When passing a refnum across the language barrier there is a small
window where a proxy object itself can be garbage collected, its
reference count go to 0 and the object be gone when the refnum
is dereferenced on the other side.
In Go the proxy object is pinned with runtime.KeepAlive. This CL
implements the same mechanism in Java by passing the proxy object to
native code, ensuring the Java GC can't reclaim it during the call.
Change-Id: I23824439012eb00f90d729f59d4846999f24f01f
Reviewed-on: https://go-review.googlesource.com/107095
Reviewed-by: Hyang-Ah Hana Kim <hyangah@gmail.com>
Today, the Seq.Ref class has two purposes. For Java references,
Ref contains the refnum, a reference to the Java object and a
reference count. For Go references, Ref contains the refnum and
its finalizer makes sure to decrement the reference count on the Go
side.
The next CL will replace the use of finalizers with an explicit
ReferenceQueue of Go references, and the Ref class will no longer
be used for Go refences. To prepare for that, this CL pulls up the
construction of Go referencing Ref instances into the Seq.trackGoRef
function.
Change-Id: I9eefe238cd3fd1b661b2af11d331a2f61e31303b
Reviewed-on: https://go-review.googlesource.com/106875
Reviewed-by: Hyang-Ah Hana Kim <hyangah@gmail.com>
The gobind and gomobile bind tools have historically overlapped:
gobind outputs generated bindings, and gomobile bind will generate
bindings before building them. However, the gobind bindings were
never used for building and thus allowed to not be complete.
To simplify version control, debugging, instrumentation and build
system flexibility, this CL upgrades the gobind tool to be the
canonical binding generator and change gomobile bind to use gobind
instead of its own generator code.
This greatly simplifies gomobile bind, but also paves the way to skip
gomobile bind entirely. For example:
$ gobind -outdir=$GOPATH golang.org/x/mobile/example/bind/hello
$ GOOS=android GOARCH=arm64 CC=<ndk-toolchain>/bin/clang go build -buildmode=c-shared -o libgobind.so gobind
$ ls libgobind.*
libgobind.h libgobind.so
The same applies to iOS, although the go build command line is more
involved.
By skipping gomobile it is possible to freely customize the Android
or iOS SDK level or any other flags not supported by gomobile bind.
By checking in the generated source code, the cost of supporting
gomobile in a custom build system is also decreased.
Change-Id: I59c14a77d625ac1377c23b3213672e0d83a48c85
Reviewed-on: https://go-review.googlesource.com/99316
Reviewed-by: Hyang-Ah Hana Kim <hyangah@gmail.com>
For Java classes implemented in Go, it is useful to take a Java instance
and extract its wrapped Go instance. For example, consider the
java.lang.Runnable implementation wrapping a Go function:
package somepkg
type GoRunnable struct {
lang.Runnable
f func()
}
Java methods that take a java.lang.Runnable cannot directly take a
*GoRunnable, so this CL adds a Unwrap method:
import gorun "Java/somepkg/GoRunnable"
...
r := gorun.New()
r.Unwrap().(*GoRunnable).f = func() { ... }
javapkg.Run(r)
The extra interface conversion is unfortunately needed to avoid
import cycles.
Change-Id: Ib775a5712cd25aa75a19d364a55d76b1e11dce77
Reviewed-on: https://go-review.googlesource.com/35295
Reviewed-by: David Crawshaw <crawshaw@golang.org>
Generate Cast functions that take a proxy for a Java class or interface,
and return a new proxy with the same reference. The Cast functions
panic if the underlying Java object is not an instance of the expected
type.
Change-Id: I08a5bf9a79139f0fac5dd102c7b028c8c989fc6d
Reviewed-on: https://go-review.googlesource.com/30095
Reviewed-by: David Crawshaw <crawshaw@golang.org>
CL 24800 changed the error representation from strings to objects.
However, since native errors types are not immediately compatible
across languages, wrapper types were introduced to bridge the gap.
This CL remove those wrappers and instead special case the error
proxy types to conform to their language error protocol.
Specifically:
- The ObjC proxy for Go errors now extends NSError and calls
initWithDomain to store the error message.
- The Go proxy for ObjC NSError return the localizedDescription
property for calls to Error.
- The Java proxy for Go errors ow extends Exception and
overrides getMessage() to return the error message.
- The Go proxy for Java Exceptions returns getMessage whenever
Error is called.
The end result is that error values behave more like normal objects
across the language boundary. In particular, instance identity is
now preserved: an error passed across the boundary and back will
result in the same instance.
There are two semantic changes that followed this change:
- The domain for wrapped Go errors is now always "go".
The domain wasn't useful before this CL: the domains were set to
the package name of function or method where the error happened
to cross the language boundary.
- If a Go method that returns an error is implemented in ObjC, the
implementation must now both return NO _and_ set the error result
for the calling Go code to receive a non-nil error.
Before this CL, because errors were always wrapped, a nil ObjC
could be represented with a non-nil wrapper.
Change-Id: Idb415b6b13ecf79ccceb60f675059942bfc48fec
Reviewed-on: https://go-review.googlesource.com/29298
Reviewed-by: David Crawshaw <crawshaw@golang.org>
Accept Java API interface types as arguments and return values from
bound Go package functions and methods. Also, allow Go structs
to extend Java classes and implement Java interfaces as well as override
and implement methods.
This is the third and final part of the implementation of the golang/go#16876
proposal.
Fixesgolang/go#16876
Change-Id: I6951dd87235553ce09abe5117a39a503466163c0
Reviewed-on: https://go-review.googlesource.com/28597
Reviewed-by: David Crawshaw <crawshaw@golang.org>
Using the new Java class analyzer API, scan the bound packages
for references to Java classes and interfaces and generate Go
wrappers for them.
This is the second part of the implementation of proposal golang/go#16876.
For golang/go#16876
Change-Id: I59ec0ebdae0081a615dc34d450f344c20c03f871
Reviewed-on: https://go-review.googlesource.com/28596
Reviewed-by: David Crawshaw <crawshaw@golang.org>
Before this CL, generated Java classes or interfaces were inner
classes to the top package class. That is both unnecessary and creates
ugly class names. Instead, move every generated class and interface to its
own package level class.
NOTE: This is a backwards incompatible change and requires every client
of gomobile APIs to be updated to leave out the package class in the
type names. For example, the Go type
package pkg
type S struct {
}
now generates (with the default java package name go) a Java class named
go.pkg.S. The name before this CL was go.pkg.Pkg.S.
Also, change the custom java package to specify the package prefix and
not the full package as before. This is an unfortunate change needed
to avoid name clashes between two bound packages. On the plus side,
the change brings the custom package case closer to the default behaviour,
which is a commen prefix, "go.", and a distinct java package for every
Go package bound.
Change-Id: Iadfaad56e101d1caf7e2a05006f4d384859a20fe
Reviewed-on: https://go-review.googlesource.com/27436
Reviewed-by: David Crawshaw <crawshaw@golang.org>
Add a missing #include to declare the exported Go function
setContext, and replace old GNU-style struct initializers.
Change-Id: Id1660559236c39505a47368a700c8e0ad834cf6c
Reviewed-on: https://go-review.googlesource.com/24491
Reviewed-by: David Crawshaw <crawshaw@golang.org>
Gobind uses strings for passing errors across the language barrier.
However, since Gobind doesn't have a concept of a nil string, it
can't separate an empty native string from a nil string.
In turn, that means that empty errors, exceptions or NSError * with
an empty description are treated as no error. With ObjC, empty errors
are replaced with a default string to workaround the issue, while
with Java empty errors are silently ignored.
Fix this by replacing strings with actual error objects, wrapping
the Go error, Java Throwable or ObjC NSError *, and letting the
existing bind machinery take care of passing the references across.
It's a large change for a small corner case, but I believe objects
are a better fit for exception that strings. Error objects also
naturally leads to future additions, for example accessing the
exception class name or chained exception.
Change-Id: Ie03b47cafcb231ad1e12a80195693fa7459c6265
Reviewed-on: https://go-review.googlesource.com/24100
Reviewed-by: David Crawshaw <crawshaw@golang.org>
Requiring user code to extend Go interface Stubs to be able to pass
Java objects to Go is clumsy and use up the single extend slot.
Instead, support (and enforce) java classes to implement translated
Go interface directly. This is similar to how ObjC works.
The stub classes are now gone, and users of gobind Java APIs need
to update their code to implement interfaces directly.
Change-Id: I880bb7c8e89d3c21210b2ab2c85ced8d7859ff48
Reviewed-on: https://go-review.googlesource.com/21313
Reviewed-by: David Crawshaw <crawshaw@golang.org>
Each side of the language barrier maintains a map of reference numbers
to objects. Each entry has a reference count that exactly matches
the number of active proxy objects on the other side. When a reference
crosses the barrier, the count is incremented and when a proxy finalizer
is run, the count is decremented. If the count reaches 0, the reference
number and its object are removed from the map.
There is a possibility that a reference number is passed to the other
side, and the last proxy is then immediately garbage collected and
finalized. The reference counter then reaches 0 before the other side has
converted the reference number to its object, crashing the program.
This is possible in both Go/Java/ObjC but is most likely to happen in
ObjC because its own automatic reference count runtime frees objects
as soon as they are statically never referenced again.
Fix the race by always incrementing the reference count before sending
a reference across the barrier. When converting the reference back into
an object on the other side, decrement the counter again.
Only the new ObjC test fails without this fix, but I left the Java
counterpart in for good measure.
Change-Id: I92743aabec275b4a5b82b952052e7e284872ce02
Reviewed-on: https://go-review.googlesource.com/21311
Reviewed-by: Hyang-Ah Hana Kim <hyangah@gmail.com>
LOG_FATAL already throws an exception on iOS. Make it abort() on
Android, so that any fatal error will hopefully end up with a useful
log instead of an easily missed message in logcat.
Also, remove return statements after LOG_FATAL on both platforms.
They're unnecessary and confusing and they weren't used consistently
anyway.
Change-Id: I2a8e2e0ac064e95f52ca130de17265c9741cefe4
Reviewed-on: https://go-review.googlesource.com/20257
Reviewed-by: Hyang-Ah Hana Kim <hyangah@gmail.com>
Converting a Go string to a string suitable use a specialized function,
UTF16Encode, that can encode the string directly to a malloc'ed buffer. That
way, only two copies are made when strings are passed from Go to Java; once
for UTF-8 to UTF-16 encoding and once for the creation of the Java String.
This CL implements the same optimization in the other direction, with a
UTF-16 to UTF-8 decoder implemented in C. Unfortunately, while calling into a
Go decoder also saves the extra copy, the Cgo overhead makes the calls much
slower for short strings.
To alleviate the risk of introducing decoding bugs, I've added the tests from
the encoding/utf16 package to SeqTest.
As a sideeffect, both Java and ObjC now always copy strings, regardless of
the argument mode. The cpy argument can therefore be removed from the string
conversion functions. Furthermore, the modeRetained and modeReturned modes
can be collapsed into just one.
While we're here, delete a leftover function from seq/strings.go that
wasn't removed when the old seq buffers went away.
Benchmarks, as compared with benchstat over 5 runs:
name old time/op new time/op delta
JavaStringShort 11.4µs ±13% 11.6µs ± 4% ~ (p=0.859 n=10+5)
JavaStringShortDirect 19.5µs ± 9% 20.3µs ± 2% +3.68% (p=0.019 n=9+5)
JavaStringLong 103µs ± 8% 24µs ± 4% -77.13% (p=0.001 n=9+5)
JavaStringLongDirect 113µs ± 9% 32µs ± 7% -71.63% (p=0.001 n=9+5)
JavaStringShortUnicode 11.1µs ±16% 10.7µs ± 5% ~ (p=0.190 n=9+5)
JavaStringShortUnicodeDirect 19.6µs ± 7% 20.2µs ± 1% +2.78% (p=0.029 n=9+5)
JavaStringLongUnicode 97.1µs ± 9% 28.0µs ± 5% -71.17% (p=0.001 n=9+5)
JavaStringLongUnicodeDirect 105µs ±10% 34µs ± 5% -67.23% (p=0.002 n=8+5)
JavaStringRetShort 14.2µs ± 2% 13.9µs ± 1% -2.15% (p=0.006 n=8+5)
JavaStringRetShortDirect 20.8µs ± 2% 20.4µs ± 2% ~ (p=0.065 n=8+5)
JavaStringRetLong 42.2µs ± 9% 42.4µs ± 3% ~ (p=0.190 n=9+5)
JavaStringRetLongDirect 51.2µs ±21% 50.8µs ± 8% ~ (p=0.518 n=9+5)
GoStringShort 23.4µs ± 7% 22.5µs ± 3% -3.55% (p=0.019 n=9+5)
GoStringLong 51.9µs ± 9% 53.1µs ± 3% ~ (p=0.240 n=9+5)
GoStringShortUnicode 24.2µs ± 6% 22.8µs ± 1% -5.54% (p=0.002 n=9+5)
GoStringLongUnicode 58.6µs ± 8% 57.6µs ± 3% ~ (p=0.518 n=9+5)
GoStringRetShort 27.6µs ± 1% 23.2µs ± 2% -15.87% (p=0.003 n=7+5)
GoStringRetLong 129µs ±12% 33µs ± 2% -74.03% (p=0.001 n=10+5)
Change-Id: Icb9481981493ffca8defed9fb80a9433d6048937
Reviewed-on: https://go-review.googlesource.com/20250
Reviewed-by: David Crawshaw <crawshaw@golang.org>
The seq serialization machinery is a historic artifact from when Go
mobile code had to run in a separate process. Now that Go code is running
in-process, replace the explicit serialization with direct calls and pass
arguments on the stack.
The benefits are a much smaller bind runtime, much less garbage (and, in
Java, fewer objects with finalizers), less argument copying, and faster
cross-language calls.
The cost is a more complex generator, because some of the work from the
bind runtime is moved to generated code. Generated code now handles
conversion between Go and Java/ObjC types, multiple return values and memory
management of byte slice and string arguments.
To overcome the lack of calling C code between Go packages, all bound
packages now end up in the same (fake) package, "gomobile_bind", instead of
separate packages (go_<pkgname>). To avoid name clashes, the package name is
added as a prefix to generated functions and types.
Also, don't copy byte arrays passed to Go, saving call time and
allowing read([]byte)-style interfaces to foreign callers (#12113).
Finally, add support for nil interfaces and struct pointers to objc.
This is a large CL, but most of the changes stem from changing testdata.
The full benchcmp output on the CL/20095 benchmarks on my Nexus 5 is
reproduced below. Note that the savings for the JavaSlice* benchmarks are
skewed because byte slices are no longer copied before passing them to Go.
benchmark old ns/op new ns/op delta
BenchmarkJavaEmpty 26.0 19.0 -26.92%
BenchmarkJavaEmptyDirect 23.0 22.0 -4.35%
BenchmarkJavaNoargs 7685 2339 -69.56%
BenchmarkJavaNoargsDirect 17405 8041 -53.80%
BenchmarkJavaOnearg 26887 2366 -91.20%
BenchmarkJavaOneargDirect 34266 7910 -76.92%
BenchmarkJavaOneret 38325 2245 -94.14%
BenchmarkJavaOneretDirect 46265 7708 -83.34%
BenchmarkJavaManyargs 41720 2535 -93.92%
BenchmarkJavaManyargsDirect 51026 8373 -83.59%
BenchmarkJavaRefjava 38139 21260 -44.26%
BenchmarkJavaRefjavaDirect 42706 28150 -34.08%
BenchmarkJavaRefgo 34403 6843 -80.11%
BenchmarkJavaRefgoDirect 40193 16582 -58.74%
BenchmarkJavaStringShort 32366 9323 -71.20%
BenchmarkJavaStringShortDirect 41973 19118 -54.45%
BenchmarkJavaStringLong 127879 94420 -26.16%
BenchmarkJavaStringLongDirect 133776 114760 -14.21%
BenchmarkJavaStringShortUnicode 32562 9221 -71.68%
BenchmarkJavaStringShortUnicodeDirect 41464 19094 -53.95%
BenchmarkJavaStringLongUnicode 131015 89401 -31.76%
BenchmarkJavaStringLongUnicodeDirect 134130 90786 -32.31%
BenchmarkJavaSliceShort 42462 7538 -82.25%
BenchmarkJavaSliceShortDirect 52940 17017 -67.86%
BenchmarkJavaSliceLong 138391 8466 -93.88%
BenchmarkJavaSliceLongDirect 205804 15666 -92.39%
BenchmarkGoEmpty 3.00 3.00 +0.00%
BenchmarkGoEmptyDirect 3.00 3.00 +0.00%
BenchmarkGoNoarg 40342 13716 -66.00%
BenchmarkGoNoargDirect 46691 13569 -70.94%
BenchmarkGoOnearg 43529 13757 -68.40%
BenchmarkGoOneargDirect 44867 14078 -68.62%
BenchmarkGoOneret 45456 13559 -70.17%
BenchmarkGoOneretDirect 44694 13442 -69.92%
BenchmarkGoRefjava 55111 28071 -49.06%
BenchmarkGoRefjavaDirect 60883 26872 -55.86%
BenchmarkGoRefgo 57038 29223 -48.77%
BenchmarkGoRefgoDirect 56153 27812 -50.47%
BenchmarkGoManyargs 67967 17398 -74.40%
BenchmarkGoManyargsDirect 60617 16998 -71.96%
BenchmarkGoStringShort 57538 22600 -60.72%
BenchmarkGoStringShortDirect 52627 22704 -56.86%
BenchmarkGoStringLong 128485 52530 -59.12%
BenchmarkGoStringLongDirect 138377 52079 -62.36%
BenchmarkGoStringShortUnicode 57062 22994 -59.70%
BenchmarkGoStringShortUnicodeDirect 62563 22938 -63.34%
BenchmarkGoStringLongUnicode 139913 55553 -60.29%
BenchmarkGoStringLongUnicodeDirect 150863 57791 -61.69%
BenchmarkGoSliceShort 59279 20215 -65.90%
BenchmarkGoSliceShortDirect 60160 21136 -64.87%
BenchmarkGoSliceLong 411225 301870 -26.59%
BenchmarkGoSliceLongDirect 399029 298915 -25.09%
Fixesgolang/go#12619Fixesgolang/go#12113Fixesgolang/go#13033
Change-Id: I2b45e9e98a1248e3c23a5137f775f7364908bec7
Reviewed-on: https://go-review.googlesource.com/19821
Reviewed-by: Hyang-Ah Hana Kim <hyangah@gmail.com>