nim-bncurve/bncurve/fq12.nim

312 lines
7.0 KiB
Nim
Raw Normal View History

2018-09-27 10:35:59 +00:00
# Nim Barreto-Naehrig pairing-friendly elliptic curve implementation
# Copyright (c) 2018 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE))
# * MIT license ([LICENSE-MIT](LICENSE-MIT))
# at your option.
# This file may not be copied, modified, or distributed except according to
# those terms.
import options
import fq6, fq2, fp, arith
{.deadCodeElim: on.}
2018-09-27 10:35:59 +00:00
const frobeniusCoeffsC1: array[4, FQ2] = [
FQ2.one(),
FQ2(
c0: Fq([12653890742059813127'u64, 14585784200204367754'u64,
1278438861261381767'u64, 212598772761311868'u64]),
c1: Fq([11683091849979440498'u64, 14992204589386555739'u64,
15866167890766973222'u64, 1200023580730561873'u64])
),
FQ2(
c0: Fq([14595462726357228530'u64, 17349508522658994025'u64,
1017833795229664280'u64, 299787779797702374'u64]),
c1: Fq.zero()
),
FQ2(
c0: Fq([3914496794763385213'u64, 790120733010914719'u64,
7322192392869644725'u64, 581366264293887267'u64]),
c1: Fq([12817045492518885689'u64, 4440270538777280383'u64,
11178533038884588256'u64, 2767537931541304486'u64])
)
]
type
FQ12* = object
c0*: FQ6
c1*: FQ6
proc init*(c0, c1: FQ6): FQ12 {.inline, noinit.} =
result.c0 = c0
result.c1 = c1
proc zero*(t: typedesc[FQ12]): FQ12 {.inline, noinit.} =
result.c0 = FQ6.zero()
result.c1 = FQ6.zero()
proc one*(t: typedesc[FQ12]): FQ12 {.inline, noinit.} =
result.c0 = FQ6.one()
result.c1 = FQ6.zero()
proc random*(t: typedesc[FQ12]): FQ12 {.inline, noinit.} =
result.c0 = FQ6.random()
result.c1 = FQ6.random()
proc isZero*(x: FQ12): bool {.inline, noinit.} =
result = (x.c0.isZero() and x.c1.isZero())
proc squared*(x: FQ12): FQ12 {.inline, noinit.} =
let ab = x.c0 * x.c1
result.c0 = (x.c1.mulByNonresidue() + x.c0) * (x.c0 + x.c1) - ab -
ab.mulByNonresidue()
result.c1 = ab + ab
proc inverse*(x: FQ12): Option[FQ12] {.inline, noinit.} =
let opt = (x.c0.squared() - (x.c1.squared().mulByNonresidue())).inverse()
if isSome(opt):
let tmp = opt.get()
result = some[FQ12](FQ12(c0: x.c0 * tmp, c1: -(x.c1 * tmp)))
else:
result = none[FQ12]()
proc `+`*(x, y: FQ12): FQ12 {.noinit, inline.} =
## Return result of ``x + y``.
result.c0 = x.c0 + y.c0
result.c1 = x.c1 + y.c1
proc `+=`*(x: var FQ12, y: FQ12) {.noinit, inline.} =
## Perform inplace addition ``x = x + y``.
x.c0 += y.c0
x.c1 += y.c1
proc `-`*(x, y: FQ12): FQ12 {.noinit, inline.} =
## Return result of ``x - y``.
result.c0 = x.c0 - y.c0
result.c1 = x.c1 - y.c1
proc `-=`*(x: var FQ12, y: FQ12) {.noinit, inline.} =
## Perform inplace substraction ``x = x - y``.
x.c0 -= y.c0
x.c1 -= y.c1
proc `*`*(x, y: FQ12): FQ12 {.noinit, inline.} =
## Return result of ``x * y``.
let aa = x.c0 * y.c0
let bb = x.c1 * y.c1
result.c0 = bb.mulByNonresidue() + aa
result.c1 = (x.c0 + x.c1) * (y.c0 + y.c1) - aa - bb
proc `*=`*(x: var FQ12, y: FQ12) {.noinit, inline.} =
## Perform inplace multiplication ``x = x * y``.
let aa = x.c0 * y.c0
let bb = x.c1 * y.c1
let cc = x.c0 + x.c1
x.c0 = bb.mulByNonresidue() + aa
x.c1 = cc * (y.c0 + y.c1) - aa - bb
proc `-`*(x: FQ12): FQ12 {.noinit, inline.} =
## Negotiation of ``x``.
result.c0 = -x.c0
result.c1 = -x.c1
proc pow*(x: FQ12, by: BNU256): FQ12 {.noinit.} =
result = FQ12.one()
for i in by.bits():
result = result.squared()
if i:
result *= x
proc pow*(x: FQ12, by: FR): FQ12 {.inline, noinit.} =
result = pow(x, BNU256.into(by))
proc frobeniusMap*(x: FQ12, power: uint64): FQ12 =
result.c0 = x.c0.frobeniusMap(power)
result.c1 = x.c1.frobeniusMap(power).scale(frobeniusCoeffsC1[power mod 12])
proc unitaryInverse*(x: FQ12): FQ12 =
result.c0 = x.c0
result.c1 = -x.c1
proc cyclotomicSquared*(x: FQ12): FQ12 =
var z0 = x.c0.c0
var z4 = x.c0.c1
var z3 = x.c0.c2
var z2 = x.c1.c0
var z1 = x.c1.c1
var z5 = x.c1.c2
var tmp = z0 * z1
let t0 = (z0 + z1) * (z1.mulByNonresidue() + z0) - tmp - tmp.mulByNonresidue()
let t1 = tmp + tmp
tmp = z2 * z3;
let t2 = (z2 + z3) * (z3.mulByNonresidue() + z2) - tmp - tmp.mulByNonresidue()
let t3 = tmp + tmp
tmp = z4 * z5;
let t4 = (z4 + z5) * (z5.mulByNonresidue() + z4) - tmp - tmp.mulByNonresidue()
let t5 = tmp + tmp
z0 = t0 - z0
z0 = z0 + z0
z0 = z0 + t0
z1 = t1 + z1
z1 = z1 + z1
z1 = z1 + t1
tmp = t5.mulByNonresidue()
z2 = tmp + z2
z2 = z2 + z2
z2 = z2 + tmp
z3 = t4 - z3
z3 = z3 + z3
z3 = z3 + t4
z4 = t2 - z4
z4 = z4 + z4
z4 = z4 + t2
z5 = t3 + z5
z5 = z5 + z5
z5 = z5 + t3
result.c0 = init(z0, z4, z3)
result.c1 = init(z2, z1, z5)
proc cyclotomicPow*(x: FQ12, by: BNU256): FQ12 =
result = FQ12.one()
var foundOne = false
for i in by.bits():
if foundOne:
result = result.cyclotomicSquared()
if i:
foundOne = true
result = x * result
proc expByNegZ*(x: FQ12): FQ12 =
let uconst = BNU256([4965661367192848881'u64, 0'u64, 0'u64, 0'u64])
result = x.cyclotomicPow(uconst).unitaryInverse()
proc finalExpFirstChunk*(x: FQ12): Option[FQ12] =
let opt = x.inverse()
if isSome(opt):
let b = opt.get()
let a = x.unitaryInverse()
let c = a * b
let d = c.frobeniusMap(2)
result = some[FQ12](d * c)
else:
result = none[FQ12]()
proc finalExpLastChunk*(x: FQ12): FQ12 =
let a = x.expByNegZ()
let b = a.cyclotomicSquared()
let c = b.cyclotomicSquared()
let d = c * b
let e = d.expByNegZ()
let f = e.cyclotomicSquared()
let g = f.expByNegZ()
let h = d.unitaryInverse()
let i = g.unitaryInverse()
let j = i * e
let k = j * h
let ll = k * b
let m = k * e
let n = x * m
let o = ll.frobeniusMap(1)
let p = o * n
let q = k.frobeniusMap(2)
let r = q * p
let s = x.unitaryInverse()
let t = s * ll
let u = t.frobeniusMap(3)
let v = u * r
result = v
proc finalExponentiation*(x: FQ12): Option[FQ12] =
let opt = x.finalExpFirstChunk()
if opt.isSome():
result = some[FQ12](opt.get().finalExpLastChunk())
else:
result = none[FQ12]()
proc mulBy024*(x: FQ12, ell0, ellvw, ellvv: FQ2): FQ12 =
var
z0, z1, z2, z3, z4, z5: FQ2
x0, x2, x4, d0, d2, d4: FQ2
s0, s1, t0, t1, t2, t3, t4: FQ2
z0 = x.c0.c0
z1 = x.c0.c1
z2 = x.c0.c2
z3 = x.c1.c0
z4 = x.c1.c1
z5 = x.c1.c2
x0 = ell0
x2 = ellvv
x4 = ellvw
d0 = z0 * x0
d2 = z2 * x2
d4 = z4 * x4
t2 = z0 + z4
t1 = z0 + z2
s0 = z1 + z3 + z5
s1 = z1 * x2
t3 = s1 + d4
t4 = t3.mulByNonresidue() + d0
z0 = t4
t3 = z5 * x4
s1 = s1 + t3
t3 = t3 + d2
t4 = t3.mulByNonresidue()
t3 = z1 * x0
s1 = s1 + t3
t4 = t4 + t3
z1 = t4
t0 = x0 + x2
t3 = t1 * t0 - d0 - d2
t4 = z3 * x4
s1 = s1 + t4
t3 = t3 + t4
t0 = z2 + z4
z2 = t3
t1 = x2 + x4
t3 = t0 * t1 - d2 - d4
t4 = t3.mulByNonresidue()
t3 = z3 * x0
s1 = s1 + t3
t4 = t4 + t3
z3 = t4
t3 = z5 * x2
s1 = s1 + t3
t4 = t3.mulByNonresidue()
t0 = x0 + x4
t3 = t2 * t0 - d0 - d4
t4 = t4 + t3
z4 = t4
t0 = x0 + x2 + x4
t3 = s0 * t0 - s1
z5 = t3
result.c0 = init(z0, z1, z2)
result.c1 = init(z3, z4, z5)