2
0
mirror of synced 2025-02-23 06:48:15 +00:00
mobile/f32/affine.go
Nigel Tao 6d01e6fdd5 go.mobile/f32: add Scale, Translate and Rotate methods to Affine.
Also make Mat4 methods consistent with Affine's methods.

LGTM=crawshaw
R=crawshaw
CC=golang-codereviews
https://golang.org/cl/156000043
2014-10-09 13:48:17 +11:00

91 lines
2.3 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package f32
import "fmt"
// An Affine is a 3x3 matrix of float32 values for which the bottom row is
// implicitly always equal to [0 0 1].
// Elements are indexed first by row then column, i.e. m[row][column].
type Affine [2]Vec3
func (m Affine) String() string {
return fmt.Sprintf(`Affine[% 0.3f, % 0.3f, % 0.3f,
% 0.3f, % 0.3f, % 0.3f]`,
m[0][0], m[0][1], m[0][2],
m[1][0], m[1][1], m[1][2])
}
// Identity sets m to be the identity transform.
func (m *Affine) Identity() {
*m = Affine{
{1, 0, 0},
{0, 1, 0},
}
}
// Eq reports whether each component of m is within epsilon of the same
// component in n.
func (m *Affine) Eq(n *Affine, epsilon float32) bool {
for i := range m {
for j := range m[i] {
diff := m[i][j] - n[i][j]
if diff < -epsilon || +epsilon < diff {
return false
}
}
}
return true
}
// Mul sets m to be p × q.
func (m *Affine) Mul(p, q *Affine) {
// Store the result in local variables, in case m == a || m == b.
m00 := p[0][0]*q[0][0] + p[0][1]*q[1][0]
m01 := p[0][0]*q[0][1] + p[0][1]*q[1][1]
m02 := p[0][0]*q[0][2] + p[0][1]*q[1][2] + p[0][2]
m10 := p[1][0]*q[0][0] + p[1][1]*q[1][0]
m11 := p[1][0]*q[0][1] + p[1][1]*q[1][1]
m12 := p[1][0]*q[0][2] + p[1][1]*q[1][2] + p[1][2]
m[0][0] = m00
m[0][1] = m01
m[0][2] = m02
m[1][0] = m10
m[1][1] = m11
m[1][2] = m12
}
// Scale sets m to be a scale followed by p.
// It is equivalent to m.Mul(p, &Affine{{x,0,0}, {0,y,0}}).
func (m *Affine) Scale(p *Affine, x, y float32) {
m[0][0] = p[0][0] * x
m[0][1] = p[0][1] * y
m[0][2] = p[0][2]
m[1][0] = p[1][0] * x
m[1][1] = p[1][1] * y
m[1][2] = p[1][2]
}
// Translate sets m to be a translation followed by p.
// It is equivalent to m.Mul(p, &Affine{{1,0,x}, {0,1,y}}).
func (m *Affine) Translate(p *Affine, x, y float32) {
m[0][0] = p[0][0]
m[0][1] = p[0][1]
m[0][2] = p[0][0]*x + p[0][1]*y + p[0][2]
m[1][0] = p[1][0]
m[1][1] = p[1][1]
m[1][2] = p[1][0]*x + p[1][1]*y + p[1][2]
}
// Rotate sets m to a rotation in radians followed by p.
// It is equivalent to m.Mul(p, affineRotation).
func (m *Affine) Rotate(p *Affine, radians float32) {
s, c := Sin(radians), Cos(radians)
m.Mul(p, &Affine{
{+c, +s, 0},
{-s, +c, 0},
})
}