477 lines
16 KiB
Nim
477 lines
16 KiB
Nim
#
|
|
# Chronos
|
|
#
|
|
# (c) Copyright 2015 Dominik Picheta
|
|
# (c) Copyright 2018-Present Status Research & Development GmbH
|
|
#
|
|
# Licensed under either of
|
|
# Apache License, version 2.0, (LICENSE-APACHEv2)
|
|
# MIT license (LICENSE-MIT)
|
|
|
|
import os, tables, strutils, times, heapqueue, options, deques, cstrutils
|
|
|
|
type
|
|
CallbackFunc* = proc (arg: pointer = nil) {.gcsafe.}
|
|
CallSoonProc* = proc (c: CallbackFunc, u: pointer = nil) {.gcsafe.}
|
|
|
|
AsyncCallback* = object
|
|
function*: CallbackFunc
|
|
udata*: pointer
|
|
deleted*: bool
|
|
|
|
# ZAH: This can probably be stored with a cheaper representation
|
|
# until the moment it needs to be printed to the screen (e.g. seq[StackTraceEntry])
|
|
StackTrace = string
|
|
|
|
FutureBase* = ref object of RootObj ## Untyped future.
|
|
callbacks: Deque[AsyncCallback]
|
|
|
|
finished: bool
|
|
error*: ref Exception ## Stored exception
|
|
errorStackTrace*: StackTrace
|
|
when not defined(release):
|
|
stackTrace: StackTrace ## For debugging purposes only.
|
|
id: int
|
|
fromProc: string
|
|
|
|
# ZAH: we have discussed some possible optimizations where
|
|
# the future can be stored within the caller's stack frame.
|
|
# How much refactoring is needed to make this a regular non-ref type?
|
|
# Obviously, it will still be allocated on the heap when necessary.
|
|
Future*[T] = ref object of FutureBase ## Typed future.
|
|
value: T ## Stored value
|
|
|
|
FutureVar*[T] = distinct Future[T]
|
|
|
|
FutureError* = object of Exception
|
|
cause*: FutureBase
|
|
|
|
{.deprecated: [PFutureBase: FutureBase, PFuture: Future].}
|
|
|
|
when not defined(release):
|
|
var currentID = 0
|
|
|
|
# ZAH: This seems unnecessary. Isn't it easy to introduce a seperate
|
|
# module for the dispatcher type, so it can be directly referenced here?
|
|
var callSoonHolder {.threadvar.}: CallSoonProc
|
|
|
|
proc getCallSoonProc*(): CallSoonProc {.gcsafe.} =
|
|
## Get current implementation of ``callSoon``.
|
|
return callSoonHolder
|
|
|
|
proc setCallSoonProc*(p: CallSoonProc) =
|
|
## Change current implementation of ``callSoon``.
|
|
callSoonHolder = p
|
|
|
|
proc callSoon*(c: CallbackFunc, u: pointer = nil) =
|
|
## Call ``cbproc`` "soon".
|
|
callSoonHolder(c, u)
|
|
|
|
template setupFutureBase(fromProc: string) =
|
|
new(result)
|
|
result.finished = false
|
|
when not defined(release):
|
|
result.stackTrace = getStackTrace()
|
|
result.id = currentID
|
|
result.fromProc = fromProc
|
|
currentID.inc()
|
|
|
|
## ZAH: As far as I undestand `fromProc` is just a debugging helper.
|
|
## It would be more efficient if it's represented as a simple statically
|
|
## known `char *` in the final program (so it needs to be a `cstring` in Nim).
|
|
## The public API can be defined as a template expecting a `static[string]`
|
|
## and converting this immediately to a `cstring`.
|
|
proc newFuture*[T](fromProc: string = "unspecified"): Future[T] =
|
|
## Creates a new future.
|
|
##
|
|
## Specifying ``fromProc``, which is a string specifying the name of the proc
|
|
## that this future belongs to, is a good habit as it helps with debugging.
|
|
setupFutureBase(fromProc)
|
|
|
|
proc newFutureVar*[T](fromProc = "unspecified"): FutureVar[T] =
|
|
## Create a new ``FutureVar``. This Future type is ideally suited for
|
|
## situations where you want to avoid unnecessary allocations of Futures.
|
|
##
|
|
## Specifying ``fromProc``, which is a string specifying the name of the proc
|
|
## that this future belongs to, is a good habit as it helps with debugging.
|
|
result = FutureVar[T](newFuture[T](fromProc))
|
|
|
|
proc clean*[T](future: FutureVar[T]) =
|
|
## Resets the ``finished`` status of ``future``.
|
|
Future[T](future).finished = false
|
|
Future[T](future).error = nil
|
|
|
|
proc checkFinished[T](future: Future[T]) =
|
|
## Checks whether `future` is finished. If it is then raises a
|
|
## ``FutureError``.
|
|
when not defined(release):
|
|
if future.finished:
|
|
var msg = ""
|
|
msg.add("An attempt was made to complete a Future more than once. ")
|
|
msg.add("Details:")
|
|
msg.add("\n Future ID: " & $future.id)
|
|
msg.add("\n Created in proc: " & future.fromProc)
|
|
msg.add("\n Stack trace to moment of creation:")
|
|
msg.add("\n" & indent(future.stackTrace.strip(), 4))
|
|
when T is string:
|
|
msg.add("\n Contents (string): ")
|
|
msg.add("\n" & indent(future.value.repr, 4))
|
|
msg.add("\n Stack trace to moment of secondary completion:")
|
|
msg.add("\n" & indent(getStackTrace().strip(), 4))
|
|
var err = newException(FutureError, msg)
|
|
err.cause = future
|
|
raise err
|
|
|
|
proc call(callbacks: var Deque[AsyncCallback]) =
|
|
var count = len(callbacks)
|
|
while count > 0:
|
|
var item = callbacks.popFirst()
|
|
if not item.deleted:
|
|
callSoon(item.function, item.udata)
|
|
dec(count)
|
|
|
|
proc add(callbacks: var Deque[AsyncCallback], item: AsyncCallback) =
|
|
# ZAH: perhaps this is the default behavior with latest Nim (no need for the `len` check)
|
|
if len(callbacks) == 0:
|
|
callbacks = initDeque[AsyncCallback]()
|
|
callbacks.addLast(item)
|
|
|
|
proc remove(callbacks: var Deque[AsyncCallback], item: AsyncCallback) =
|
|
for p in callbacks.mitems():
|
|
if p.function == item.function and p.udata == item.udata:
|
|
p.deleted = true
|
|
|
|
proc complete*[T](future: Future[T], val: T) =
|
|
## Completes ``future`` with value ``val``.
|
|
#assert(not future.finished, "Future already finished, cannot finish twice.")
|
|
checkFinished(future)
|
|
assert(future.error == nil)
|
|
future.value = val
|
|
future.finished = true
|
|
future.callbacks.call()
|
|
|
|
proc complete*(future: Future[void]) =
|
|
## Completes a void ``future``.
|
|
#assert(not future.finished, "Future already finished, cannot finish twice.")
|
|
checkFinished(future)
|
|
assert(future.error == nil)
|
|
future.finished = true
|
|
future.callbacks.call()
|
|
|
|
proc complete*[T](future: FutureVar[T]) =
|
|
## Completes a ``FutureVar``.
|
|
template fut: untyped = Future[T](future)
|
|
checkFinished(fut)
|
|
assert(fut.error == nil)
|
|
fut.finished = true
|
|
fut.callbacks.call()
|
|
|
|
proc complete*[T](future: FutureVar[T], val: T) =
|
|
## Completes a ``FutureVar`` with value ``val``.
|
|
##
|
|
## Any previously stored value will be overwritten.
|
|
template fut: untyped = Future[T](future)
|
|
checkFinished(fut)
|
|
assert(fut.error.isNil())
|
|
fut.finished = true
|
|
fut.value = val
|
|
fut.callbacks.call()
|
|
|
|
proc fail*[T](future: Future[T], error: ref Exception) =
|
|
## Completes ``future`` with ``error``.
|
|
#assert(not future.finished, "Future already finished, cannot finish twice.")
|
|
checkFinished(future)
|
|
future.finished = true
|
|
future.error = error
|
|
future.errorStackTrace =
|
|
if getStackTrace(error) == "": getStackTrace() else: getStackTrace(error)
|
|
future.callbacks.call()
|
|
|
|
proc clearCallbacks(future: FutureBase) =
|
|
# ZAH: This could have been a single call to `setLen`
|
|
var count = len(future.callbacks)
|
|
while count > 0:
|
|
discard future.callbacks.popFirst()
|
|
dec(count)
|
|
|
|
proc addCallback*(future: FutureBase, cb: CallbackFunc, udata: pointer = nil) =
|
|
## Adds the callbacks proc to be called when the future completes.
|
|
##
|
|
## If future has already completed then ``cb`` will be called immediately.
|
|
assert cb != nil
|
|
if future.finished:
|
|
# ZAH: it seems that the Future needs to know its associated Dispatcher
|
|
callSoon(cb, udata)
|
|
else:
|
|
let acb = AsyncCallback(function: cb, udata: udata)
|
|
future.callbacks.add acb
|
|
|
|
proc addCallback*[T](future: Future[T], cb: CallbackFunc) =
|
|
## Adds the callbacks proc to be called when the future completes.
|
|
##
|
|
## If future has already completed then ``cb`` will be called immediately.
|
|
future.addCallback(cb, cast[pointer](future))
|
|
|
|
proc removeCallback*(future: FutureBase, cb: CallbackFunc,
|
|
udata: pointer = nil) =
|
|
assert cb != nil
|
|
let acb = AsyncCallback(function: cb, udata: udata)
|
|
future.callbacks.remove acb
|
|
|
|
proc removeCallback*[T](future: Future[T], cb: CallbackFunc) =
|
|
future.removeCallback(cb, cast[pointer](future))
|
|
|
|
proc `callback=`*(future: FutureBase, cb: CallbackFunc, udata: pointer = nil) =
|
|
## Clears the list of callbacks and sets the callback proc to be called when
|
|
## the future completes.
|
|
##
|
|
## If future has already completed then ``cb`` will be called immediately.
|
|
##
|
|
## It's recommended to use ``addCallback`` or ``then`` instead.
|
|
# ZAH: how about `setLen(1); callbacks[0] = cb`
|
|
future.clearCallbacks
|
|
future.addCallback(cb, udata)
|
|
|
|
proc `callback=`*[T](future: Future[T], cb: CallbackFunc) =
|
|
## Sets the callback proc to be called when the future completes.
|
|
##
|
|
## If future has already completed then ``cb`` will be called immediately.
|
|
`callback=`(future, cb, cast[pointer](future))
|
|
|
|
proc getHint(entry: StackTraceEntry): string =
|
|
## We try to provide some hints about stack trace entries that the user
|
|
## may not be familiar with, in particular calls inside the stdlib.
|
|
result = ""
|
|
if entry.procname == "processPendingCallbacks":
|
|
if cmpIgnoreStyle(entry.filename, "asyncdispatch.nim") == 0:
|
|
return "Executes pending callbacks"
|
|
elif entry.procname == "poll":
|
|
if cmpIgnoreStyle(entry.filename, "asyncdispatch.nim") == 0:
|
|
return "Processes asynchronous completion events"
|
|
|
|
if entry.procname.endsWith("_continue"):
|
|
if cmpIgnoreStyle(entry.filename, "asyncmacro.nim") == 0:
|
|
return "Resumes an async procedure"
|
|
|
|
proc `$`*(entries: seq[StackTraceEntry]): string =
|
|
result = ""
|
|
# Find longest filename & line number combo for alignment purposes.
|
|
var longestLeft = 0
|
|
for entry in entries:
|
|
if entry.procName.isNil: continue
|
|
|
|
let left = $entry.filename & $entry.line
|
|
if left.len > longestLeft:
|
|
longestLeft = left.len
|
|
|
|
var indent = 2
|
|
# Format the entries.
|
|
for entry in entries:
|
|
if entry.procName.isNil:
|
|
if entry.line == -10:
|
|
result.add(spaces(indent) & "#[\n")
|
|
indent.inc(2)
|
|
else:
|
|
indent.dec(2)
|
|
result.add(spaces(indent) & "]#\n")
|
|
continue
|
|
|
|
let left = "$#($#)" % [$entry.filename, $entry.line]
|
|
result.add((spaces(indent) & "$#$# $#\n") % [
|
|
left,
|
|
spaces(longestLeft - left.len + 2),
|
|
$entry.procName
|
|
])
|
|
let hint = getHint(entry)
|
|
if hint.len > 0:
|
|
result.add(spaces(indent+2) & "## " & hint & "\n")
|
|
|
|
proc injectStacktrace[T](future: Future[T]) =
|
|
when not defined(release):
|
|
const header = "\nAsync traceback:\n"
|
|
|
|
var exceptionMsg = future.error.msg
|
|
if header in exceptionMsg:
|
|
# This is messy: extract the original exception message from the msg
|
|
# containing the async traceback.
|
|
let start = exceptionMsg.find(header)
|
|
exceptionMsg = exceptionMsg[0..<start]
|
|
|
|
|
|
var newMsg = exceptionMsg & header
|
|
|
|
let entries = getStackTraceEntries(future.error)
|
|
newMsg.add($entries)
|
|
|
|
newMsg.add("Exception message: " & exceptionMsg & "\n")
|
|
newMsg.add("Exception type:")
|
|
|
|
# # For debugging purposes
|
|
# for entry in getStackTraceEntries(future.error):
|
|
# newMsg.add "\n" & $entry
|
|
future.error.msg = newMsg
|
|
|
|
proc read*[T](future: Future[T] | FutureVar[T]): T =
|
|
## Retrieves the value of ``future``. Future must be finished otherwise
|
|
## this function will fail with a ``ValueError`` exception.
|
|
##
|
|
## If the result of the future is an error then that error will be raised.
|
|
{.push hint[ConvFromXtoItselfNotNeeded]: off.}
|
|
let fut = Future[T](future)
|
|
{.pop.}
|
|
if fut.finished:
|
|
if fut.error != nil:
|
|
injectStacktrace(fut)
|
|
raise fut.error
|
|
when T isnot void:
|
|
return fut.value
|
|
else:
|
|
# TODO: Make a custom exception type for this?
|
|
raise newException(ValueError, "Future still in progress.")
|
|
|
|
proc readError*[T](future: Future[T]): ref Exception =
|
|
## Retrieves the exception stored in ``future``.
|
|
##
|
|
## An ``ValueError`` exception will be thrown if no exception exists
|
|
## in the specified Future.
|
|
if future.error != nil: return future.error
|
|
else:
|
|
raise newException(ValueError, "No error in future.")
|
|
|
|
proc mget*[T](future: FutureVar[T]): var T =
|
|
## Returns a mutable value stored in ``future``.
|
|
##
|
|
## Unlike ``read``, this function will not raise an exception if the
|
|
## Future has not been finished.
|
|
result = Future[T](future).value
|
|
|
|
proc finished*(future: FutureBase | FutureVar): bool =
|
|
## Determines whether ``future`` has completed.
|
|
##
|
|
## ``True`` may indicate an error or a value. Use ``failed`` to distinguish.
|
|
when future is FutureVar:
|
|
result = (FutureBase(future)).finished
|
|
else:
|
|
result = future.finished
|
|
|
|
proc failed*(future: FutureBase): bool =
|
|
## Determines whether ``future`` completed with an error.
|
|
return future.error != nil
|
|
|
|
proc asyncCheck*[T](future: Future[T]) =
|
|
## Sets a callback on ``future`` which raises an exception if the future
|
|
## finished with an error.
|
|
##
|
|
## This should be used instead of ``discard`` to discard void futures.
|
|
assert(not future.isNil, "Future is nil")
|
|
proc cb(data: pointer) =
|
|
if future.failed:
|
|
injectStacktrace(future)
|
|
raise future.error
|
|
future.callback = cb
|
|
|
|
# ZAH: The return type here could be a Future[(T, Y)]
|
|
proc `and`*[T, Y](fut1: Future[T], fut2: Future[Y]): Future[void] =
|
|
## Returns a future which will complete once both ``fut1`` and ``fut2``
|
|
## complete.
|
|
# ZAH: The Rust implementation of futures is making the case that the
|
|
# `and` combinator can be implemented in a more efficient way without
|
|
# resorting to closures and callbacks. I haven't thought this through
|
|
# completely yet, but here is their write-up:
|
|
# http://aturon.github.io/2016/09/07/futures-design/
|
|
#
|
|
# We should investigate this further, before settling on the final design.
|
|
# The same reasoning applies to `or` and `all`.
|
|
var retFuture = newFuture[void]("asyncdispatch.`and`")
|
|
proc cb(data: pointer) =
|
|
if not retFuture.finished:
|
|
if (fut1.failed or fut1.finished) and (fut2.failed or fut2.finished):
|
|
if cast[pointer](fut1) == data:
|
|
if fut1.failed: retFuture.fail(fut1.error)
|
|
elif fut2.finished: retFuture.complete()
|
|
else:
|
|
if fut2.failed: retFuture.fail(fut2.error)
|
|
elif fut1.finished: retFuture.complete()
|
|
fut1.callback = cb
|
|
fut2.callback = cb
|
|
return retFuture
|
|
|
|
proc `or`*[T, Y](fut1: Future[T], fut2: Future[Y]): Future[void] =
|
|
## Returns a future which will complete once either ``fut1`` or ``fut2``
|
|
## complete.
|
|
var retFuture = newFuture[void]("asyncdispatch.`or`")
|
|
proc cb(data: pointer) {.gcsafe.} =
|
|
if not retFuture.finished:
|
|
var fut = cast[FutureBase](data)
|
|
if cast[pointer](fut1) == data:
|
|
fut2.removeCallback(cb)
|
|
else:
|
|
fut1.removeCallback(cb)
|
|
if fut.failed: retFuture.fail(fut.error)
|
|
else: retFuture.complete()
|
|
fut1.callback = cb
|
|
fut2.callback = cb
|
|
return retFuture
|
|
|
|
# ZAH: The return type here could be a tuple
|
|
# This will enable waiting a heterogenous collection of futures.
|
|
proc all*[T](futs: varargs[Future[T]]): auto =
|
|
## Returns a future which will complete once
|
|
## all futures in ``futs`` complete.
|
|
## If the argument is empty, the returned future completes immediately.
|
|
##
|
|
## If the awaited futures are not ``Future[void]``, the returned future
|
|
## will hold the values of all awaited futures in a sequence.
|
|
##
|
|
## If the awaited futures *are* ``Future[void]``,
|
|
## this proc returns ``Future[void]``.
|
|
|
|
when T is void:
|
|
var
|
|
retFuture = newFuture[void]("asyncdispatch.all")
|
|
completedFutures = 0
|
|
|
|
let totalFutures = len(futs)
|
|
|
|
for fut in futs:
|
|
fut.addCallback proc (data: pointer) =
|
|
var fut = cast[FutureBase](data)
|
|
inc(completedFutures)
|
|
if not retFuture.finished:
|
|
if fut.failed:
|
|
retFuture.fail(fut.error)
|
|
else:
|
|
if completedFutures == totalFutures:
|
|
retFuture.complete()
|
|
|
|
if totalFutures == 0:
|
|
retFuture.complete()
|
|
|
|
return retFuture
|
|
|
|
else:
|
|
var
|
|
retFuture = newFuture[seq[T]]("asyncdispatch.all")
|
|
retValues = newSeq[T](len(futs))
|
|
completedFutures = 0
|
|
|
|
for i, fut in futs:
|
|
proc setCallback(i: int) =
|
|
fut.addCallback proc (data: pointer) =
|
|
var fut = cast[Future[T]](data)
|
|
inc(completedFutures)
|
|
if not retFuture.finished:
|
|
if fut.failed:
|
|
retFuture.fail(fut.error)
|
|
else:
|
|
retValues[i] = fut.read()
|
|
if completedFutures == len(retValues):
|
|
retFuture.complete(retValues)
|
|
|
|
setCallback(i)
|
|
|
|
if retValues.len == 0:
|
|
retFuture.complete(retValues)
|
|
|
|
return retFuture
|