nim-dagger/codex/contracts/provider.nim

127 lines
4.8 KiB
Nim

import pkg/ethers/provider
import pkg/chronos
import pkg/questionable
import ../logutils
from ../clock import SecondsSince1970
logScope:
topics = "marketplace onchain provider"
proc raiseProviderError(message: string) {.raises: [ProviderError].} =
raise newException(ProviderError, message)
proc blockNumberAndTimestamp*(provider: Provider, blockTag: BlockTag):
Future[(UInt256, UInt256)] {.async: (raises: [ProviderError]).} =
without latestBlock =? await provider.getBlock(blockTag):
raiseProviderError("Could not get latest block")
without latestBlockNumber =? latestBlock.number:
raiseProviderError("Could not get latest block number")
return (latestBlockNumber, latestBlock.timestamp)
proc binarySearchFindClosestBlock(
provider: Provider,
epochTime: int,
low: UInt256,
high: UInt256): Future[UInt256] {.async: (raises: [ProviderError]).} =
let (_, lowTimestamp) =
await provider.blockNumberAndTimestamp(BlockTag.init(low))
let (_, highTimestamp) =
await provider.blockNumberAndTimestamp(BlockTag.init(high))
if abs(lowTimestamp.truncate(int) - epochTime) <
abs(highTimestamp.truncate(int) - epochTime):
return low
else:
return high
proc binarySearchBlockNumberForEpoch(
provider: Provider,
epochTime: UInt256,
latestBlockNumber: UInt256,
earliestBlockNumber: UInt256): Future[UInt256]
{.async: (raises: [ProviderError]).} =
var low = earliestBlockNumber
var high = latestBlockNumber
while low <= high:
if low == 0 and high == 0:
return low
let mid = (low + high) div 2
let (midBlockNumber, midBlockTimestamp) =
await provider.blockNumberAndTimestamp(BlockTag.init(mid))
if midBlockTimestamp < epochTime:
low = mid + 1
elif midBlockTimestamp > epochTime:
high = mid - 1
else:
return midBlockNumber
# NOTICE that by how the binary search is implemented, when it finishes
# low is always greater than high - this is why we use high, where
# intuitively we would use low:
await provider.binarySearchFindClosestBlock(
epochTime.truncate(int), low=high, high=low)
proc blockNumberForEpoch*(
provider: Provider,
epochTime: SecondsSince1970): Future[UInt256]
{.async: (raises: [ProviderError]).} =
let epochTimeUInt256 = epochTime.u256
let (latestBlockNumber, latestBlockTimestamp) =
await provider.blockNumberAndTimestamp(BlockTag.latest)
let (earliestBlockNumber, earliestBlockTimestamp) =
await provider.blockNumberAndTimestamp(BlockTag.earliest)
# Initially we used the average block time to predict
# the number of blocks we need to look back in order to find
# the block number corresponding to the given epoch time.
# This estimation can be highly inaccurate if block time
# was changing in the past or is fluctuating and therefore
# we used that information initially only to find out
# if the available history is long enough to perform effective search.
# It turns out we do not have to do that. There is an easier way.
#
# First we check if the given epoch time equals the timestamp of either
# the earliest or the latest block. If it does, we just return the
# block number of that block.
#
# Otherwise, if the earliest available block is not the genesis block,
# we should check the timestamp of that earliest block and if it is greater
# than the epoch time, we should issue a warning and return
# that earliest block number.
# In all other cases, thus when the earliest block is not the genesis
# block but its timestamp is not greater than the requested epoch time, or
# if the earliest available block is the genesis block,
# (which means we have the whole history available), we should proceed with
# the binary search.
#
# Additional benefit of this method is that we do not have to rely
# on the average block time, which not only makes the whole thing
# more reliable, but also easier to test.
# Are lucky today?
if earliestBlockTimestamp == epochTimeUInt256:
return earliestBlockNumber
if latestBlockTimestamp == epochTimeUInt256:
return latestBlockNumber
if earliestBlockNumber > 0 and earliestBlockTimestamp > epochTimeUInt256:
let availableHistoryInDays =
(latestBlockTimestamp - earliestBlockTimestamp) div
1.days.secs.u256
warn "Short block history detected.", earliestBlockTimestamp =
earliestBlockTimestamp, days = availableHistoryInDays
return earliestBlockNumber
return await provider.binarySearchBlockNumberForEpoch(
epochTimeUInt256, latestBlockNumber, earliestBlockNumber)
proc pastBlockTag*(provider: Provider,
blocksAgo: int):
Future[BlockTag] {.async: (raises: [ProviderError]).} =
let head = await provider.getBlockNumber()
return BlockTag.init(head - blocksAgo.abs.u256)