91 lines
2.3 KiB
Go
91 lines
2.3 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package f32
|
||
|
||
import "fmt"
|
||
|
||
// An Affine is a 3x3 matrix of float32 values for which the bottom row is
|
||
// implicitly always equal to [0 0 1].
|
||
// Elements are indexed first by row then column, i.e. m[row][column].
|
||
type Affine [2]Vec3
|
||
|
||
func (m Affine) String() string {
|
||
return fmt.Sprintf(`Affine[% 0.3f, % 0.3f, % 0.3f,
|
||
% 0.3f, % 0.3f, % 0.3f]`,
|
||
m[0][0], m[0][1], m[0][2],
|
||
m[1][0], m[1][1], m[1][2])
|
||
}
|
||
|
||
// Identity sets m to be the identity transform.
|
||
func (m *Affine) Identity() {
|
||
*m = Affine{
|
||
{1, 0, 0},
|
||
{0, 1, 0},
|
||
}
|
||
}
|
||
|
||
// Eq reports whether each component of m is within epsilon of the same
|
||
// component in n.
|
||
func (m *Affine) Eq(n *Affine, epsilon float32) bool {
|
||
for i := range m {
|
||
for j := range m[i] {
|
||
diff := m[i][j] - n[i][j]
|
||
if diff < -epsilon || +epsilon < diff {
|
||
return false
|
||
}
|
||
}
|
||
}
|
||
return true
|
||
}
|
||
|
||
// Mul sets m to be p × q.
|
||
func (m *Affine) Mul(p, q *Affine) {
|
||
// Store the result in local variables, in case m == a || m == b.
|
||
m00 := p[0][0]*q[0][0] + p[0][1]*q[1][0]
|
||
m01 := p[0][0]*q[0][1] + p[0][1]*q[1][1]
|
||
m02 := p[0][0]*q[0][2] + p[0][1]*q[1][2] + p[0][2]
|
||
m10 := p[1][0]*q[0][0] + p[1][1]*q[1][0]
|
||
m11 := p[1][0]*q[0][1] + p[1][1]*q[1][1]
|
||
m12 := p[1][0]*q[0][2] + p[1][1]*q[1][2] + p[1][2]
|
||
m[0][0] = m00
|
||
m[0][1] = m01
|
||
m[0][2] = m02
|
||
m[1][0] = m10
|
||
m[1][1] = m11
|
||
m[1][2] = m12
|
||
}
|
||
|
||
// Scale sets m to be a scale followed by p.
|
||
// It is equivalent to m.Mul(p, &Affine{{x,0,0}, {0,y,0}}).
|
||
func (m *Affine) Scale(p *Affine, x, y float32) {
|
||
m[0][0] = p[0][0] * x
|
||
m[0][1] = p[0][1] * y
|
||
m[0][2] = p[0][2]
|
||
m[1][0] = p[1][0] * x
|
||
m[1][1] = p[1][1] * y
|
||
m[1][2] = p[1][2]
|
||
}
|
||
|
||
// Translate sets m to be a translation followed by p.
|
||
// It is equivalent to m.Mul(p, &Affine{{1,0,x}, {0,1,y}}).
|
||
func (m *Affine) Translate(p *Affine, x, y float32) {
|
||
m[0][0] = p[0][0]
|
||
m[0][1] = p[0][1]
|
||
m[0][2] = p[0][0]*x + p[0][1]*y + p[0][2]
|
||
m[1][0] = p[1][0]
|
||
m[1][1] = p[1][1]
|
||
m[1][2] = p[1][0]*x + p[1][1]*y + p[1][2]
|
||
}
|
||
|
||
// Rotate sets m to a rotation in radians followed by p.
|
||
// It is equivalent to m.Mul(p, affineRotation).
|
||
func (m *Affine) Rotate(p *Affine, radians float32) {
|
||
s, c := Sin(radians), Cos(radians)
|
||
m.Mul(p, &Affine{
|
||
{+c, +s, 0},
|
||
{-s, +c, 0},
|
||
})
|
||
}
|