nim-chronos/chronos/internal/asyncmacro.nim
Jacek Sieka f5ff9e32ca
introduce asyncraises in transports/asyncsync (#470)
With these fixes, `transports`/`asyncsync` correctly propagate and document their raises information - generally, most transport functions (send etc) raise `TransportError` and `CancelledError` - `closeWait` is special in that it generally doesn't fail.

This PR introduces the syntax `Future[void].Raises([types])` to create the `InternalRaisesFuture` type with the correct encoding for the types - this allows it to be used in user code while retaining the possibility to change the internal representation down the line.

* introduce raising constraints on stream callbacks - these constraints now give a warning when called with a callback that can raise exceptions (raising callbacks would crash 
* fix fail and its tests, which wasn't always given a good generic match
* work around nim bugs related to macro expansion of generic types
* make sure transports raise only `TransportError`-derived exceptions (and `CancelledError`)
2023-11-15 09:38:48 +01:00

558 lines
18 KiB
Nim

#
#
# Nim's Runtime Library
# (c) Copyright 2015 Dominik Picheta
# (c) Copyright 2018-Present Status Research & Development GmbH
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
import
std/[macros],
../[futures, config],
./raisesfutures
proc processBody(node, setResultSym, baseType: NimNode): NimNode {.compileTime.} =
case node.kind
of nnkReturnStmt:
# `return ...` -> `setResult(...); return`
let
res = newNimNode(nnkStmtList, node)
if node[0].kind != nnkEmpty:
res.add newCall(setResultSym, processBody(node[0], setResultSym, baseType))
res.add newNimNode(nnkReturnStmt, node).add(newEmptyNode())
res
of RoutineNodes-{nnkTemplateDef}:
# Skip nested routines since they have their own return value distinct from
# the Future we inject
node
else:
for i in 0 ..< node.len:
node[i] = processBody(node[i], setResultSym, baseType)
node
proc wrapInTryFinally(
fut, baseType, body, raises: NimNode,
handleException: bool): NimNode {.compileTime.} =
# creates:
# try: `body`
# [for raise in raises]:
# except `raise`: closureSucceeded = false; `castFutureSym`.fail(exc)
# finally:
# if closureSucceeded:
# `castFutureSym`.complete(result)
#
# Calling `complete` inside `finally` ensures that all success paths
# (including early returns and code inside nested finally statements and
# defer) are completed with the final contents of `result`
let
closureSucceeded = genSym(nskVar, "closureSucceeded")
nTry = nnkTryStmt.newTree(body)
excName = ident"exc"
# Depending on the exception type, we must have at most one of each of these
# "special" exception handlers that are needed to implement cancellation and
# Defect propagation
var
hasDefect = false
hasCancelledError = false
hasCatchableError = false
template addDefect =
if not hasDefect:
hasDefect = true
# When a Defect is raised, the program is in an undefined state and
# continuing running other tasks while the Future completion sits on the
# callback queue may lead to further damage so we re-raise them eagerly.
nTry.add nnkExceptBranch.newTree(
nnkInfix.newTree(ident"as", ident"Defect", excName),
nnkStmtList.newTree(
nnkAsgn.newTree(closureSucceeded, ident"false"),
nnkRaiseStmt.newTree(excName)
)
)
template addCancelledError =
if not hasCancelledError:
hasCancelledError = true
nTry.add nnkExceptBranch.newTree(
ident"CancelledError",
nnkStmtList.newTree(
nnkAsgn.newTree(closureSucceeded, ident"false"),
newCall(ident "cancelAndSchedule", fut)
)
)
template addCatchableError =
if not hasCatchableError:
hasCatchableError = true
nTry.add nnkExceptBranch.newTree(
nnkInfix.newTree(ident"as", ident"CatchableError", excName),
nnkStmtList.newTree(
nnkAsgn.newTree(closureSucceeded, ident"false"),
newCall(ident "fail", fut, excName)
))
var raises = if raises == nil:
nnkTupleConstr.newTree(ident"CatchableError")
elif isNoRaises(raises):
nnkTupleConstr.newTree()
else:
raises.copyNimTree()
if handleException:
raises.add(ident"Exception")
for exc in raises:
if exc.eqIdent("Exception"):
addCancelledError
addCatchableError
addDefect
# Because we store `CatchableError` in the Future, we cannot re-raise the
# original exception
nTry.add nnkExceptBranch.newTree(
nnkInfix.newTree(ident"as", ident"Exception", excName),
newCall(ident "fail", fut,
nnkStmtList.newTree(
nnkAsgn.newTree(closureSucceeded, ident"false"),
quote do:
(ref AsyncExceptionError)(
msg: `excName`.msg, parent: `excName`)))
)
elif exc.eqIdent("CancelledError"):
addCancelledError
elif exc.eqIdent("CatchableError"):
# Ensure cancellations are re-routed to the cancellation handler even if
# not explicitly specified in the raises list
addCancelledError
addCatchableError
else:
nTry.add nnkExceptBranch.newTree(
nnkInfix.newTree(ident"as", exc, excName),
nnkStmtList.newTree(
nnkAsgn.newTree(closureSucceeded, ident"false"),
newCall(ident "fail", fut, excName)
))
addDefect # Must not complete future on defect
nTry.add nnkFinally.newTree(
nnkIfStmt.newTree(
nnkElifBranch.newTree(
closureSucceeded,
if baseType.eqIdent("void"): # shortcut for non-generic void
newCall(ident "complete", fut)
else:
nnkWhenStmt.newTree(
nnkElifExpr.newTree(
nnkInfix.newTree(ident "is", baseType, ident "void"),
newCall(ident "complete", fut)
),
nnkElseExpr.newTree(
newCall(ident "complete", fut, ident "result")
)
)
)
)
)
nnkStmtList.newTree(
newVarStmt(closureSucceeded, ident"true"),
nTry
)
proc getName(node: NimNode): string {.compileTime.} =
case node.kind
of nnkSym:
return node.strVal
of nnkPostfix:
return node[1].strVal
of nnkIdent:
return node.strVal
of nnkEmpty:
return "anonymous"
else:
error("Unknown name.")
macro unsupported(s: static[string]): untyped =
error s
proc params2(someProc: NimNode): NimNode =
# until https://github.com/nim-lang/Nim/pull/19563 is available
if someProc.kind == nnkProcTy:
someProc[0]
else:
params(someProc)
proc cleanupOpenSymChoice(node: NimNode): NimNode {.compileTime.} =
# Replace every Call -> OpenSymChoice by a Bracket expr
# ref https://github.com/nim-lang/Nim/issues/11091
if node.kind in nnkCallKinds and
node[0].kind == nnkOpenSymChoice and node[0].eqIdent("[]"):
result = newNimNode(nnkBracketExpr)
for child in node[1..^1]:
result.add(cleanupOpenSymChoice(child))
else:
result = node.copyNimNode()
for child in node:
result.add(cleanupOpenSymChoice(child))
type
AsyncParams = tuple
raw: bool
raises: NimNode
handleException: bool
proc decodeParams(params: NimNode): AsyncParams =
# decodes the parameter tuple given in `async: (name: value, ...)` to its
# recognised parts
params.expectKind(nnkTupleConstr)
var
raw = false
raises: NimNode = nil
handleException = chronosHandleException
for param in params:
param.expectKind(nnkExprColonExpr)
if param[0].eqIdent("raises"):
param[1].expectKind(nnkBracket)
if param[1].len == 0:
raises = makeNoRaises()
else:
raises = nnkTupleConstr.newTree()
for possibleRaise in param[1]:
raises.add(possibleRaise)
elif param[0].eqIdent("raw"):
# boolVal doesn't work in untyped macros it seems..
raw = param[1].eqIdent("true")
elif param[0].eqIdent("handleException"):
handleException = param[1].eqIdent("true")
else:
warning("Unrecognised async parameter: " & repr(param[0]), param)
(raw, raises, handleException)
proc isEmpty(n: NimNode): bool {.compileTime.} =
# true iff node recursively contains only comments or empties
case n.kind
of nnkEmpty, nnkCommentStmt: true
of nnkStmtList:
for child in n:
if not isEmpty(child): return false
true
else:
false
proc asyncSingleProc(prc, params: NimNode): NimNode {.compileTime.} =
## This macro transforms a single procedure into a closure iterator.
## The ``async`` macro supports a stmtList holding multiple async procedures.
if prc.kind notin {nnkProcTy, nnkProcDef, nnkLambda, nnkMethodDef, nnkDo}:
error("Cannot transform " & $prc.kind & " into an async proc." &
" proc/method definition or lambda node expected.", prc)
for pragma in prc.pragma():
if pragma.kind == nnkExprColonExpr and pragma[0].eqIdent("raises"):
warning("The raises pragma doesn't work on async procedures - use " &
"`async: (raises: [...]) instead.", prc)
let returnType = cleanupOpenSymChoice(prc.params2[0])
# Verify that the return type is a Future[T]
let baseType =
if returnType.kind == nnkEmpty:
ident "void"
elif not (
returnType.kind == nnkBracketExpr and
(eqIdent(returnType[0], "Future") or eqIdent(returnType[0], "InternalRaisesFuture"))):
error(
"Expected return type of 'Future' got '" & repr(returnType) & "'", prc)
return
else:
returnType[1]
let
baseTypeIsVoid = baseType.eqIdent("void")
(raw, raises, handleException) = decodeParams(params)
internalFutureType =
if baseTypeIsVoid:
newNimNode(nnkBracketExpr, prc).
add(newIdentNode("Future")).
add(baseType)
else:
returnType
internalReturnType = if raises == nil:
internalFutureType
else:
nnkBracketExpr.newTree(
newIdentNode("InternalRaisesFuture"),
baseType,
raises
)
prc.params2[0] = internalReturnType
if prc.kind notin {nnkProcTy, nnkLambda}: # TODO: Nim bug?
prc.addPragma(newColonExpr(ident "stackTrace", ident "off"))
# The proc itself doesn't raise
prc.addPragma(
nnkExprColonExpr.newTree(newIdentNode("raises"), nnkBracket.newTree()))
# `gcsafe` isn't deduced even though we require async code to be gcsafe
# https://github.com/nim-lang/RFCs/issues/435
prc.addPragma(newIdentNode("gcsafe"))
if raw: # raw async = body is left as-is
if raises != nil and prc.kind notin {nnkProcTy, nnkLambda} and not isEmpty(prc.body):
# Inject `raises` type marker that causes `newFuture` to return a raise-
# tracking future instead of an ordinary future:
#
# type InternalRaisesFutureRaises = `raisesTuple`
# `body`
prc.body = nnkStmtList.newTree(
nnkTypeSection.newTree(
nnkTypeDef.newTree(
nnkPragmaExpr.newTree(
ident"InternalRaisesFutureRaises",
nnkPragma.newTree(ident "used")),
newEmptyNode(),
raises,
)
),
prc.body
)
when chronosDumpAsync:
echo repr prc
return prc
if prc.kind in {nnkProcDef, nnkLambda, nnkMethodDef, nnkDo} and
not isEmpty(prc.body):
# don't do anything with forward bodies (empty)
let
prcName = prc.name.getName
setResultSym = ident "setResult"
procBody = prc.body.processBody(setResultSym, baseType)
internalFutureSym = ident "chronosInternalRetFuture"
castFutureSym = nnkCast.newTree(internalFutureType, internalFutureSym)
resultIdent = ident "result"
resultDecl = nnkWhenStmt.newTree(
# when `baseType` is void:
nnkElifExpr.newTree(
nnkInfix.newTree(ident "is", baseType, ident "void"),
quote do:
template result: auto {.used.} =
{.fatal: "You should not reference the `result` variable inside" &
" a void async proc".}
),
# else:
nnkElseExpr.newTree(
newStmtList(
quote do: {.push warning[resultshadowed]: off.},
# var result {.used.}: `baseType`
# In the proc body, result may or may not end up being used
# depending on how the body is written - with implicit returns /
# expressions in particular, it is likely but not guaranteed that
# it is not used. Ideally, we would avoid emitting it in this
# case to avoid the default initializaiton. {.used.} typically
# works better than {.push.} which has a tendency to leak out of
# scope.
# TODO figure out if there's a way to detect `result` usage in
# the proc body _after_ template exapnsion, and therefore
# avoid creating this variable - one option is to create an
# addtional when branch witha fake `result` and check
# `compiles(procBody)` - this is not without cost though
nnkVarSection.newTree(nnkIdentDefs.newTree(
nnkPragmaExpr.newTree(
resultIdent,
nnkPragma.newTree(ident "used")),
baseType, newEmptyNode())
),
quote do: {.pop.},
)
)
)
# generates:
# template `setResultSym`(code: untyped) {.used.} =
# when typeof(code) is void: code
# else: `resultIdent` = code
#
# this is useful to handle implicit returns, but also
# to bind the `result` to the one we declare here
setResultDecl =
if baseTypeIsVoid: # shortcut for non-generic void
newEmptyNode()
else:
nnkTemplateDef.newTree(
setResultSym,
newEmptyNode(), newEmptyNode(),
nnkFormalParams.newTree(
newEmptyNode(),
nnkIdentDefs.newTree(
ident"code",
ident"untyped",
newEmptyNode(),
)
),
nnkPragma.newTree(ident"used"),
newEmptyNode(),
nnkWhenStmt.newTree(
nnkElifBranch.newTree(
nnkInfix.newTree(
ident"is", nnkTypeOfExpr.newTree(ident"code"), ident"void"),
ident"code"
),
nnkElse.newTree(
newAssignment(resultIdent, ident"code")
)
)
)
# Wrapping in try/finally ensures that early returns are handled properly
# and that `defer` is processed in the right scope
completeDecl = wrapInTryFinally(
castFutureSym, baseType,
if baseTypeIsVoid: procBody # shortcut for non-generic `void`
else: newCall(setResultSym, procBody),
raises,
handleException
)
closureBody = newStmtList(resultDecl, setResultDecl, completeDecl)
internalFutureParameter = nnkIdentDefs.newTree(
internalFutureSym, newIdentNode("FutureBase"), newEmptyNode())
iteratorNameSym = genSym(nskIterator, $prcName)
closureIterator = newProc(
iteratorNameSym,
[newIdentNode("FutureBase"), internalFutureParameter],
closureBody, nnkIteratorDef)
outerProcBody = newNimNode(nnkStmtList, prc.body)
# Copy comment for nimdoc
if prc.body.len > 0 and prc.body[0].kind == nnkCommentStmt:
outerProcBody.add(prc.body[0])
iteratorNameSym.copyLineInfo(prc)
closureIterator.pragma = newNimNode(nnkPragma, lineInfoFrom=prc.body)
closureIterator.addPragma(newIdentNode("closure"))
# `async` code must be gcsafe
closureIterator.addPragma(newIdentNode("gcsafe"))
# Exceptions are caught inside the iterator and stored in the future
closureIterator.addPragma(nnkExprColonExpr.newTree(
newIdentNode("raises"),
nnkBracket.newTree()
))
outerProcBody.add(closureIterator)
# -> let resultFuture = newInternalRaisesFuture[T, E]()
# declared at the end to be sure that the closure
# doesn't reference it, avoid cyclic ref (#203)
let
retFutureSym = ident "resultFuture"
newFutProc = if raises == nil:
newTree(nnkBracketExpr, ident "newFuture", baseType)
else:
newTree(nnkBracketExpr, ident "newInternalRaisesFuture", baseType, raises)
retFutureSym.copyLineInfo(prc)
# Do not change this code to `quote do` version because `instantiationInfo`
# will be broken for `newFuture()` call.
outerProcBody.add(
newLetStmt(
retFutureSym,
newCall(newFutProc, newLit(prcName))
)
)
# -> resultFuture.internalClosure = iterator
outerProcBody.add(
newAssignment(
newDotExpr(retFutureSym, newIdentNode("internalClosure")),
iteratorNameSym)
)
# -> futureContinue(resultFuture))
outerProcBody.add(
newCall(newIdentNode("futureContinue"), retFutureSym)
)
# -> return resultFuture
outerProcBody.add newNimNode(nnkReturnStmt, prc.body[^1]).add(retFutureSym)
prc.body = outerProcBody
when chronosDumpAsync:
echo repr prc
prc
template await*[T](f: Future[T]): T =
when declared(chronosInternalRetFuture):
chronosInternalRetFuture.internalChild = f
# `futureContinue` calls the iterator generated by the `async`
# transformation - `yield` gives control back to `futureContinue` which is
# responsible for resuming execution once the yielded future is finished
yield chronosInternalRetFuture.internalChild
# `child` released by `futureContinue`
cast[type(f)](chronosInternalRetFuture.internalChild).internalCheckComplete()
when T isnot void:
cast[type(f)](chronosInternalRetFuture.internalChild).value()
else:
unsupported "await is only available within {.async.}"
template await*[T, E](f: InternalRaisesFuture[T, E]): T =
when declared(chronosInternalRetFuture):
chronosInternalRetFuture.internalChild = f
# `futureContinue` calls the iterator generated by the `async`
# transformation - `yield` gives control back to `futureContinue` which is
# responsible for resuming execution once the yielded future is finished
yield chronosInternalRetFuture.internalChild
# `child` released by `futureContinue`
cast[type(f)](chronosInternalRetFuture.internalChild).internalCheckComplete(E)
when T isnot void:
cast[type(f)](chronosInternalRetFuture.internalChild).value()
else:
unsupported "await is only available within {.async.}"
template awaitne*[T](f: Future[T]): Future[T] =
when declared(chronosInternalRetFuture):
chronosInternalRetFuture.internalChild = f
yield chronosInternalRetFuture.internalChild
cast[type(f)](chronosInternalRetFuture.internalChild)
else:
unsupported "awaitne is only available within {.async.}"
macro async*(params, prc: untyped): untyped =
## Macro which processes async procedures into the appropriate
## iterators and yield statements.
if prc.kind == nnkStmtList:
result = newStmtList()
for oneProc in prc:
result.add asyncSingleProc(oneProc, params)
else:
result = asyncSingleProc(prc, params)
macro async*(prc: untyped): untyped =
## Macro which processes async procedures into the appropriate
## iterators and yield statements.
if prc.kind == nnkStmtList:
result = newStmtList()
for oneProc in prc:
result.add asyncSingleProc(oneProc, nnkTupleConstr.newTree())
else:
result = asyncSingleProc(prc, nnkTupleConstr.newTree())