mirror of
https://github.com/status-im/nim-dagger.git
synced 2025-01-12 07:34:08 +00:00
d8162b1e16
* initial commit of the Shacham RSA-based public scheme Minimal working version with lots of error checks and corrections still needed. - using Bearssl RSA code through libp2p - with selecteble BigInt library for experimentation Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * better proc names Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * separating demo code from library Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * using normal file io instead of memfiles mmap has serveral potential issues and we do not really need it, so changing to use the normal system file interface is better. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * draft version of bls proofs Implementation of the BLS-based public PoS scheme from Shacham H., Waters B., "Compact Proofs of Retrievability" using pairing over BLS12-381 ECC Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * draft test and benchmark code for BLS PoS Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * improve documentation of BLS scheme Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * fix getSector * fixing DST tag in hashToG1 The DST tag should be unique to achieve domain separation of hash functions as defined in: https://tools.ietf.org/id/draft-irtf-cfrg-hash-to-curve-06.html#domain-separation Changed DST tag to one that indicates the PoC status of this code. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * add verifyPairings abstraction Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * change random number generator to a secure one Use Rng based on BrHmacDrbgContext Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * fix benchmark template Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * exchange parameter order in pairing Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * add optimized verifyPairing implementation When verifying two pairings, one final exponentiation can be spared through the use of cneg. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * speed up tag generation by a factor of s Scalar multiplications in tag generation can be rearranged to benefit from the way random points are being generated. Since random points are themselves generated using scalar multiplication and the base is common, the sum of multiplications becomes a single multiplication with the scalar sum, resulting in a nice speedup. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * use blst_p1_add_or_double instead of blst_p1_add blst exposes two add functions: one that works for the corner case of doubling, and one that isn't. It seems safer to use the one that works, even if it is highly improbable in these cases that doubling would occur. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * sectorsperblock should be an external parameter Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * parametrize sectorsblock and querylen Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * improving benchmark messages Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * rebasing main * generateAuthenticator: remove unused ubase parameter from naive impl No need to have the same interface on the two implementations, so we can remove this parameter. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * generateAuthenticator: add some more explanation Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * renaming pos.nim to rsa.nim Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * sign and verify metadata in Tau Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * adding more comments Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * remove code of slow RSA based version Removed RSA-based version to ease maintenance, as it is highly unlikely we would use it. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * formatting: use just one type section Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * more comments added Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * make `namelen` a const Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * generalize hashToG1 Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * hashNameI: switch to faster implementation Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> Co-authored-by: Tanguy <tanguy@status.im> Co-authored-by: Dmitriy Ryajov <dryajov@gmail.com>
407 lines
13 KiB
Nim
407 lines
13 KiB
Nim
## Nim-POS
|
||
## Copyright (c) 2021 Status Research & Development GmbH
|
||
## Licensed under either of
|
||
## * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE))
|
||
## * MIT license ([LICENSE-MIT](LICENSE-MIT))
|
||
## at your option.
|
||
## This file may not be copied, modified, or distributed except according to
|
||
## those terms.
|
||
|
||
# Implementation of the BLS-based public PoS scheme from
|
||
# Shacham H., Waters B., "Compact Proofs of Retrievability"
|
||
# using pairing over BLS12-381 ECC
|
||
#
|
||
# Notation from the paper
|
||
# In Z:
|
||
# - n: number of blocks
|
||
# - s: number of sectors per block
|
||
#
|
||
# In Z_p: modulo curve order
|
||
# - m_{ij}: sectors of the file i:0..n-1 j:0..s-1
|
||
# - α: PoS secret key
|
||
# - name: random string
|
||
# - μ_j: part of proof, j:0..s-1
|
||
#
|
||
# In G_1: multiplicative cyclic group
|
||
# - H: {0,1}∗ →G_1 : hash function
|
||
# - u_1,…,u_s ←R G_1 : random coefficients
|
||
# - σ_i: authenticators
|
||
# - σ: part of proof
|
||
#
|
||
# In G_2: multiplicative cyclic group
|
||
# - g: generator of G_2
|
||
# - v ← g^α: PoS public key
|
||
#
|
||
# In G_T:
|
||
# - used only to calculate the two pairings during validation
|
||
#
|
||
# Implementation:
|
||
# Our implementation uses additive cyclic groups instead of the multiplicative
|
||
# cyclic group in the paper, thus changing the name of the group operation as in
|
||
# blscurve and blst. Thus, point multiplication becomes point addition, and scalar
|
||
# exponentiation becomes scalar multiplicaiton.
|
||
#
|
||
# Number of operations:
|
||
# The following table summarizes the number of operations in different phases
|
||
# using the following notation:
|
||
# - f: file size expressed in units of 31 bytes
|
||
# - n: number of blocks
|
||
# - s: number of sectors per block
|
||
# - q: number of query items
|
||
#
|
||
# Since f = n * s and s is a parameter of the scheme, it is better to express
|
||
# the cost as a function of f and s. This only matters for Setup, all other
|
||
# phases are independent of the file size assuming a given q.
|
||
#
|
||
# | | Setup | Challenge | Proof | Verify |
|
||
# |----------------|-----------|---------------|-----------|-----------|-----------|
|
||
# | G1 random | s = s | q | | |
|
||
# | G1 scalar mult | n * (s+1) = f * (1 + 1/s) | | q | q + s |
|
||
# | G1 add | n * s = f | | q-1 | q-1 + s-1 |
|
||
# | Hash to G1 | n = f / s | | | q |
|
||
# | Z_p mult | = | | s * q | |
|
||
# | Z_p add | = | | s * (q-1) | |
|
||
# | pairing | = | | | 2 |
|
||
#
|
||
#
|
||
# Storage and communication cost:
|
||
# The storage overhead for a file of f_b bytes is given by the n authenticators
|
||
# calculated in the setup phase.
|
||
# f_b = f * 31 = n * s * 31
|
||
# Each authenticator is a point on G_1, which occupies 48 bytes in compressed form.
|
||
# Thus, the overall sorage size in bytes is:
|
||
# f_pos = fb + n * 48 = fb * (1 + (48/31) * (1/s))
|
||
#
|
||
# Communicaiton cost in the Setup phase is simply related to the storage cost.
|
||
# The size of the challenge is
|
||
# q * (8 + 48) bytes
|
||
# The size of the proof is instead
|
||
# s * 32 + 48 bytes
|
||
|
||
import blscurve
|
||
import blscurve/blst/blst_abi
|
||
import ../rng
|
||
import endians
|
||
|
||
# sector size in bytes. Must be smaller than the subgroup order r
|
||
# which is 255 bits long for BLS12-381
|
||
const bytespersector = 31
|
||
|
||
# length in bytes of the unique (random) name
|
||
const namelen = 512
|
||
|
||
type
|
||
# a single sector
|
||
ZChar = array[bytespersector, byte]
|
||
|
||
# secret key combining the metadata signing key and the POR generation key
|
||
SecretKey = object
|
||
signkey: blscurve.SecretKey
|
||
key: blst_scalar
|
||
|
||
# public key combining the metadata signing key and the POR validation key
|
||
PublicKey = object
|
||
signkey: blscurve.PublicKey
|
||
key: blst_p2
|
||
|
||
# POR metadata (called "file tag t_0" in the original paper)
|
||
TauZero = object
|
||
name: array[namelen, byte]
|
||
n: int64
|
||
u: seq[blst_p1]
|
||
|
||
# signed POR metadata (called "signed file tag t" in the original paper)
|
||
Tau = object
|
||
t: TauZero
|
||
signature: array[96, byte]
|
||
|
||
# PoR query element
|
||
QElement = object
|
||
I: int64
|
||
V: blst_scalar
|
||
|
||
proc fromBytesBE(a: array[32, byte]): blst_scalar =
|
||
## Convert data to blst native form
|
||
blst_scalar_from_bendian(result, a)
|
||
doAssert(blst_scalar_fr_check(result).bool)
|
||
|
||
proc fromBytesBE(a: openArray[byte]): blst_scalar =
|
||
## Convert data to blst native form
|
||
var b: array[32, byte]
|
||
doAssert(a.len <= b.len)
|
||
let d = b.len - a.len
|
||
for i in 0 ..< a.len:
|
||
b[i+d] = a[i]
|
||
blst_scalar_from_bendian(result, b)
|
||
doAssert(blst_scalar_fr_check(result).bool)
|
||
|
||
proc getSector(f: File, blockid: int64, sectorid: int64, spb: int64): ZChar =
|
||
## Read file sector at given <blockid, sectorid> postion
|
||
f.setFilePos((blockid * spb + sectorid) * sizeof(result))
|
||
let r = f.readBytes(result, 0, sizeof(result))
|
||
|
||
proc rndScalar(): blst_scalar =
|
||
## Generate random scalar within the subroup order r
|
||
var scal{.noInit.}: array[32, byte]
|
||
var scalar{.noInit.}: blst_scalar
|
||
|
||
while true:
|
||
for val in scal.mitems:
|
||
val = byte Rng.instance.rand(0xFF)
|
||
scalar.blst_scalar_from_bendian(scal)
|
||
if blst_scalar_fr_check(scalar).bool:
|
||
break
|
||
|
||
return scalar
|
||
|
||
proc rndP2(): (blst_p2, blst_scalar) =
|
||
## Generate random point on G2
|
||
var x{.noInit.}: blst_p2
|
||
x.blst_p2_from_affine(BLS12_381_G2) # init from generator
|
||
let scalar = rndScalar()
|
||
x.blst_p2_mult(x, scalar, 255)
|
||
return (x, scalar)
|
||
|
||
proc rndP1(): (blst_p1, blst_scalar) =
|
||
## Generate random point on G1
|
||
var x{.noInit.}: blst_p1
|
||
x.blst_p1_from_affine(BLS12_381_G1) # init from generator
|
||
let scalar = rndScalar()
|
||
x.blst_p1_mult(x, scalar, 255)
|
||
return (x, scalar)
|
||
|
||
proc posKeygen(): (blst_p2, blst_scalar) =
|
||
## Generate POS key pair
|
||
rndP2()
|
||
|
||
proc keygen*(): (PublicKey, SecretKey) =
|
||
## Generate key pair for signing metadata and for POS tags
|
||
var pk: PublicKey
|
||
var sk: SecretKey
|
||
var ikm: array[32, byte]
|
||
|
||
for b in ikm.mitems:
|
||
b = byte Rng.instance.rand(0xFF)
|
||
doAssert ikm.keyGen(pk.signkey, sk.signkey)
|
||
|
||
(pk.key, sk.key) = posKeygen()
|
||
return (pk, sk)
|
||
|
||
proc split(f: File, s: int64): int64 =
|
||
## Calculate number of blocks for a file
|
||
let size = f.getFileSize()
|
||
let n = ((size - 1) div (s * sizeof(ZChar))) + 1
|
||
echo "File size=", size, " bytes",
|
||
", blocks=", n,
|
||
", sectors/block=", $s,
|
||
", sectorsize=", $sizeof(ZChar), " bytes"
|
||
|
||
return n
|
||
|
||
proc hashToG1[T: byte|char](msg: openArray[T]): blst_p1 =
|
||
## Hash to curve with Dagger specific domain separation
|
||
const dst = "DAGGER-PROOF-OF-CONCEPT"
|
||
result.blst_hash_to_g1(msg, dst, aug = "")
|
||
|
||
proc hashNameI(name: array[namelen, byte], i: int64): blst_p1 =
|
||
## Calculate unique filname and block index based hash
|
||
|
||
# # naive implementation, hashing a long string representation
|
||
# # such as "[255, 242, 23]1"
|
||
# return hashToG1($name & $i)
|
||
|
||
# more compact and faster implementation
|
||
var namei: array[sizeof(name) + sizeof(int64), byte]
|
||
namei[0..sizeof(name)-1] = name
|
||
bigEndian64(addr(namei[sizeof(name)]), unsafeAddr(i))
|
||
return hashToG1(namei)
|
||
|
||
proc generateAuthenticatorNaive(i: int64, s: int64, t: TauZero, f: File, ssk: SecretKey): blst_p1 =
|
||
## Naive implementation of authenticator as in the S&W paper.
|
||
## With the paper's multiplicative notation:
|
||
## \sigmai=\(H(file||i)\cdot\prod{j=0}^{s-1}{uj^{m[i][j]}})^{\alpha}
|
||
var sum: blst_p1
|
||
for j in 0 ..< s:
|
||
var prod: blst_p1
|
||
prod.blst_p1_mult(t.u[j], fromBytesBE(getSector(f, i, j, s)), 255)
|
||
sum.blst_p1_add_or_double(sum, prod)
|
||
|
||
blst_p1_add_or_double(result, hashNameI(t.name, i), sum)
|
||
result.blst_p1_mult(result, ssk.key, 255)
|
||
|
||
proc generateAuthenticatorOpt(i: int64, s: int64, t: TauZero, ubase: openArray[blst_scalar], f: File, ssk: SecretKey): blst_p1 =
|
||
## Optimized implementation of authenticator generation
|
||
## This implementation is reduces the number of scalar multiplications
|
||
## from s+1 to 1+1 , using knowledge about the scalars (r_j)
|
||
## used to generate u_j as u_j = g^{r_j}
|
||
##
|
||
## With the paper's multiplicative notation, we use:
|
||
## (H(file||i)\cdot g^{\sum{j=0}^{s-1}{r_j \cdot m[i][j]}})^{\alpha}
|
||
var sum: blst_fr
|
||
var sums: blst_scalar
|
||
for j in 0 ..< s:
|
||
var a, b, x: blst_fr
|
||
a.blst_fr_from_scalar(ubase[j])
|
||
b.blst_fr_from_scalar(fromBytesBE(getSector(f, i, j, s)))
|
||
x.blst_fr_mul(a, b)
|
||
sum.blst_fr_add(sum, x)
|
||
sums.blst_scalar_from_fr(sum)
|
||
|
||
result.blst_p1_from_affine(BLS12_381_G1)
|
||
result.blst_p1_mult(result, sums, 255)
|
||
|
||
result.blst_p1_add_or_double(result, hashNameI(t.name, i))
|
||
result.blst_p1_mult(result, ssk.key, 255)
|
||
|
||
proc generateAuthenticator(i: int64, s: int64, t: TauZero, ubase: openArray[blst_scalar], f: File, ssk: SecretKey): blst_p1 =
|
||
## Wrapper to select tag generator implementation
|
||
|
||
# let a = generateAuthenticatorNaive(i, s, t, f, ssk)
|
||
let b = generateAuthenticatorOpt(i, s, t, ubase, f, ssk)
|
||
# doAssert(a.blst_p1_is_equal(b).bool)
|
||
return b
|
||
|
||
proc setup*(ssk: SecretKey, s:int64, filename: string): (Tau, seq[blst_p1]) =
|
||
## Set up the POR scheme by generating tags and metadata
|
||
let file = open(filename)
|
||
let n = split(file, s)
|
||
var t = TauZero(n: n)
|
||
|
||
# generate a random name
|
||
for i in 0 ..< 512 :
|
||
t.name[i] = byte Rng.instance.rand(0xFF)
|
||
|
||
# generate the coefficient vector for combining sectors of a block: U
|
||
var ubase: seq[blst_scalar]
|
||
for i in 0 ..< s :
|
||
let (u, ub) = rndP1()
|
||
t.u.add(u)
|
||
ubase.add(ub)
|
||
|
||
#TODO: a better bytearray conversion of TauZero for the signature might be needed
|
||
# the current conversion using $t might be architecture dependent and not unique
|
||
let signature = sign(ssk.signkey, $t)
|
||
let tau = Tau(t: t, signature: signature.exportRaw())
|
||
|
||
#generate sigmas
|
||
var sigmas: seq[blst_p1]
|
||
for i in 0 ..< n :
|
||
sigmas.add(generateAuthenticator(i, s, t, ubase, file, ssk))
|
||
|
||
file.close()
|
||
result = (tau, sigmas)
|
||
|
||
proc generateQuery*(tau: Tau, spk: PublicKey, l: int): seq[QElement] =
|
||
## Generata a random BLS query of given sizxe
|
||
let n = tau.t.n # number of blocks
|
||
|
||
for i in 0 ..< l :
|
||
var q: QElement
|
||
q.I = Rng.instance.rand(n-1) #TODO: dedup
|
||
q.V = rndScalar() #TODO: fix range
|
||
result.add(q)
|
||
|
||
proc generateProof*(q: openArray[QElement], authenticators: openArray[blst_p1], spk: PublicKey, s: int64, filename: string): (seq[blst_scalar], blst_p1) =
|
||
## Generata BLS proofs for a given query
|
||
let file = open(filename)
|
||
|
||
var mu: seq[blst_scalar]
|
||
for j in 0 ..< s :
|
||
var muj: blst_fr
|
||
for qelem in q :
|
||
var x, v, sector: blst_fr
|
||
let sect = fromBytesBE(getSector(file, qelem.I, j, s))
|
||
sector.blst_fr_from_scalar(sect)
|
||
v.blst_fr_from_scalar(qelem.V)
|
||
x.blst_fr_mul(v, sector)
|
||
muj.blst_fr_add(muj, x)
|
||
var mujs: blst_scalar
|
||
mujs.blst_scalar_from_fr(muj)
|
||
mu.add(mujs)
|
||
|
||
var sigma: blst_p1
|
||
for qelem in q:
|
||
var prod: blst_p1
|
||
prod.blst_p1_mult(authenticators[qelem.I], qelem.V, 255)
|
||
sigma.blst_p1_add_or_double(sigma, prod)
|
||
|
||
file.close()
|
||
return (mu, sigma)
|
||
|
||
proc pairing(a: blst_p1, b: blst_p2): blst_fp12 =
|
||
## Calculate pairing G_1,G_2 -> G_T
|
||
var aa: blst_p1_affine
|
||
var bb: blst_p2_affine
|
||
blst_p1_to_affine(aa, a)
|
||
blst_p2_to_affine(bb, b)
|
||
var l: blst_fp12
|
||
blst_miller_loop(l, bb, aa)
|
||
blst_final_exp(result, l)
|
||
|
||
proc verifyPairingsNaive(a1: blst_p1, a2: blst_p2, b1: blst_p1, b2: blst_p2) : bool =
|
||
let e1 = pairing(a1, a2)
|
||
let e2 = pairing(b1, b2)
|
||
return e1 == e2
|
||
|
||
proc verifyPairingsNeg(a1: blst_p1, a2: blst_p2, b1: blst_p1, b2: blst_p2) : bool =
|
||
## Faster pairing verification using 2 miller loops but ony one final exponentiation
|
||
## based on https://github.com/benjaminion/c-kzg/blob/main/src/bls12_381.c
|
||
var
|
||
loop0, loop1, gt_point: blst_fp12
|
||
aa1, bb1: blst_p1_affine
|
||
aa2, bb2: blst_p2_affine
|
||
|
||
var a1neg = a1
|
||
blst_p1_cneg(a1neg, 1)
|
||
|
||
blst_p1_to_affine(aa1, a1neg)
|
||
blst_p1_to_affine(bb1, b1)
|
||
blst_p2_to_affine(aa2, a2)
|
||
blst_p2_to_affine(bb2, b2)
|
||
|
||
blst_miller_loop(loop0, aa2, aa1)
|
||
blst_miller_loop(loop1, bb2, bb1)
|
||
|
||
blst_fp12_mul(gt_point, loop0, loop1)
|
||
blst_final_exp(gt_point, gt_point)
|
||
|
||
return blst_fp12_is_one(gt_point).bool
|
||
|
||
proc verifyPairings(a1: blst_p1, a2: blst_p2, b1: blst_p1, b2: blst_p2) : bool =
|
||
## Wrapper to select verify pairings implementation
|
||
verifyPairingsNaive(a1, a2, b1, b2)
|
||
#verifyPairingsNeg(a1, a2, b1, b2)
|
||
|
||
proc verifyProof*(tau: Tau, q: openArray[QElement], mus: openArray[blst_scalar], sigma: blst_p1, spk: PublicKey): bool =
|
||
## Verify a BLS proof given a query
|
||
|
||
# verify signature on Tau
|
||
var signature: Signature
|
||
if not signature.fromBytes(tau.signature):
|
||
return false
|
||
if not verify(spk.signkey, $tau.t, signature):
|
||
return false
|
||
|
||
var first: blst_p1
|
||
for qelem in q :
|
||
var prod: blst_p1
|
||
prod.blst_p1_mult(hashNameI(tau.t.name, qelem.I), qelem.V, 255)
|
||
first.blst_p1_add_or_double(first, prod)
|
||
doAssert(blst_p1_on_curve(first).bool)
|
||
|
||
let us = tau.t.u
|
||
var second: blst_p1
|
||
for j in 0 ..< len(us) :
|
||
var prod: blst_p1
|
||
prod.blst_p1_mult(us[j], mus[j], 255)
|
||
second.blst_p1_add_or_double(second, prod)
|
||
doAssert(blst_p1_on_curve(second).bool)
|
||
|
||
var sum: blst_p1
|
||
sum.blst_p1_add_or_double(first, second)
|
||
|
||
var g{.noInit.}: blst_p2
|
||
g.blst_p2_from_affine(BLS12_381_G2)
|
||
|
||
return verifyPairings(sum, spk.key, sigma, g)
|