peer] {.gcsafe.}
|
|
|
|
var
|
|
dispatchMsgPtr = invokeThunk
|
|
recvMsgPtr: GcSafeRecvMsg = recvMsg
|
|
acceptPtr: GcSafeAccept = rlpxAccept
|
|
|