nim-eth-p2p/ethp2p/kademlia.nim

488 lines
16 KiB
Nim

#
# Ethereum P2P
# (c) Copyright 2018
# Status Research & Development GmbH
#
# Licensed under either of
# Apache License, version 2.0, (LICENSE-APACHEv2)
# MIT license (LICENSE-MIT)
#
import asyncdispatch, net, uri, logging, tables, hashes, times, algorithm, sets,
sequtils, random
from strutils import parseInt
export sets # TODO: This should not be needed, but compilation fails otherwise
import eth_keys, stint, nimcrypto, enode
type
KademliaProtocol* [Wire] = ref object
wire: Wire
thisNode: Node
routing: RoutingTable
pongFutures: Table[seq[byte], Future[bool]]
pingFutures: Table[Node, Future[bool]]
neighboursCallbacks: Table[Node, proc(n: seq[Node])]
NodeId* = UInt256
Node* = ref object
node*: ENode
id*: NodeId
RoutingTable = object
thisNode: Node
buckets: seq[KBucket]
KBucket = ref object
istart, iend: UInt256
nodes: seq[Node]
replacementCache: seq[Node]
lastUpdated: float # epochTime
const
BUCKET_SIZE = 16
BITS_PER_HOP = 8
REQUEST_TIMEOUT = 0.9 # timeout of message round trips
FIND_CONCURRENCY = 3 # parallel find node lookups
ID_SIZE = 256
proc toNodeId(pk: PublicKey): NodeId =
readUintBE[256](keccak256.digest(pk.getRaw()).data)
proc newNode*(pk: PublicKey, address: Address): Node =
result.new()
result.node = initENode(pk, address)
result.id = pk.toNodeId()
proc newNode*(uriString: string): Node =
result.new()
result.node = initENode(uriString)
result.id = result.node.pubkey.toNodeId()
proc newNode*(enode: ENode): Node =
result.new()
result.node = enode
result.id = result.node.pubkey.toNodeId()
proc distanceTo(n: Node, id: NodeId): UInt256 = n.id xor id
proc `$`*(n: Node): string =
"Node[" & $n.node.address.ip & ":" & $n.node.address.udpPort & "]"
proc hash*(n: Node): hashes.Hash = hash(n.node.pubkey.data)
proc `==`*(a, b: Node): bool = a.node.pubkey == b.node.pubkey
proc newKBucket(istart, iend: NodeId): KBucket =
result.new()
result.istart = istart
result.iend = iend
result.nodes = @[]
result.replacementCache = @[]
proc midpoint(k: KBucket): NodeId =
k.istart + (k.iend - k.istart) div 2.u256
proc distanceTo(k: KBucket, id: NodeId): UInt256 = k.midpoint xor id
proc nodesByDistanceTo(k: KBucket, id: NodeId): seq[Node] =
sortedByIt(k.nodes, it.distanceTo(id))
proc len(k: KBucket): int {.inline.} = k.nodes.len
proc head(k: KBucket): Node {.inline.} = k.nodes[0]
proc add(k: KBucket, n: Node): Node =
## Try to add the given node to this bucket.
## If the node is already present, it is moved to the tail of the list, and we return None.
## If the node is not already present and the bucket has fewer than k entries, it is inserted
## at the tail of the list, and we return None.
## If the bucket is full, we add the node to the bucket's replacement cache and return the
## node at the head of the list (i.e. the least recently seen), which should be evicted if it
## fails to respond to a ping.
k.lastUpdated = epochTime()
let nodeIdx = k.nodes.find(n)
if nodeIdx != -1:
k.nodes.delete(nodeIdx)
k.nodes.add(n)
elif k.len < BUCKET_SIZE:
k.nodes.add(n)
else:
k.replacementCache.add(n)
return k.head
return nil
proc removeNode(k: KBucket, n: Node) =
let i = k.nodes.find(n)
if i != -1: k.nodes.delete(i)
proc split(k: KBucket): tuple[lower, upper: KBucket] =
## Split at the median id
let splitid = k.midpoint
result.lower = newKBucket(k.istart, splitid)
result.upper = newKBucket(splitid + 1.u256, k.iend)
for node in k.nodes:
let bucket = if node.id <= splitid: result.lower else: result.upper
discard bucket.add(node)
for node in k.replacementCache:
let bucket = if node.id <= splitid: result.lower else: result.upper
bucket.replacementCache.add(node)
proc inRange(k: KBucket, n: Node): bool {.inline.} =
k.istart <= n.id and n.id <= k.iend
proc isFull(k: KBucket): bool = k.len == BUCKET_SIZE
proc contains(k: KBucket, n: Node): bool = n in k.nodes
proc binaryGetBucketForNode(buckets: openarray[KBucket],
n: Node): KBucket {.inline.} =
## Given a list of ordered buckets, returns the bucket for a given node.
let bucketPos = lowerBound(buckets, n.id) do(a: KBucket, b: NodeId) -> int:
cmp(a.iend, b)
# Prevents edge cases where bisect_left returns an out of range index
if bucketPos < buckets.len:
let bucket = buckets[bucketPos]
if bucket.istart <= n.id and n.id <= bucket.iend:
result = bucket
if result.isNil:
raise newException(ValueError, "No bucket found for node with id " & $n.id)
proc computeSharedPrefixBits(nodes: openarray[Node]): int =
## Count the number of prefix bits shared by all nodes.
if nodes.len < 2:
return ID_SIZE
var mask = zero(UInt256)
let one = one(UInt256)
for i in 1 .. ID_SIZE:
mask = mask or (one shl (ID_SIZE - i))
let reference = nodes[0].id and mask
for j in 1 .. nodes.high:
if (nodes[j].id and mask) != reference: return i - 1
assert(false, "Unable to calculate number of shared prefix bits")
proc init(r: var RoutingTable, thisNode: Node) {.inline.} =
r.thisNode = thisNode
r.buckets = @[newKBucket(0.u256, high(Uint256))]
proc splitBucket(r: var RoutingTable, index: int) =
let bucket = r.buckets[index]
let (a, b) = bucket.split()
r.buckets[index] = a
r.buckets.insert(b, index + 1)
proc bucketForNode(r: RoutingTable, n: Node): KBucket =
binaryGetBucketForNode(r.buckets, n)
proc removeNode(r: var RoutingTable, n: Node) =
r.bucketForNode(n).removeNode(n)
proc addNode(r: var RoutingTable, n: Node): Node =
assert(n != r.thisNode)
let bucket = r.bucketForNode(n)
let evictionCandidate = bucket.add(n)
if not evictionCandidate.isNil:
# Split if the bucket has the local node in its range or if the depth is not congruent
# to 0 mod BITS_PER_HOP
let depth = computeSharedPrefixBits(bucket.nodes)
if bucket.inRange(r.thisNode) or (depth mod BITS_PER_HOP != 0 and depth != ID_SIZE):
r.splitBucket(r.buckets.find(bucket))
return r.addNode(n) # retry
# Nothing added, ping evictionCandidate
return evictionCandidate
proc contains(r: RoutingTable, n: Node): bool = n in r.bucketForNode(n)
proc bucketsByDistanceTo(r: RoutingTable, id: NodeId): seq[KBucket] =
sortedByIt(r.buckets, it.distanceTo(id))
proc notFullBuckets(r: RoutingTable): seq[KBucket] =
r.buckets.filterIt(not it.isFull)
proc neighbours(r: RoutingTable, id: NodeId, k: int = BUCKET_SIZE): seq[Node] =
## Return up to k neighbours of the given node.
result = newSeqOfCap[Node](k * 2)
for bucket in r.bucketsByDistanceTo(id):
for n in bucket.nodesByDistanceTo(id):
if n.id != id:
result.add(n)
if result.len == k * 2:
break
result = sortedByIt(result, it.distanceTo(id))
if result.len > k:
result.setLen(k)
proc len(r: RoutingTable): int =
for b in r.buckets: result += b.len
proc newKademliaProtocol*[Wire](thisNode: Node,
wire: Wire): KademliaProtocol[Wire] =
result.new()
result.thisNode = thisNode
result.wire = wire
result.pongFutures = initTable[seq[byte], Future[bool]]()
result.pingFutures = initTable[Node, Future[bool]]()
result.neighboursCallbacks = initTable[Node, proc(n: seq[Node])]()
result.routing.init(thisNode)
proc bond(k: KademliaProtocol, n: Node): Future[bool] {.async.}
proc updateRoutingTable(k: KademliaProtocol, n: Node) =
## Update the routing table entry for the given node.
let evictionCandidate = k.routing.addNode(n)
if not evictionCandidate.isNil:
# This means we couldn't add the node because its bucket is full, so schedule a bond()
# with the least recently seen node on that bucket. If the bonding fails the node will
# be removed from the bucket and a new one will be picked from the bucket's
# replacement cache.
asyncCheck k.bond(evictionCandidate)
proc doSleep(p: proc()) {.async.} =
await sleepAsync(REQUEST_TIMEOUT * 1000)
p()
template onTimeout(b: untyped) =
asyncCheck doSleep() do():
b
proc waitPong(k: KademliaProtocol, n: Node, token: seq[byte]): Future[bool] =
let pingid = token & @(n.node.pubkey.data)
assert(pingid notin k.pongFutures, "Already waiting for pong from " & $n)
result = newFuture[bool]("waitPong")
let fut = result
k.pongFutures[pingid] = result
onTimeout:
if not fut.finished:
k.pongFutures.del(pingid)
fut.complete(false)
proc ping(k: KademliaProtocol, n: Node): seq[byte] =
assert(n != k.thisNode)
k.wire.sendPing(n)
proc waitPing(k: KademliaProtocol, n: Node): Future[bool] =
result = newFuture[bool]("waitPing")
assert(n notin k.pingFutures)
k.pingFutures[n] = result
let fut = result
onTimeout:
if not fut.finished:
k.pingFutures.del(n)
fut.complete(false)
proc waitNeighbours(k: KademliaProtocol, remote: Node): Future[seq[Node]] =
assert(remote notin k.neighboursCallbacks)
result = newFuture[seq[Node]]("waitNeighbours")
let fut = result
var neighbours = newSeqOfCap[Node](BUCKET_SIZE)
k.neighboursCallbacks[remote] = proc(n: seq[Node]) =
# This callback is expected to be called multiple times because nodes usually
# split the neighbours replies into multiple packets, so we only complete the
# future event.set() we've received enough neighbours.
for i in n:
if i != k.thisNode:
neighbours.add(i)
if neighbours.len == BUCKET_SIZE:
k.neighboursCallbacks.del(remote)
assert(not fut.finished)
fut.complete(neighbours)
onTimeout:
if not fut.finished:
k.neighboursCallbacks.del(remote)
fut.complete(neighbours)
proc populateNotFullBuckets(k: KademliaProtocol) =
## Go through all buckets that are not full and try to fill them.
##
## For every node in the replacement cache of every non-full bucket, try to bond.
## When the bonding succeeds the node is automatically added to the bucket.
for bucket in k.routing.notFullBuckets:
for node in bucket.replacementCache:
asyncCheck k.bond(node)
proc bond(k: KademliaProtocol, n: Node): Future[bool] {.async.} =
## Bond with the given node.
##
## Bonding consists of pinging the node, waiting for a pong and maybe a ping as well.
## It is necessary to do this at least once before we send findNode requests to a node.
if n in k.routing:
return true
let token = k.ping(n)
let gotPong = await k.waitPong(n, token)
if not gotPong:
debug "bonding failed, didn't receive pong from ", n
# Drop the failing node and schedule a populateNotFullBuckets() call to try and
# fill its spot.
k.routing.removeNode(n)
k.populateNotFullBuckets()
return false
# Give the remote node a chance to ping us before we move on and start sending findNode
# requests. It is ok for waitPing() to timeout and return false here as that just means
# the remote remembers us.
discard await k.waitPing(n)
debug "bonding completed successfully with ", n
k.updateRoutingTable(n)
return true
proc sortByDistance(nodes: var seq[Node], nodeId: NodeId, maxResults = 0) =
nodes = nodes.sortedByIt(it.distanceTo(nodeId))
if maxResults != 0 and nodes.len > maxResults:
nodes.setLen(maxResults)
proc lookup*(k: KademliaProtocol, nodeId: NodeId): Future[seq[Node]] {.async.} =
## Lookup performs a network search for nodes close to the given target.
## It approaches the target by querying nodes that are closer to it on each iteration. The
## given target does not need to be an actual node identifier.
var nodesAsked = initSet[Node]()
var nodesSeen = initSet[Node]()
proc findNode(nodeId: NodeId, remote: Node): Future[seq[Node]] {.async.} =
k.wire.sendFindNode(remote, nodeId)
var candidates = await k.waitNeighbours(remote)
if candidates.len == 0:
debug "got no candidates from ", remote, ", returning"
result = candidates
else:
# The following line:
# 1. Add new candidates to nodesSeen so that we don't attempt to bond with failing ones
# in the future
# 2. Removes all previously seen nodes from candidates
# 3. Deduplicates candidates
candidates.keepItIf(not nodesSeen.containsOrIncl(it))
debug "got ", candidates.len, " new candidates"
let bonded = await all(candidates.mapIt(k.bond(it)))
for i in 0 ..< bonded.len:
if not bonded[i]: candidates[i] = nil
candidates.keepItIf(not it.isNil)
debug "bonded with ", candidates.len, " candidates"
result = candidates
proc excludeIfAsked(nodes: seq[Node]): seq[Node] =
result = toSeq(items(nodes.toSet() - nodesAsked))
sortByDistance(result, nodeId, FIND_CONCURRENCY)
var closest = k.routing.neighbours(nodeId)
debug "starting lookup; initial neighbours: ", closest
var nodesToAsk = excludeIfAsked(closest)
while nodesToAsk.len != 0:
debug "node lookup; querying ", nodesToAsk
nodesAsked.incl(nodesToAsk.toSet())
let results = await all(nodesToAsk.mapIt(findNode(nodeId, it)))
for candidates in results:
closest.add(candidates)
sortByDistance(closest, nodeId, BUCKET_SIZE)
nodesToAsk = excludeIfAsked(closest)
info "lookup finished for ", nodeId.toHex, ": ", closest
result = closest
proc lookupRandom*(k: KademliaProtocol): Future[seq[Node]] =
var id: NodeId
discard randomBytes(addr id, id.sizeof)
k.lookup(id)
proc resolve*(k: KademliaProtocol, id: NodeId): Future[Node] {.async.} =
let closest = await k.lookup(id)
for n in closest:
if n.id == id: return n
proc bootstrap*(k: KademliaProtocol, bootstrapNodes: seq[Node]) {.async.} =
let bonded = await all(bootstrapNodes.mapIt(k.bond(it)))
if true notin bonded:
info "Failed to bond with bootstrap nodes "
return
discard await k.lookupRandom()
proc recvPong*(k: KademliaProtocol, n: Node, token: seq[byte]) =
debug "<<< pong from ", n
let pingid = token & @(n.node.pubkey.data)
var future: Future[bool]
if k.pongFutures.take(pingid, future):
future.complete(true)
proc recvPing*(k: KademliaProtocol, n: Node, msgHash: any) =
debug "<<< ping from ", n
k.updateRoutingTable(n)
k.wire.sendPong(n, msgHash)
var future: Future[bool]
if k.pingFutures.take(n, future):
future.complete(true)
proc recvNeighbours*(k: KademliaProtocol, remote: Node, neighbours: seq[Node]) =
## Process a neighbours response.
##
## Neighbours responses should only be received as a reply to a find_node, and that is only
## done as part of node lookup, so the actual processing is left to the callback from
## neighbours_callbacks, which is added (and removed after it's done or timed out) in
## wait_neighbours().
debug "<<< neighbours from ", remote, ": ", neighbours
let cb = k.neighboursCallbacks.getOrDefault(remote)
if not cb.isNil:
cb(neighbours)
else:
debug "unexpected neighbours from ", remote, ", probably came too late"
proc recvFindNode*(k: KademliaProtocol, remote: Node, nodeId: NodeId) =
if remote notin k.routing:
# FIXME: This is not correct; a node we've bonded before may have become unavailable
# and thus removed from self.routing, but once it's back online we should accept
# find_nodes from them.
debug "Ignoring find_node request from unknown node ", remote
return
k.updateRoutingTable(remote)
var found = k.routing.neighbours(nodeId)
found.sort() do(x, y: Node) -> int: cmp(x.id, y.id)
k.wire.sendNeighbours(remote, found)
proc randomNodes*(k: KademliaProtocol, count: int): seq[Node] =
var count = count
let sz = k.routing.len
if count > sz:
warn "Cannot get ", count, " nodes as RoutingTable contains only ", sz, " nodes"
count = sz
result = newSeqOfCap[Node](count)
var seen = initSet[Node]()
# This is a rather inneficient way of randomizing nodes from all buckets, but even if we
# iterate over all nodes in the routing table, the time it takes would still be
# insignificant compared to the time it takes for the network roundtrips when connecting
# to nodes.
while len(seen) < count:
let bucket = k.routing.buckets.rand()
let node = bucket.nodes.rand()
if node notin seen:
result.add(node)
seen.incl(node)
when isMainModule:
proc randomNode(): Node =
newNode("enode://aa36fdf33dd030378a0168efe6ed7d5cc587fafa3cdd375854fe735a2e11ea3650ba29644e2db48368c46e1f60e716300ba49396cd63778bf8a818c09bded46f@13.93.211.84:30303")
var nodes = @[randomNode()]
doAssert(computeSharedPrefixBits(nodes) == ID_SIZE)
nodes.add(randomNode())
nodes[0].id = 0b1.u256
nodes[1].id = 0b0.u256
doAssert(computeSharedPrefixBits(nodes) == ID_SIZE - 1)
nodes[0].id = 0b010.u256
nodes[1].id = 0b110.u256
doAssert(computeSharedPrefixBits(nodes) == ID_SIZE - 3)