nim-codex/codex/sales/slotqueue.nim

459 lines
14 KiB
Nim
Raw Normal View History

Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
import std/sequtils
import std/tables
import pkg/chronos
import pkg/questionable
import pkg/questionable/results
import pkg/upraises
import ../errors
feat: create logging proxy (#663) * implement a logging proxy The logging proxy: - prevents the need to import chronicles (as well as export except toJson), - prevents the need to override `writeValue` or use or import nim-json-seralization elsewhere in the codebase, allowing for sole use of utils/json for de/serialization, - and handles json formatting correctly in chronicles json sinks * Rename logging -> logutils to avoid ambiguity with common names * clean up * add setProperty for JsonRecord, remove nim-json-serialization conflict * Allow specifying textlines and json format separately Not specifying a LogFormat will apply the formatting to both textlines and json sinks. Specifying a LogFormat will apply the formatting to only that sink. * remove unneeded usages of std/json We only need to import utils/json instead of std/json * move serialization from rest/json to utils/json so it can be shared * fix NoColors ambiguity Was causing unit tests to fail on Windows. * Remove nre usage to fix Windows error Windows was erroring with `could not load: pcre64.dll`. Instead of fixing that error, remove the pcre usage :) * Add logutils module doc * Shorten logutils.formatIt for `NBytes` Both json and textlines formatIt were not needed, and could be combined into one formatIt * remove debug integration test config debug output and logformat of json for integration test logs * Use ## module doc to support docgen * bump nim-poseidon2 to export fromBytes Before the changes in this branch, fromBytes was likely being resolved by nim-stew, or other dependency. With the changes in this branch, that dependency was removed and fromBytes could no longer be resolved. By exporting fromBytes from nim-poseidon, the correct resolution is now happening. * fixes to get compiling after rebasing master * Add support for Result types being logged using formatIt
2024-01-23 07:35:03 +00:00
import ../logutils
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
import ../rng
import ../utils
import ../contracts/requests
import ../utils/asyncheapqueue
import ../utils/then
import ../utils/trackedfutures
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
logScope:
topics = "marketplace slotqueue"
type
OnProcessSlot* =
proc(item: SlotQueueItem, done: Future[void]): Future[void] {.gcsafe, upraises:[].}
# Non-ref obj copies value when assigned, preventing accidental modification
# of values which could cause an incorrect order (eg
# ``slotQueue[1].collateral = 1`` would cause ``collateral`` to be updated,
# but the heap invariant would no longer be honoured. When non-ref, the
# compiler can ensure that statement will fail).
SlotQueueWorker = object
doneProcessing*: Future[void]
SlotQueueItem* = object
requestId: RequestId
slotIndex: uint16
slotSize: UInt256
duration: UInt256
reward: UInt256
collateral: UInt256
expiry: UInt256
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
seen: bool
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
# don't need to -1 to prevent overflow when adding 1 (to always allow push)
# because AsyncHeapQueue size is of type `int`, which is larger than `uint16`
SlotQueueSize = range[1'u16..uint16.high]
SlotQueue* = ref object
maxWorkers: int
onProcessSlot: ?OnProcessSlot
queue: AsyncHeapQueue[SlotQueueItem]
running: bool
workers: AsyncQueue[SlotQueueWorker]
trackedFutures: TrackedFutures
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
unpaused: AsyncEvent
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
SlotQueueError = object of CodexError
SlotQueueItemExistsError* = object of SlotQueueError
SlotQueueItemNotExistsError* = object of SlotQueueError
SlotsOutOfRangeError* = object of SlotQueueError
QueueNotRunningError* = object of SlotQueueError
# Number of concurrent workers used for processing SlotQueueItems
const DefaultMaxWorkers = 3
# Cap slot queue size to prevent unbounded growth and make sifting more
# efficient. Max size is not equivalent to the number of slots a host can
# service, which is limited by host availabilities and new requests circulating
# the network. Additionally, each new request/slot in the network will be
# included in the queue if it is higher priority than any of the exisiting
# items. Older slots should be unfillable over time as other hosts fill the
# slots.
const DefaultMaxSize = 128'u16
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
proc profitability(item: SlotQueueItem): UInt256 =
StorageAsk(collateral: item.collateral,
duration: item.duration,
reward: item.reward,
slotSize: item.slotSize).pricePerSlot
proc `<`*(a, b: SlotQueueItem): bool =
# for A to have a higher priority than B (in a min queue), A must be less than
# B.
var scoreA: uint8 = 0
var scoreB: uint8 = 0
proc addIf(score: var uint8, condition: bool, addition: int) =
if condition:
score += 1'u8 shl addition
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
scoreA.addIf(a.seen < b.seen, 4)
scoreB.addIf(a.seen > b.seen, 4)
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
scoreA.addIf(a.profitability > b.profitability, 3)
scoreB.addIf(a.profitability < b.profitability, 3)
scoreA.addIf(a.collateral < b.collateral, 2)
scoreB.addIf(a.collateral > b.collateral, 2)
scoreA.addIf(a.expiry > b.expiry, 1)
scoreB.addIf(a.expiry < b.expiry, 1)
scoreA.addIf(a.slotSize < b.slotSize, 0)
scoreB.addIf(a.slotSize > b.slotSize, 0)
return scoreA > scoreB
proc `==`*(a, b: SlotQueueItem): bool =
a.requestId == b.requestId and
a.slotIndex == b.slotIndex
proc new*(_: type SlotQueue,
maxWorkers = DefaultMaxWorkers,
maxSize: SlotQueueSize = DefaultMaxSize): SlotQueue =
if maxWorkers <= 0:
raise newException(ValueError, "maxWorkers must be positive")
if maxWorkers.uint16 > maxSize:
raise newException(ValueError, "maxWorkers must be less than maxSize")
SlotQueue(
maxWorkers: maxWorkers,
# Add 1 to always allow for an extra item to be pushed onto the queue
# temporarily. After push (and sort), the bottom-most item will be deleted
queue: newAsyncHeapQueue[SlotQueueItem](maxSize.int + 1),
running: false,
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
trackedFutures: TrackedFutures.new(),
unpaused: newAsyncEvent()
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
)
# avoid instantiating `workers` in constructor to avoid side effects in
# `newAsyncQueue` procedure
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
proc init(_: type SlotQueueWorker): SlotQueueWorker =
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
SlotQueueWorker(
doneProcessing: newFuture[void]("slotqueue.worker.processing")
)
proc init*(_: type SlotQueueItem,
requestId: RequestId,
slotIndex: uint16,
ask: StorageAsk,
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
expiry: UInt256,
seen = false): SlotQueueItem =
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
SlotQueueItem(
requestId: requestId,
slotIndex: slotIndex,
slotSize: ask.slotSize,
duration: ask.duration,
reward: ask.reward,
collateral: ask.collateral,
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
expiry: expiry,
seen: seen
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
)
proc init*(_: type SlotQueueItem,
request: StorageRequest,
slotIndex: uint16): SlotQueueItem =
SlotQueueItem.init(request.id,
slotIndex,
request.ask,
request.expiry)
proc init*(_: type SlotQueueItem,
requestId: RequestId,
ask: StorageAsk,
expiry: UInt256): seq[SlotQueueItem] =
if not ask.slots.inRange:
raise newException(SlotsOutOfRangeError, "Too many slots")
var i = 0'u16
proc initSlotQueueItem: SlotQueueItem =
let item = SlotQueueItem.init(requestId, i, ask, expiry)
inc i
return item
var items = newSeqWith(ask.slots.int, initSlotQueueItem())
Rng.instance.shuffle(items)
return items
proc init*(_: type SlotQueueItem,
request: StorageRequest): seq[SlotQueueItem] =
return SlotQueueItem.init(request.id, request.ask, request.expiry)
proc inRange*(val: SomeUnsignedInt): bool =
val.uint16 in SlotQueueSize.low..SlotQueueSize.high
proc requestId*(self: SlotQueueItem): RequestId = self.requestId
proc slotIndex*(self: SlotQueueItem): uint16 = self.slotIndex
proc slotSize*(self: SlotQueueItem): UInt256 = self.slotSize
proc duration*(self: SlotQueueItem): UInt256 = self.duration
proc reward*(self: SlotQueueItem): UInt256 = self.reward
proc collateral*(self: SlotQueueItem): UInt256 = self.collateral
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
proc seen*(self: SlotQueueItem): bool = self.seen
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
proc running*(self: SlotQueue): bool = self.running
proc len*(self: SlotQueue): int = self.queue.len
proc size*(self: SlotQueue): int = self.queue.size - 1
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
proc paused*(self: SlotQueue): bool = not self.unpaused.isSet
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
proc `$`*(self: SlotQueue): string = $self.queue
proc `onProcessSlot=`*(self: SlotQueue, onProcessSlot: OnProcessSlot) =
self.onProcessSlot = some onProcessSlot
proc activeWorkers*(self: SlotQueue): int =
if not self.running: return 0
# active = capacity - available
self.maxWorkers - self.workers.len
proc contains*(self: SlotQueue, item: SlotQueueItem): bool =
self.queue.contains(item)
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
proc pause*(self: SlotQueue) =
# set unpaused flag to false -- coroutines will block on unpaused.wait()
self.unpaused.clear()
proc unpause*(self: SlotQueue) =
# set unpaused flag to true -- unblocks coroutines waiting on unpaused.wait()
self.unpaused.fire()
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
proc populateItem*(self: SlotQueue,
requestId: RequestId,
slotIndex: uint16): ?SlotQueueItem =
trace "populate item, items in queue", len = self.queue.len
for item in self.queue.items:
trace "populate item search", itemRequestId = item.requestId, requestId
if item.requestId == requestId:
return some SlotQueueItem(
requestId: requestId,
slotIndex: slotIndex,
slotSize: item.slotSize,
duration: item.duration,
reward: item.reward,
collateral: item.collateral,
expiry: item.expiry
)
return none SlotQueueItem
proc push*(self: SlotQueue, item: SlotQueueItem): ?!void =
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
logScope:
requestId = item.requestId
slotIndex = item.slotIndex
seen = item.seen
trace "pushing item to queue"
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
if not self.running:
let err = newException(QueueNotRunningError, "queue not running")
return failure(err)
if self.contains(item):
let err = newException(SlotQueueItemExistsError, "item already exists")
return failure(err)
if err =? self.queue.pushNoWait(item).mapFailure.errorOption:
return failure(err)
if self.queue.full():
# delete the last item
self.queue.del(self.queue.size - 1)
doAssert self.queue.len <= self.queue.size - 1
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
# when slots are pushed to the queue, the queue should be unpaused if it was
# paused
if self.paused and not item.seen:
trace "unpausing queue after new slot pushed"
self.unpause()
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
return success()
proc push*(self: SlotQueue, items: seq[SlotQueueItem]): ?!void =
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
for item in items:
if err =? self.push(item).errorOption:
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
return failure(err)
return success()
proc findByRequest(self: SlotQueue, requestId: RequestId): seq[SlotQueueItem] =
var items: seq[SlotQueueItem] = @[]
for item in self.queue.items:
if item.requestId == requestId:
items.add item
return items
proc delete*(self: SlotQueue, item: SlotQueueItem) =
logScope:
requestId = item.requestId
slotIndex = item.slotIndex
trace "removing item from queue"
if not self.running:
trace "cannot delete item from queue, queue not running"
return
self.queue.delete(item)
proc delete*(self: SlotQueue, requestId: RequestId, slotIndex: uint16) =
let item = SlotQueueItem(requestId: requestId, slotIndex: slotIndex)
self.delete(item)
proc delete*(self: SlotQueue, requestId: RequestId) =
let items = self.findByRequest(requestId)
for item in items:
self.delete(item)
proc `[]`*(self: SlotQueue, i: Natural): SlotQueueItem =
self.queue[i]
proc addWorker(self: SlotQueue): ?!void =
if not self.running:
let err = newException(QueueNotRunningError, "queue must be running")
return failure(err)
trace "adding new worker to worker queue"
let worker = SlotQueueWorker.init()
try:
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
discard worker.doneProcessing.track(self)
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
self.workers.addLastNoWait(worker)
except AsyncQueueFullError:
return failure("failed to add worker, worker queue full")
return success()
proc dispatch(self: SlotQueue,
worker: SlotQueueWorker,
item: SlotQueueItem) {.async.} =
logScope:
requestId = item.requestId
slotIndex = item.slotIndex
if not self.running:
warn "Could not dispatch worker because queue is not running"
return
if onProcessSlot =? self.onProcessSlot:
try:
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
discard worker.doneProcessing.track(self)
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
await onProcessSlot(item, worker.doneProcessing)
await worker.doneProcessing
if err =? self.addWorker().errorOption:
raise err # catch below
except QueueNotRunningError as e:
info "could not re-add worker to worker queue, queue not running",
error = e.msg
except CancelledError:
# do not bubble exception up as it is called with `asyncSpawn` which would
# convert the exception into a `FutureDefect`
discard
except CatchableError as e:
# we don't have any insight into types of errors that `onProcessSlot` can
# throw because it is caller-defined
warn "Unknown error processing slot in worker", error = e.msg
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
proc clearSeenFlags*(self: SlotQueue) =
# Enumerate all items in the queue, overwriting each item with `seen = false`.
# To avoid issues with new queue items being pushed to the queue while all
# items are being iterated (eg if a new storage request comes in and pushes
# new slots to the queue), this routine must remain synchronous.
if self.queue.empty:
return
for item in self.queue.mitems:
item.seen = false # does not maintain the heap invariant
# force heap reshuffling to maintain the heap invariant
doAssert self.queue.update(self.queue[0]), "slot queue failed to reshuffle"
trace "all 'seen' flags cleared"
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
proc start*(self: SlotQueue) {.async.} =
if self.running:
return
trace "starting slot queue"
self.running = true
# must be called in `start` to avoid sideeffects in `new`
self.workers = newAsyncQueue[SlotQueueWorker](self.maxWorkers)
# Add initial workers to the `AsyncHeapQueue`. Once a worker has completed its
# task, a new worker will be pushed to the queue
for i in 0..<self.maxWorkers:
if err =? self.addWorker().errorOption:
error "start: error adding new worker", error = err.msg
while self.running:
try:
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
if self.paused:
trace "Queue is paused, waiting for new slots or availabilities to be modified/added"
# block until unpaused is true/fired, ie wait for queue to be unpaused
await self.unpaused.wait()
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
let worker = await self.workers.popFirst().track(self) # if workers saturated, wait here for new workers
let item = await self.queue.pop().track(self) # if queue empty, wait here for new items
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
logScope:
reqId = item.requestId
slotIdx = item.slotIndex
seen = item.seen
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
if not self.running: # may have changed after waiting for pop
trace "not running, exiting"
break
feat[marketplace]: add slot queue pausing (#752) * add seen flag * Add MockSlotQueueItem and better prioritisation tests * Update seen priority, and include in SlotQueueItem.init * Re-add processed slots to queue Re-add processed slots to queue if the sale was ignored or errored * add pausing of queue - when processing slots in queue, pause queue if item was marked seen - if availability size is increased, trigger onAvailabilityAdded callback - in sales, on availability added, clear 'seen' flags, then unpause the queue - when items pushed to the queue, unpause the queue * remove unused NoMatchingAvailabilityError from slotqueue The slot queue should also have nothing to do with availabilities * when all availabilities are empty, pause the queue An empty availability is defined as size < DefaultBlockSize as this means even the smallest possible request could not be served. However, this is up for discussion. * remove availability from onAvailabilitiesEmptied callback * refactor onAvailabilityAdded and onAvailabilitiesEmptied onAvailabilityAdded and onAvailabilitiesEmptied are now only called from reservations.update (and eventually reservations.delete once implemented). - Add empty routine for Availability and Reservation - Add allEmpty routine for Availability and Reservation, which returns true when all all Availability or Reservation objects in the datastore are empty. * SlotQueue test support updates * Sales module test support updates * Reservations module tests for queue pausing * Sales module tests for queue pausing Includes tests for sales states cancelled, errored, ignored to ensure onCleanUp is called with correct parameters * SlotQueue module tests for queue pausing * fix existing sales test * PR feedback - indent `self.unpause` - update comment for `clearSeenFlags` * reprocessSlot in SaleErrored only when coming from downloading * remove pausing of queue when availabilities are "emptied" Queue pausing when all availiabilies are "emptied" is not necessary, given that the node would not be able to service slots once all its availabilities' freeSize are too small for the slots in the queue, and would then be paused anyway. Add test that asserts the queue is paused once the freeSpace of availabilities drops too low to fill slots in the queue. * Update clearing of seen flags The asyncheapqueue update overload would need to check index bounds and ultimately a different solution was found using the mitems iterator. * fix test request.id was different before updating request.ask.slots, and that id was used to set the state in mockmarket. * Change filled/cleanup future to nil, so no await is needed * add wait to allow items to be added to queue * do not unpause queue when seen items are pushed * re-add seen item back to queue once paused Previously, when a seen item was processed, it was first popped off the queue, then the queue was paused waiting to process that item once the queue was unpaused. Now, when a seen item is processed, it is popped off the queue, the queue is paused, then the item is re-added to the queue and the queue will wait until unpaused before it will continue popping items off the queue. If the item was not re-added to the queue, it would have been processed immediately once unpaused, however there may have been other items with higher priority pushed to the queue in the meantime. The queue would not be unpaused if those added items were already seen. In particular, this may happen when ignored items due to lack of availability are re-added to a paused queue. Those ignored items will likely have a higher priority than the item that was just seen (due to it having been processed first), causing the queue to the be paused. * address PR comments
2024-05-26 00:38:38 +00:00
# If, upon processing a slot, the slot item already has a `seen` flag set,
# the queue should be paused.
if item.seen:
trace "processing already seen item, pausing queue",
reqId = item.requestId, slotIdx = item.slotIndex
self.pause()
# put item back in queue so that if other items are pushed while paused,
# it will be sorted accordingly. Otherwise, this item would be processed
# immediately (with priority over other items) once unpaused
trace "readding seen item back into the queue"
discard self.push(item) # on error, drop the item and continue
worker.doneProcessing.complete()
await sleepAsync(1.millis) # poll
continue
trace "processing item"
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
self.dispatch(worker, item)
.track(self)
.catch(proc (e: ref CatchableError) =
error "Unknown error dispatching worker", error = e.msg
)
await sleepAsync(1.millis) # poll
except CancelledError:
trace "slot queue cancelled"
return
Slot queue (#455) ## Slot queue Adds a slot queue, as per the [slot queue design](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#slot-queue). Any time storage is requested, all slots from that request are immediately added to the queue. Finished, Canclled, Failed requests remove all slots with that request id from the queue. SlotFreed events add a new slot to the queue and SlotFilled events remove the slot from the queue. This allows popping of a slot each time one is processed, making things much simpler. When an entire request of slots is added to the queue, the slot indices are shuffled randomly to hopefully prevent nodes that pick up the same storage requested event from clashing on the first processed slot index. This allowed removal of assigning a random slot index in the SalePreparing state and it also ensured that all SalesAgents will have a slot index assigned to them at the start thus the removal of the optional slotIndex. Remove slotId from SlotFreed event as it was not being used. RequestId and slotIndex were added to the SlotFreed event earlier and those are now being used The slot queue invariant that prioritises queue items added to the queue relies on a scoring mechanism to sort them based on the [sort order in the design document](https://github.com/codex-storage/codex-research/blob/master/design/sales.md#sort-order). When a storage request is handled by the sales module, a slot index was randomly assigned and then the slot was filled. Now, a random slot index is only assigned when adding an entire request to the slot queue. Additionally, the slot is checked that its state is `SlotState.Free` before continuing with the download process. SlotQueue should always ensure the underlying AsyncHeapQueue has one less than the maximum items, ensuring the SlotQueue can always have space to add an additional item regardless if it’s full or not. Constructing `SlotQueue.workers` in `SlotQueue.new` calls `newAsyncQueue` which causes side effects, so the construction call had to be moved to `SlotQueue.start`. Prevent loading request from contract (network request) if there is an existing item in queue for that request. Check availability before adding request to queue. Add ability to query market contract for past events. When new availabilities are added, the `onReservationAdded` callback is triggered in which past `StorageRequested` events are queried, and those slots are added to the queue (filtered by availability on `push` and filtered by state in `SalePreparing`). #### Request Workers Limit the concurrent requests being processed in the queue by using a limited pool of workers (default = 3). Workers are in a data structure of type `AsyncQueue[SlotQueueWorker]`. This allows us to await a `popFirst` for available workers inside of the main SlotQueue event loop Add an `onCleanUp` that stops the agents and removes them from the sales module agent list. `onCleanUp` is called from sales end states (eg ignored, cancelled, finished, failed, errored). Add a `doneProcessing` future to `SlotQueueWorker` to be completed in the `OnProcessSlot` callback. Each `doneProcessing` future created is cancelled and awaited in `SlotQueue.stop` (thanks to `TrackableFuturees`), which forced `stop` to become async. - Cancel dispatched workers and the `onProcessSlot` callbacks, prevents zombie callbacks #### Add TrackableFutures Allow tracking of futures in a module so they can be cancelled at a later time. Useful for asyncSpawned futures, but works for any future. ### Sales module The sales module needed to subscribe to request events to ensure that the request queue was managed correctly on each event. In the process of doing this, the sales agents were updated to avoid subscribing to events in each agent, and instead dispatch received events from the sales module to all created sales agents. This would prevent memory leaks on having too many eventemitters subscribed to. - prevent removal of agents from sales module while stopping, otherwise the agents seq len is modified while iterating An additional sales agent state was added, `SalePreparing`, that handles all state machine setup, such as retrieving the request and subscribing to events that were previously in the `SaleDownloading` state. Once agents have parked in an end state (eg ignored, cancelled, finished, failed, errored), they were not getting cleaned up and the sales module was keeping a handle on their reference. An `onCleanUp` callback was created to be called after the state machine enters an end state, which could prevent a memory leak if the number of requests coming in is high. Move the SalesAgent callback raises pragmas from the Sales module to the proc definition in SalesAgent. This avoids having to catch `Exception`. - remove unneeded error handling as pragmas were moved Move sales.subscriptions from an object containing named subscriptions to a `seq[Subscription]` directly on the sales object. Sales tests: shut down repo after sales stop, to fix SIGABRT in CI ### Add async Promise API - modelled after JavaScript Promise API - alternative to `asyncSpawn` that allows handling of async calls in a synchronous context (including access to the synchronous closure) with less additional procs to be declared - Write less code, catch errors that would otherwise defect in asyncspawn, and execute a callback after completion - Add cancellation callbacks to utils/then, ensuring cancellations are handled properly ## Dependencies - bump codex-contracts-eth to support slot queue (https://github.com/codex-storage/codex-contracts-eth/pull/61) - bump nim-ethers to 0.5.0 - Bump nim-json-rpc submodule to 0bf2bcb --------- Co-authored-by: Jaremy Creechley <creechley@gmail.com>
2023-07-25 02:50:30 +00:00
except CatchableError as e: # raised from self.queue.pop() or self.workers.pop()
warn "slot queue error encountered during processing", error = e.msg
proc stop*(self: SlotQueue) {.async.} =
if not self.running:
return
trace "stopping slot queue"
self.running = false
await self.trackedFutures.cancelTracked()