# Nim Barreto-Naehrig pairing-friendly elliptic curve implementation # Copyright (c) 2018 Status Research & Development GmbH # Licensed under either of # * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE)) # * MIT license ([LICENSE-MIT](LICENSE-MIT)) # at your option. # This file may not be copied, modified, or distributed except according to # those terms. import fields, arith, options export fields, arith, options import nimcrypto/utils {.deadCodeElim: on.} type G1* = object G2* = object Point*[T: G1|G2] = object when T is G1: x*, y*, z*: FQ else: x*, y*, z*: FQ2 AffinePoint*[T: G1|G2] = object when T is G1: x*, y*: FQ else: x*, y*: FQ2 EllCoeffs* = object ell_0*: FQ2 ell_vw*: FQ2 ell_vv*: FQ2 G2Precomp* = object q*: AffinePoint[G2] coeffs*: seq[EllCoeffs] const G1One = Point[G1]( x: FQ.one(), y: FQ([0xa6ba871b8b1e1b3a'u64, 0x14f1d651eb8e167b'u64, 0xccdd46def0f28c58'u64, 0x1c14ef83340fbe5e'u64]), z: FQ.one() ) G1B = FQ([0x7a17caa950ad28d7'u64, 0x1f6ac17ae15521b9'u64, 0x334bea4e696bd284'u64, 0x2a1f6744ce179d8e'u64]) G2One = Point[G2]( x: FQ2( c0: FQ([0x8e83b5d102bc2026'u64, 0xdceb1935497b0172'u64, 0xfbb8264797811adf'u64, 0x19573841af96503b'u64]), c1: FQ([0xafb4737da84c6140'u64, 0x6043dd5a5802d8c4'u64, 0x09e950fc52a02f86'u64, 0x14fef0833aea7b6b'u64]) ), y: FQ2( c0: FQ([0x619dfa9d886be9f6'u64, 0xfe7fd297f59e9b78'u64, 0xff9e1a62231b7dfe'u64, 0x28fd7eebae9e4206'u64]), c1: FQ([0x64095b56c71856ee'u64, 0xdc57f922327d3cbb'u64, 0x55f935be33351076'u64, 0x0da4a0e693fd6482'u64]) ), z: FQ2.one() ) G2B = FQ2( c0: FQ([0x3bf938e377b802a8'u64, 0x020b1b273633535d'u64, 0x26b7edf049755260'u64, 0x2514c6324384a86d'u64]), c1: FQ([0x38e7ecccd1dcff67'u64, 0x65f0b37d93ce0d3e'u64, 0xd749d0dd22ac00aa'u64, 0x0141b9ce4a688d4d'u64]) ) AteLoopCount = BNU256([ 0x9d797039be763ba8'u64, 0x0000000000000001'u64, 0x0000000000000000'u64, 0x0000000000000000'u64 ]) TwoInv = FQ([ 9781510331150239090'u64, 15059239858463337189'u64, 10331104244869713732'u64, 2249375503248834476'u64 ]) Twist = FQ2NonResidue TwistMulByQx = FQ2( c0: FQ([ 13075984984163199792'u64, 3782902503040509012'u64, 8791150885551868305'u64, 1825854335138010348'u64 ]), c1: FQ([ 7963664994991228759'u64, 12257807996192067905'u64, 13179524609921305146'u64, 2767831111890561987'u64 ]) ) TwistMulByQy = FQ2( c0: FQ([ 16482010305593259561'u64, 13488546290961988299'u64, 3578621962720924518'u64, 2681173117283399901'u64 ]), c1: FQ([ 11661927080404088775'u64, 553939530661941723'u64, 7860678177968807019'u64, 3208568454732775116'u64 ]) ) proc one*[T: G1|G2](t: typedesc[T]): Point[T] {.inline, noinit.} = when T is G1: result = G1One else: result = G2One # proc one*(t: typedesc[Gt]): Gt {.inline, noinit.} = # result = FQ12.one() proc name*[T: G1|G2](t: typedesc[T]): string {.inline, noinit.} = when T is G1: result = "G1" else: result = "G2" proc coeff*(t: typedesc[G1]): FQ {.inline, noinit.} = result = G1B proc coeff*(t: typedesc[G2]): FQ2 {.inline, noinit.} = result = G2B proc zero*[T: G1|G2](t: typedesc[T]): Point[T] {.inline, noinit.} = when T is G1: result.x = FQ.zero() result.y = FQ.one() result.z = FQ.zero() else: result.x = FQ2.zero() result.y = FQ2.one() result.z = FQ2.zero() proc isZero*[T: G1|G2](p: Point[T]): bool {.inline, noinit.} = result = p.z.isZero() proc double*[T: G1|G2](p: Point[T]): Point[T] {.noinit.} = let a = p.x.squared() let b = p.y.squared() let c = b.squared() var d = (p.x + b).squared() - a - c d = d + d let e = a + a + a let f = e.squared() let x3 = f - (d + d) var eightc = c + c eightc = eightc + eightc eightc = eightc + eightc let y1z1 = p.y * p.z result.x = x3 result.y = e * (d - x3) - eightc result.z = y1z1 + y1z1 proc `*`*[T: G1|G2](p: Point[T], by: FR): Point[T] = result = T.zero() var foundOne = false for i in BNU256.into(by).bits(): if foundOne: result = result.double() if i: foundOne = true result = result + p proc random*[T: G1|G2](t: typedesc[T]): Point[T] {.inline, noinit.} = result = t.one() * FR.random() proc `+`*[T: G1|G2](p1, p2: Point[T]): Point[T] {.noinit.} = if p1.isZero(): return p2 if p2.isZero(): return p1 let z1squared = p1.z.squared() let z2squared = p2.z.squared() let u1 = p1.x * z2squared let u2 = p2.x * z1squared let z1cubed = p1.z * z1squared let z2cubed = p2.z * z2squared let s1 = p1.y * z2cubed let s2 = p2.y * z1cubed if u1 == u2 and s1 == s2: result = p1.double() else: let h = u2 - u1 let s2minuss1 = s2 - s1 let i = (h + h).squared() let j = h * i let r = s2minuss1 + s2minuss1 let v = u1 * i let s1j = s1 * j let x3 = r.squared() - j - (v + v) result.x = x3 result.y = r * (v - x3) - (s1j + s1j) result.z = ((p1.z + p2.z).squared() - z1squared - z2squared) * h proc `-`*[T: G1|G2](p: Point[T]): Point[T] {.inline, noinit.} = if p.isZero(): return p else: result.x = p.x result.y = -p.y result.z = p.z proc `-`*[T: G1|G2](p: AffinePoint[T]): AffinePoint[T] {.inline, noinit.} = result.x = p.x result.y = -p.y proc `-`*[T: G1|G2](p1, p2: Point[T]): Point[T] {.inline, noinit.} = result = p1 + (-p2) proc `==`*[T: G1|G2](p1, p2: Point[T]): bool = if p1.isZero(): return p2.isZero() if p2.isZero(): return false let z1squared = p1.z.squared() let z2squared = p2.z.squared() if (p1.x * z2squared) != (p2.x * z1squared): return false let z1cubed = p1.z * z1squared let z2cubed = p2.z * z2squared if (p1.y * z2cubed) != (p2.y * z1cubed): return false return true proc toJacobian*[T: G1|G2](p: AffinePoint[T]): Point[T] {.inline, noinit.} = ## Convert affine coordinates' point ``p`` to point. result.x = p.x result.y = p.y when T is G1: result.z = FQ.one() else: result.z = FQ2.one() proc toAffine*[T: G1|G2](p: Point[T]): Option[AffinePoint[T]] = ## Attempt to convert point ``p`` to affine coordinates. when T is G1: var fone = FQ.one() else: var fone = FQ2.one() if p.z.isZero(): result = none[AffinePoint[T]]() elif p.z == fone: result = some[AffinePoint[T]](AffinePoint[T](x: p.x, y: p.y)) else: let ozinv = p.z.inverse() if isSome(ozinv): let zinv = ozinv.get() var zinvsquared = zinv.squared() result = some[AffinePoint[T]]( AffinePoint[T]( x: p.x * zinvsquared, y: p.y * (zinvsquared * zinv) ) ) else: result = none[AffinePoint[T]]() proc normalize*(p: var Point[G2]) {.inline, noinit.} = let aopt = p.toAffine() if isSome(aopt): p = aopt.get().toJacobian() else: return proc isOnCurve*[T: G1|G2](p: AffinePoint[T]): bool = when T is G1: result = (p.y.squared() == (p.x.squared() * p.x) + G1B) else: result = (p.y.squared() == (p.x.squared() * p.x) + G2B) proc mulByQ(p: AffinePoint[G2]): AffinePoint[G2] = result.x = TwistMulByQx * p.x.frobeniusMap(1) result.y = TwistMulByQy * p.y.frobeniusMap(1) proc mixedAdditionStepForFlippedML(p: var Point[G2], base: AffinePoint[G2]): EllCoeffs = let d = p.x - p.z * base.x let e = p.y - p.z * base.y let f = d.squared() let g = e.squared() let h = d * f let i = p.x * f let j = p.z * g + h - (i + i) p.x = d * j p.y = e * (i - j) - h * p.y p.z = p.z * h result.ell_0 = Twist * (e * base.x - d * base.y) result.ell_vv = -e result.ell_vw = d proc doublingStepForFlippedML(p: var Point[G2]): EllCoeffs = let a = (p.x * p.y).scale(TwoInv) let b = p.y.squared() let c = p.z.squared() let d = c + c + c let e = G2B * d let f = e + e + e let g = (b + f).scale(TwoInv) let h = (p.y + p.z).squared() - (b + c) let i = e - b let j = p.x.squared() let e_sq = e.squared() p.x = a * (b - f) p.y = g.squared() - (e_sq + e_sq + e_sq) p.z = b * h result.ell_0 = Twist * i result.ell_vw = -h result.ell_vv = j + j + j proc precompute*(p: AffinePoint[G2]): G2Precomp = var r = p.toJacobian() result.coeffs = newSeqOfCap[EllCoeffs](102) var foundOne = false for i in AteLoopCount.bits(): if not foundOne: foundOne = i continue result.coeffs.add(r.doublingStepForFlippedML()) if i: result.coeffs.add(r.mixedAdditionStepForFlippedML(p)) let q1 = p.mulByQ() let q2 = -(q1.mulByQ()) result.coeffs.add(r.mixedAdditionStepForFlippedML(q1)) result.coeffs.add(r.mixedAdditionStepForFlippedML(q2)) result.q = p proc millerLoop*(pc: G2Precomp, g1: AffinePoint[G1]): FQ12 = result = FQ12.one() var idx = 0 var foundOne = false var c: EllCoeffs for i in AteLoopCount.bits(): if not foundOne: foundOne = i continue c = pc.coeffs[idx] inc(idx) result = result.squared().mulBy024(c.ell_0, c.ell_vw.scale(g1.y), c.ell_vv.scale(g1.x)) if i: c = pc.coeffs[idx] idx += 1 result = result.mulBy024(c.ell_0, c.ell_vw.scale(g1.y), c.ell_vv.scale(g1.x)) c = pc.coeffs[idx] idx += 1 result = result.mulBy024(c.ell_0, c.ell_vw.scale(g1.y), c.ell_vv.scale(g1.x)) c = pc.coeffs[idx] result = result.mulBy024(c.ell_0, c.ell_vw.scale(g1.y), c.ell_vv.scale(g1.x)) proc pairing*(p: Point[G1], q: Point[G2]): FQ12 {.noinit, inline.} = result = FQ12.one() var optp = p.toAffine() var optq = q.toAffine() if optp.isSome() and optq.isSome(): let pc = optq.get().precompute() let ores = finalExponentiation(pc.millerLoop(optp.get())) if ores.isSome(): result = ores.get() proc init*(p: var AffinePoint[G1], x: FQ, y: FQ): bool {.inline.} = ## Initializes AffinePoint[G1] with coordinates ``x`` and ``y``. ## Returns ``true`` if (x, y) is on curve and in the subgroup. if y.squared() == ((x.squared() * x) + G1B): let point = Point[G1](x: x, y: y, z: FQ.one()) if (point * (-FR.one())) + point == G1.zero(): p.x = x p.y = y result = true proc init*(p: var AffinePoint[G2], x: FQ2, y: FQ2): bool {.inline.} = ## Initializes AffinePoint[G2] with coordinates ``x`` and ``y``. ## Returns ``true`` if (x, y) is on curve and in the subgroup. if y.squared() == ((x.squared() * x) + G2B): let point = Point[G2](x: x, y: y, z: FQ2.one()) if (point * (-FR.one())) + point == G2.zero(): p.x = x p.y = y result = true proc toBytes*[T: G1|G2](p: AffinePoint[T], dst: var openarray[byte]): bool = ## Encode affine point coordinates (x, y) to big-endian bytes representation ## ``dst``. ## Returns ``true`` if coordinates was successfully serialized, ``false`` ## otherwise. when T is G1: if len(dst) >= 64: if p.x.toBytes(toOpenArray(dst, 0, 31)): if p.y.toBytes(toOpenArray(dst, 32, 63)): result = true else: if len(dst) >= 128: if p.x.toBytes(toOpenArray(dst, 0, 63)): if p.y.toBytes(toOpenArray(dst, 64, 127)): result = true proc fromBytes*[T: G1|G2](p: var AffinePoint[T], src: openarray[byte]): bool = ## Decode affine point coordinates (x, y) from big endian bytes representation ## ``src``. ## Returns ``true`` if coordinates was successfully serialized, ``false`` ## otherwise. when T is G1: const nextOffset = 32 coeff = G1B var x, y: FQ point: Point[G1] else: const nextOffset = 64 coeff = G2B var x, y: FQ2 point: Point[G2] if len(src) >= nextOffset * 2: if x.fromBytes(src): if y.fromBytes(toOpenArray(src, nextOffset, len(src) - 1)): if y.squared() == (x.squared() * x) + coeff: ## Check if point on curve. point.x = x point.y = y when T is G1: point.z = FQ.one() else: point.z = FQ2.one() if (point * (-FR.one())) + point == T.zero(): p.x = x p.y = y result = true else: ## Point is not in the subgroup discard proc fromHexString*[T: G1|G2](p: var AffinePoint[T], src: string): bool {.inline.} = ## Decode affine point coordinates (x, y) from hexadecimal string ## representation ``src``. ## Returns ``true`` if coordinates was successfully serialized, ``false`` ## otherwise. ## ``Note:`` Can raise exception on malformed hexadecimal string. result = fromBytes(p, fromHex(src)) proc toHexString*[T: G1|G2](p: AffinePoint[T], lowercase = false): string {.inline.} = ## Encode affine point coordinates (x, y) and return hexadecimal string ## representation. when T is G1: var buffer: array[64, byte] else: var buffer: array[128, byte] if toBytes(p, buffer): result = toHex(buffer, lowercase) proc toBytes*[T: G1|G2](p: Point[T], dst: var openarray[byte]): bool {.inline.} = ## Encode point coordinates (x, y, z) to big-endian bytes representation ## ``dst``. ## Returns ``true`` if coordinates was successfully serialized, ``false`` ## otherwise. when T is G1: const outputSize = 64 else: const outputSize = 128 if p.isZero(): if len(dst) >= 1: dst[0] = 0x00'u8 result = true else: result = false else: if len(dst) >= 1 + outputSize: var apo = p.toAffine() if isSome(apo): dst[0] = 0x04'u8 result = apo.get().toBytes(toOpenArray(dst, 1, outputSize)) proc fromBytes*[T: G1|G2](p: var Point[T], src: openarray[byte]): bool {.inline.} = ## Decode affine point coordinates (x, y, z) from big endian bytes ## representation ``src``. ## Returns ``true`` if coordinates was successfully serialized, ``false`` ## otherwise. when T is G1: const inputSize = 64 else: const inputSize = 128 if len(src) > 0: if src[0] == 0x00'u8: p = T.zero() result = true elif src[0] == 0x04'u8: if len(src) >= inputSize + 1: var ap: AffinePoint[T] if ap.fromBytes(toOpenArray(src, 1, inputSize)): p = toJacobian(ap) result = true proc fromHexString*[T: G1|G2](p: var Point[T], src: string): bool {.inline.} = ## Decode point coordinates (x, y, z) from hexadecimal string ## representation ``src``. ## Returns ``true`` if coordinates was successfully serialized, ``false`` ## otherwise. ## ``Note:`` Can raise exception on malformed hexadecimal string. result = fromBytes(p, fromHex(src)) proc toHexString*[T: G1|G2](p: Point[T], lowercase = false): string {.inline.} = ## Encode affine point coordinates (x, y, z) and return hexadecimal string ## representation. when T is G1: var buffer: array[64 + 1, byte] else: var buffer: array[128 + 1, byte] if toBytes(p, buffer): result = toHex(buffer, lowercase)