nim-codex/codex/erasure/erasure.nim

456 lines
13 KiB
Nim

## Nim-Codex
## Copyright (c) 2022 Status Research & Development GmbH
## Licensed under either of
## * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE))
## * MIT license ([LICENSE-MIT](LICENSE-MIT))
## at your option.
## This file may not be copied, modified, or distributed except according to
## those terms.
import pkg/upraises
push: {.upraises: [].}
import std/sequtils
import std/sugar
import pkg/chronos
import pkg/chronicles
import pkg/libp2p/[multicodec, cid, multibase, multihash]
import pkg/libp2p/protobuf/minprotobuf
import ../manifest
import ../merkletree
import ../stores
import ../blocktype as bt
import ../utils
import ../utils/asynciter
import pkg/stew/byteutils
import ./backend
export backend
logScope:
topics = "codex erasure"
type
## Encode a manifest into one that is erasure protected.
##
## The new manifest has K `blocks` that are encoded into
## additional M `parity` blocks. The resulting dataset
## is padded with empty blocks if it doesn't have a square
## shape.
##
## NOTE: The padding blocks could be excluded
## from transmission, but they aren't for now.
##
## The resulting dataset is logically divided into rows
## where a row is made up of B blocks. There are then,
## K + M = N rows in total, each of length B blocks. Rows
## are assumed to be of the same number of (B) blocks.
##
## The encoding is systematic and the rows can be
## read sequentially by any node without decoding.
##
## Decoding is possible with any K rows or partial K
## columns (with up to M blocks missing per column),
## or any combination there of.
##
EncoderProvider* = proc(size, blocks, parity: int): EncoderBackend
{.raises: [Defect], noSideEffect.}
DecoderProvider* = proc(size, blocks, parity: int): DecoderBackend
{.raises: [Defect], noSideEffect.}
Erasure* = ref object
encoderProvider*: EncoderProvider
decoderProvider*: DecoderProvider
store*: BlockStore
EncodingParams = object
ecK: int
ecM: int
rounded: int
steps: int
blocksCount: int
func indexToPos(steps, idx, step: int): int {.inline.} =
## Convert an index to a position in the encoded
## dataset
## `idx` - the index to convert
## `step` - the current step
## `pos` - the position in the encoded dataset
##
(idx - step) div steps
proc getPendingBlocks(
self: Erasure,
manifest: Manifest,
indicies: seq[int]): AsyncIter[(?!bt.Block, int)] =
## Get pending blocks iterator
##
var
# request blocks from the store
pendingBlocks = indicies.map( (i: int) =>
self.store.getBlock(BlockAddress.init(manifest.treeCid, i)).map((r: ?!bt.Block) => (r, i)) # Get the data blocks (first K)
)
proc isFinished(): bool = pendingBlocks.len == 0
proc genNext(): Future[(?!bt.Block, int)] {.async.} =
let completedFut = await one(pendingBlocks)
if (let i = pendingBlocks.find(completedFut); i >= 0):
pendingBlocks.del(i)
return await completedFut
else:
let (_, index) = await completedFut
raise newException(CatchableError, "Future for block id not found, tree cid: " & $manifest.treeCid & ", index: " & $index)
Iter.new(genNext, isFinished)
proc prepareEncodingData(
self: Erasure,
manifest: Manifest,
params: EncodingParams,
step: int,
data: ref seq[seq[byte]],
cids: ref seq[Cid],
emptyBlock: seq[byte]): Future[?!int] {.async.} =
## Prepare data for encoding
##
let
indicies = toSeq(countup(step, params.rounded - 1, params.steps))
pendingBlocksIter = self.getPendingBlocks(manifest, indicies.filterIt(it < manifest.blocksCount))
var resolved = 0
for fut in pendingBlocksIter:
let (blkOrErr, idx) = await fut
without blk =? blkOrErr, err:
warn "Failed retreiving a block", treeCid = manifest.treeCid, idx, msg = err.msg
continue
let pos = indexToPos(params.steps, idx, step)
shallowCopy(data[pos], if blk.isEmpty: emptyBlock else: blk.data)
cids[idx] = blk.cid
resolved.inc()
for idx in indicies.filterIt(it >= manifest.blocksCount):
let pos = indexToPos(params.steps, idx, step)
trace "Padding with empty block", idx
shallowCopy(data[pos], emptyBlock)
without emptyBlockCid =? emptyCid(manifest.version, manifest.hcodec, manifest.codec), err:
return failure(err)
cids[idx] = emptyBlockCid
success(resolved)
proc prepareDecodingData(
self: Erasure,
encoded: Manifest,
step: int,
data: ref seq[seq[byte]],
parityData: ref seq[seq[byte]],
cids: ref seq[Cid],
emptyBlock: seq[byte]): Future[?!(int, int)] {.async.} =
## Prepare data for decoding
## `encoded` - the encoded manifest
## `step` - the current step
## `data` - the data to be prepared
## `parityData` - the parityData to be prepared
## `cids` - cids of prepared data
## `emptyBlock` - the empty block to be used for padding
##
let
indicies = toSeq(countup(step, encoded.blocksCount - 1, encoded.steps))
pendingBlocksIter = self.getPendingBlocks(encoded, indicies)
var
dataPieces = 0
parityPieces = 0
resolved = 0
for fut in pendingBlocksIter:
# Continue to receive blocks until we have just enough for decoding
# or no more blocks can arrive
if resolved >= encoded.ecK:
break
let (blkOrErr, idx) = await fut
without blk =? blkOrErr, err:
trace "Failed retreiving a block", idx, treeCid = encoded.treeCid, msg = err.msg
continue
let
pos = indexToPos(encoded.steps, idx, step)
logScope:
cid = blk.cid
idx = idx
pos = pos
step = step
empty = blk.isEmpty
cids[idx] = blk.cid
if idx >= encoded.rounded:
trace "Retrieved parity block"
shallowCopy(parityData[pos - encoded.ecK], if blk.isEmpty: emptyBlock else: blk.data)
parityPieces.inc
else:
trace "Retrieved data block"
shallowCopy(data[pos], if blk.isEmpty: emptyBlock else: blk.data)
dataPieces.inc
resolved.inc
return success (dataPieces, parityPieces)
proc init(_: type EncodingParams, manifest: Manifest, ecK: int, ecM: int): ?!EncodingParams =
if ecK > manifest.blocksCount:
return failure("Unable to encode manifest, not enough blocks, ecK = " & $ecK & ", blocksCount = " & $manifest.blocksCount)
let
rounded = roundUp(manifest.blocksCount, ecK)
steps = divUp(manifest.blocksCount, ecK)
blocksCount = rounded + (steps * ecM)
EncodingParams(
ecK: ecK,
ecM: ecM,
rounded: rounded,
steps: steps,
blocksCount: blocksCount
).success
proc encodeData(
self: Erasure,
manifest: Manifest,
params: EncodingParams
): Future[?!Manifest] {.async.} =
## Encode blocks pointed to by the protected manifest
##
## `manifest` - the manifest to encode
##
logScope:
steps = params.steps
rounded_blocks = params.rounded
blocks_count = params.blocksCount
ecK = params.ecK
ecM = params.ecM
var
cids = seq[Cid].new()
encoder = self.encoderProvider(manifest.blockSize.int, params.ecK, params.ecM)
emptyBlock = newSeq[byte](manifest.blockSize.int)
cids[].setLen(params.blocksCount)
try:
for step in 0..<params.steps:
# TODO: Don't allocate a new seq every time, allocate once and zero out
var
data = seq[seq[byte]].new() # number of blocks to encode
parityData = newSeqWith[seq[byte]](params.ecM, newSeq[byte](manifest.blockSize.int))
data[].setLen(params.ecK)
# TODO: this is a tight blocking loop so we sleep here to allow
# other events to be processed, this should be addressed
# by threading
await sleepAsync(10.millis)
without resolved =?
(await self.prepareEncodingData(manifest, params, step, data, cids, emptyBlock)), err:
trace "Unable to prepare data", error = err.msg
return failure(err)
trace "Erasure coding data", data = data[].len, parity = parityData.len
if (
let res = encoder.encode(data[], parityData);
res.isErr):
trace "Unable to encode manifest!", error = $res.error
return failure($res.error)
var idx = params.rounded + step
for j in 0..<params.ecM:
without blk =? bt.Block.new(parityData[j]), error:
trace "Unable to create parity block", err = error.msg
return failure(error)
trace "Adding parity block", cid = blk.cid, idx
cids[idx] = blk.cid
if isErr (await self.store.putBlock(blk)):
trace "Unable to store block!", cid = blk.cid
return failure("Unable to store block!")
idx.inc(params.steps)
without tree =? MerkleTree.init(cids[]), err:
return failure(err)
without treeCid =? tree.rootCid, err:
return failure(err)
if err =? (await self.store.putAllProofs(tree)).errorOption:
return failure(err)
let encodedManifest = Manifest.new(
manifest = manifest,
treeCid = treeCid,
datasetSize = (manifest.blockSize.int * params.blocksCount).NBytes,
ecK = params.ecK,
ecM = params.ecM
)
return encodedManifest.success
except CancelledError as exc:
trace "Erasure coding encoding cancelled"
raise exc # cancellation needs to be propagated
except CatchableError as exc:
trace "Erasure coding encoding error", exc = exc.msg
return failure(exc)
finally:
encoder.release()
proc encode*(
self: Erasure,
manifest: Manifest,
blocks: int,
parity: int): Future[?!Manifest] {.async.} =
## Encode a manifest into one that is erasure protected.
##
## `manifest` - the original manifest to be encoded
## `blocks` - the number of blocks to be encoded - K
## `parity` - the number of parity blocks to generate - M
##
without params =? EncodingParams.init(manifest, blocks, parity), err:
return failure(err)
without encodedManifest =? await self.encodeData(manifest, params), err:
return failure(err)
return success encodedManifest
proc decode*(
self: Erasure,
encoded: Manifest
): Future[?!Manifest] {.async.} =
## Decode a protected manifest into it's original
## manifest
##
## `encoded` - the encoded (protected) manifest to
## be recovered
##
logScope:
steps = encoded.steps
rounded_blocks = encoded.rounded
new_manifest = encoded.blocksCount
var
cids = seq[Cid].new()
recoveredIndices = newSeq[int]()
decoder = self.decoderProvider(encoded.blockSize.int, encoded.ecK, encoded.ecM)
emptyBlock = newSeq[byte](encoded.blockSize.int)
cids[].setLen(encoded.blocksCount)
try:
for step in 0..<encoded.steps:
# TODO: this is a tight blocking loop so we sleep here to allow
# other events to be processed, this should be addressed
# by threading
await sleepAsync(10.millis)
var
data = seq[seq[byte]].new()
parityData = seq[seq[byte]].new()
recovered = newSeqWith[seq[byte]](encoded.ecK, newSeq[byte](encoded.blockSize.int))
data[].setLen(encoded.ecK) # set len to K
parityData[].setLen(encoded.ecM) # set len to M
without (dataPieces, parityPieces) =?
(await self.prepareDecodingData(encoded, step, data, parityData, cids, emptyBlock)), err:
trace "Unable to prepare data", error = err.msg
return failure(err)
if dataPieces >= encoded.ecK:
trace "Retrieved all the required data blocks"
continue
trace "Erasure decoding data"
if (
let err = decoder.decode(data[], parityData[], recovered);
err.isErr):
trace "Unable to decode data!", err = $err.error
return failure($err.error)
for i in 0..<encoded.ecK:
let idx = i * encoded.steps + step
if data[i].len <= 0 and not cids[idx].isEmpty:
without blk =? bt.Block.new(recovered[i]), error:
trace "Unable to create block!", exc = error.msg
return failure(error)
trace "Recovered block", cid = blk.cid, index = i
if isErr (await self.store.putBlock(blk)):
trace "Unable to store block!", cid = blk.cid
return failure("Unable to store block!")
cids[idx] = blk.cid
recoveredIndices.add(idx)
except CancelledError as exc:
trace "Erasure coding decoding cancelled"
raise exc # cancellation needs to be propagated
except CatchableError as exc:
trace "Erasure coding decoding error", exc = exc.msg
return failure(exc)
finally:
decoder.release()
without tree =? MerkleTree.init(cids[0..<encoded.originalBlocksCount]), err:
return failure(err)
without treeCid =? tree.rootCid, err:
return failure(err)
if treeCid != encoded.originalTreeCid:
return failure("Original tree root differs from the tree root computed out of recovered data")
let idxIter = Iter
.fromItems(recoveredIndices)
.filter((i: int) => i < tree.leavesCount)
if err =? (await self.store.putSomeProofs(tree, idxIter)).errorOption:
return failure(err)
let decoded = Manifest.new(encoded)
return decoded.success
proc start*(self: Erasure) {.async.} =
return
proc stop*(self: Erasure) {.async.} =
return
proc new*(
T: type Erasure,
store: BlockStore,
encoderProvider: EncoderProvider,
decoderProvider: DecoderProvider
): Erasure =
## Create a new Erasure instance for encoding and decoding manifests
Erasure(
store: store,
encoderProvider: encoderProvider,
decoderProvider: decoderProvider)