2
0
mirror of synced 2025-02-23 06:48:15 +00:00

exp/sprite/portable: use golang.org/x/image/draw.

Change-Id: Ib41fd6614e3a5504d0cebe9a84b23a675d0e88fd
Reviewed-on: https://go-review.googlesource.com/12289
Reviewed-by: David Crawshaw <crawshaw@golang.org>
This commit is contained in:
Nigel Tao 2015-07-16 16:23:37 +10:00
parent 84f8e5edcc
commit 0d322895cb
4 changed files with 45 additions and 459 deletions

View File

@ -1,109 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package portable
import (
"image"
"image/draw"
"golang.org/x/mobile/exp/f32"
)
// affine draws each pixel of dst using bilinear interpolation of the
// affine-transformed position in src. This is equivalent to:
//
// for each (x,y) in dst:
// dst(x,y) = bilinear interpolation of src(a*(x,y))
//
// While this is the simpler implementation, it can be counter-
// intuitive as an affine transformation is usually described in terms
// of the source, not the destination. For example, a scale transform
//
// Affine{{2, 0, 0}, {0, 2, 0}}
//
// will produce a dst that is half the size of src. To perform a
// traditional affine transform, use the inverse of the affine matrix.
func affine(dst *image.RGBA, src image.Image, srcb image.Rectangle, mask image.Image, a *f32.Affine, op draw.Op) {
b := dst.Bounds()
var maskb image.Rectangle
if mask != nil {
maskb = mask.Bounds().Add(srcb.Min)
}
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
// Interpolate from the bounds of the src sub-image
// to the bounds of the dst sub-image.
ix, iy := pt(a, x-b.Min.X, y-b.Min.Y)
sx := ix + float32(srcb.Min.X)
sy := iy + float32(srcb.Min.Y)
if !inBounds(srcb, sx, sy) {
continue
}
// m is the maximum color value returned by image.Color.RGBA.
const m = 1<<16 - 1
ma := uint32(m)
if mask != nil {
mx := ix + float32(maskb.Min.X)
my := iy + float32(maskb.Min.Y)
if !inBounds(maskb, mx, my) {
continue
}
_, _, _, ma = bilinear(mask, mx, my).RGBA()
}
sr, sg, sb, sa := bilinear(src, sx, sy).RGBA()
off := (y-dst.Rect.Min.Y)*dst.Stride + (x-dst.Rect.Min.X)*4
if op == draw.Over {
dr := uint32(dst.Pix[off+0])
dg := uint32(dst.Pix[off+1])
db := uint32(dst.Pix[off+2])
da := uint32(dst.Pix[off+3])
// dr, dg, db, and da are all 8-bit color at the moment, ranging
// in [0,255]. We work in 16-bit color, and so would normally do:
// dr |= dr << 8
// and similarly for the other values, but instead we multiply by 0x101
// to shift these to 16-bit colors, ranging in [0,65535].
// This yields the same result, but is fewer arithmetic operations.
//
// This logic comes from drawCopyOver in the image/draw package.
a := m - (sa * ma / m)
a *= 0x101
dst.Pix[off+0] = uint8((dr*a + sr*ma) / m >> 8)
dst.Pix[off+1] = uint8((dg*a + sg*ma) / m >> 8)
dst.Pix[off+2] = uint8((db*a + sb*ma) / m >> 8)
dst.Pix[off+3] = uint8((da*a + sa*ma) / m >> 8)
} else {
dst.Pix[off+0] = uint8(sr * ma / m >> 8)
dst.Pix[off+1] = uint8(sg * ma / m >> 8)
dst.Pix[off+2] = uint8(sb * ma / m >> 8)
dst.Pix[off+3] = uint8(sa * ma / m >> 8)
}
}
}
}
func inBounds(b image.Rectangle, x, y float32) bool {
if x < float32(b.Min.X) || x >= float32(b.Max.X) {
return false
}
if y < float32(b.Min.Y) || y >= float32(b.Max.Y) {
return false
}
return true
}
func pt(a *f32.Affine, x0, y0 int) (x1, y1 float32) {
fx := float32(x0) + 0.5
fy := float32(y0) + 0.5
x1 = fx*a[0][0] + fy*a[0][1] + a[0][2]
y1 = fx*a[1][0] + fy*a[1][1] + a[1][2]
return x1, y1
}

View File

@ -1,196 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package portable
import (
"image"
"image/color"
"math"
)
func bilinear(src image.Image, x, y float32) color.Color {
switch src := src.(type) {
case *image.RGBA:
return bilinearRGBA(src, x, y)
case *image.Alpha:
return bilinearAlpha(src, x, y)
case *image.Uniform:
return src.C
default:
return bilinearGeneral(src, x, y)
}
}
func bilinearGeneral(src image.Image, x, y float32) color.RGBA64 {
p := findLinearSrc(src.Bounds(), x, y)
r00, g00, b00, a00 := src.At(p.low.X, p.low.Y).RGBA()
r01, g01, b01, a01 := src.At(p.high.X, p.low.Y).RGBA()
r10, g10, b10, a10 := src.At(p.low.X, p.high.Y).RGBA()
r11, g11, b11, a11 := src.At(p.high.X, p.high.Y).RGBA()
fr := float32(r00) * p.frac00
fg := float32(g00) * p.frac00
fb := float32(b00) * p.frac00
fa := float32(a00) * p.frac00
fr += float32(r01) * p.frac01
fg += float32(g01) * p.frac01
fb += float32(b01) * p.frac01
fa += float32(a01) * p.frac01
fr += float32(r10) * p.frac10
fg += float32(g10) * p.frac10
fb += float32(b10) * p.frac10
fa += float32(a10) * p.frac10
fr += float32(r11) * p.frac11
fg += float32(g11) * p.frac11
fb += float32(b11) * p.frac11
fa += float32(a11) * p.frac11
return color.RGBA64{
R: uint16(fr + 0.5),
G: uint16(fg + 0.5),
B: uint16(fb + 0.5),
A: uint16(fa + 0.5),
}
}
func bilinearRGBA(src *image.RGBA, x, y float32) color.RGBA {
p := findLinearSrc(src.Bounds(), x, y)
// Slice offsets for the surrounding pixels.
off00 := src.PixOffset(p.low.X, p.low.Y)
off01 := src.PixOffset(p.high.X, p.low.Y)
off10 := src.PixOffset(p.low.X, p.high.Y)
off11 := src.PixOffset(p.high.X, p.high.Y)
fr := float32(src.Pix[off00+0]) * p.frac00
fg := float32(src.Pix[off00+1]) * p.frac00
fb := float32(src.Pix[off00+2]) * p.frac00
fa := float32(src.Pix[off00+3]) * p.frac00
fr += float32(src.Pix[off01+0]) * p.frac01
fg += float32(src.Pix[off01+1]) * p.frac01
fb += float32(src.Pix[off01+2]) * p.frac01
fa += float32(src.Pix[off01+3]) * p.frac01
fr += float32(src.Pix[off10+0]) * p.frac10
fg += float32(src.Pix[off10+1]) * p.frac10
fb += float32(src.Pix[off10+2]) * p.frac10
fa += float32(src.Pix[off10+3]) * p.frac10
fr += float32(src.Pix[off11+0]) * p.frac11
fg += float32(src.Pix[off11+1]) * p.frac11
fb += float32(src.Pix[off11+2]) * p.frac11
fa += float32(src.Pix[off11+3]) * p.frac11
return color.RGBA{
R: uint8(fr + 0.5),
G: uint8(fg + 0.5),
B: uint8(fb + 0.5),
A: uint8(fa + 0.5),
}
}
func bilinearAlpha(src *image.Alpha, x, y float32) color.Alpha {
p := findLinearSrc(src.Bounds(), x, y)
// Slice offsets for the surrounding pixels.
off00 := src.PixOffset(p.low.X, p.low.Y)
off01 := src.PixOffset(p.high.X, p.low.Y)
off10 := src.PixOffset(p.low.X, p.high.Y)
off11 := src.PixOffset(p.high.X, p.high.Y)
fa := float32(src.Pix[off00]) * p.frac00
fa += float32(src.Pix[off01]) * p.frac01
fa += float32(src.Pix[off10]) * p.frac10
fa += float32(src.Pix[off11]) * p.frac11
return color.Alpha{A: uint8(fa + 0.5)}
}
type bilinearSrc struct {
// Top-left and bottom-right interpolation sources
low, high image.Point
// Fraction of each pixel to take. The 0 suffix indicates
// top/left, and the 1 suffix indicates bottom/right.
frac00, frac01, frac10, frac11 float32
}
func floor(x float32) float32 { return float32(math.Floor(float64(x))) }
func ceil(x float32) float32 { return float32(math.Ceil(float64(x))) }
func findLinearSrc(b image.Rectangle, sx, sy float32) bilinearSrc {
maxX := float32(b.Max.X)
maxY := float32(b.Max.Y)
minX := float32(b.Min.X)
minY := float32(b.Min.Y)
lowX := floor(sx - 0.5)
lowY := floor(sy - 0.5)
if lowX < minX {
lowX = minX
}
if lowY < minY {
lowY = minY
}
highX := ceil(sx - 0.5)
highY := ceil(sy - 0.5)
if highX >= maxX {
highX = maxX - 1
}
if highY >= maxY {
highY = maxY - 1
}
// In the variables below, the 0 suffix indicates top/left, and the
// 1 suffix indicates bottom/right.
// Center of each surrounding pixel.
x00 := lowX + 0.5
y00 := lowY + 0.5
x01 := highX + 0.5
y01 := lowY + 0.5
x10 := lowX + 0.5
y10 := highY + 0.5
x11 := highX + 0.5
y11 := highY + 0.5
p := bilinearSrc{
low: image.Pt(int(lowX), int(lowY)),
high: image.Pt(int(highX), int(highY)),
}
// Literally, edge cases. If we are close enough to the edge of
// the image, curtail the interpolation sources.
if lowX == highX && lowY == highY {
p.frac00 = 1.0
} else if sy-minY <= 0.5 && sx-minX <= 0.5 {
p.frac00 = 1.0
} else if maxY-sy <= 0.5 && maxX-sx <= 0.5 {
p.frac11 = 1.0
} else if sy-minY <= 0.5 || lowY == highY {
p.frac00 = x01 - sx
p.frac01 = sx - x00
} else if sx-minX <= 0.5 || lowX == highX {
p.frac00 = y10 - sy
p.frac10 = sy - y00
} else if maxY-sy <= 0.5 {
p.frac10 = x11 - sx
p.frac11 = sx - x10
} else if maxX-sx <= 0.5 {
p.frac01 = y11 - sy
p.frac11 = sy - y01
} else {
p.frac00 = (x01 - sx) * (y10 - sy)
p.frac01 = (sx - x00) * (y11 - sy)
p.frac10 = (x11 - sx) * (sy - y00)
p.frac11 = (sx - x10) * (sy - y01)
}
return p
}

View File

@ -1,154 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package portable
import (
"image"
"image/color"
"testing"
)
type interpTest struct {
desc string
src []uint8
srcWidth int
x, y float32
expect uint8
}
func (p *interpTest) newSrc() *image.RGBA {
b := image.Rect(0, 0, p.srcWidth, len(p.src)/p.srcWidth)
src := image.NewRGBA(b)
i := 0
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
src.SetRGBA(x, y, color.RGBA{
R: p.src[i],
G: p.src[i],
B: p.src[i],
A: 0xff,
})
i++
}
}
return src
}
var interpTests = []interpTest{
{
desc: "center of a single white pixel should match that pixel",
src: []uint8{0x00},
srcWidth: 1,
x: 0.5,
y: 0.5,
expect: 0x00,
},
{
desc: "middle of a square is equally weighted",
src: []uint8{
0x00, 0xff,
0xff, 0x00,
},
srcWidth: 2,
x: 1.0,
y: 1.0,
expect: 0x80,
},
{
desc: "center of a pixel is just that pixel",
src: []uint8{
0x00, 0xff,
0xff, 0x00,
},
srcWidth: 2,
x: 1.5,
y: 0.5,
expect: 0xff,
},
{
desc: "asymmetry abounds",
src: []uint8{
0xaa, 0x11, 0x55,
0xff, 0x95, 0xdd,
},
srcWidth: 3,
x: 2.0,
y: 1.0,
expect: 0x76, // (0x11 + 0x55 + 0x95 + 0xdd) / 4
},
}
func TestBilinear(t *testing.T) {
for _, p := range interpTests {
src := p.newSrc()
c0 := bilinearGeneral(src, p.x, p.y)
c0R, c0G, c0B, c0A := c0.RGBA()
r := uint8(c0R >> 8)
g := uint8(c0G >> 8)
b := uint8(c0B >> 8)
a := uint8(c0A >> 8)
if r != g || r != b || a != 0xff {
t.Errorf("expect channels to match, got %v", c0)
continue
}
if r != p.expect {
t.Errorf("%s: got 0x%02x want 0x%02x", p.desc, r, p.expect)
continue
}
// fast path for *image.RGBA
c1 := bilinearRGBA(src, p.x, p.y)
if r != c1.R || g != c1.G || b != c1.B || a != c1.A {
t.Errorf("%s: RGBA fast path mismatch got %v want %v", p.desc, c1, c0)
continue
}
// fast path for *image.Alpha
alpha := image.NewAlpha(src.Bounds())
for y := src.Bounds().Min.Y; y < src.Bounds().Max.Y; y++ {
for x := src.Bounds().Min.X; x < src.Bounds().Max.X; x++ {
r, _, _, _ := src.At(x, y).RGBA()
alpha.Set(x, y, color.Alpha{A: uint8(r >> 8)})
}
}
c2 := bilinearAlpha(alpha, p.x, p.y)
if c2.A != r {
t.Errorf("%s: Alpha fast path mismatch got %v want %v", p.desc, c2, c0)
continue
}
}
}
func TestBilinearSubImage(t *testing.T) {
b0 := image.Rect(0, 0, 4, 4)
src0 := image.NewRGBA(b0)
b1 := image.Rect(1, 1, 3, 3)
src1 := src0.SubImage(b1).(*image.RGBA)
src1.Set(1, 1, color.RGBA{0x11, 0, 0, 0xff})
src1.Set(2, 1, color.RGBA{0x22, 0, 0, 0xff})
src1.Set(1, 2, color.RGBA{0x33, 0, 0, 0xff})
src1.Set(2, 2, color.RGBA{0x44, 0, 0, 0xff})
tests := []struct {
x, y float32
want uint32
}{
{1, 1, 0x11},
{3, 1, 0x22},
{1, 3, 0x33},
{3, 3, 0x44},
{2, 2, 0x2b},
}
for _, p := range tests {
r, _, _, _ := bilinear(src1, p.x, p.y).RGBA()
r >>= 8
if r != p.want {
t.Errorf("(%.0f, %.0f): got 0x%02x want 0x%02x", p.x, p.y, r, p.want)
}
}
}

View File

@ -13,6 +13,8 @@ import (
"image"
"image/draw"
xdraw "golang.org/x/image/draw"
"golang.org/x/image/math/f64"
"golang.org/x/mobile/event/config"
"golang.org/x/mobile/exp/f32"
"golang.org/x/mobile/exp/sprite"
@ -132,6 +134,8 @@ func (e *engine) render(n *sprite.Node, t clock.Time) {
dx, dy := x.R.Dx(), x.R.Dy()
if dx > 0 && dy > 0 {
m.Scale(&m, 1/float32(dx), 1/float32(dy))
// TODO(nigeltao): delete the double-inverse: one here and one
// inside func affine.
m.Inverse(&m) // See the documentation on the affine function.
affine(e.dst, x.T.(*texture).m, x.R, nil, &m, draw.Over)
}
@ -144,3 +148,44 @@ func (e *engine) render(n *sprite.Node, t clock.Time) {
// Pop absTransforms.
e.absTransforms = e.absTransforms[:len(e.absTransforms)-1]
}
// affine draws each pixel of dst using bilinear interpolation of the
// affine-transformed position in src. This is equivalent to:
//
// for each (x,y) in dst:
// dst(x,y) = bilinear interpolation of src(a*(x,y))
//
// While this is the simpler implementation, it can be counter-
// intuitive as an affine transformation is usually described in terms
// of the source, not the destination. For example, a scale transform
//
// Affine{{2, 0, 0}, {0, 2, 0}}
//
// will produce a dst that is half the size of src. To perform a
// traditional affine transform, use the inverse of the affine matrix.
func affine(dst *image.RGBA, src image.Image, srcb image.Rectangle, mask image.Image, a *f32.Affine, op draw.Op) {
// For legacy compatibility reasons, the matrix a transforms from dst-space
// to src-space. The golang.org/x/image/draw package's matrices transform
// from src-space to dst-space, so we invert (and adjust for different
// origins).
i := *a
i[0][2] += float32(srcb.Min.X)
i[1][2] += float32(srcb.Min.Y)
i.Inverse(&i)
i[0][2] += float32(dst.Rect.Min.X)
i[1][2] += float32(dst.Rect.Min.Y)
m := f64.Aff3{
float64(i[0][0]),
float64(i[0][1]),
float64(i[0][2]),
float64(i[1][0]),
float64(i[1][1]),
float64(i[1][2]),
}
// TODO(nigeltao): is the caller or callee responsible for detecting
// transforms that are simple copies or scales, for which there are faster
// implementations in the xdraw package.
xdraw.ApproxBiLinear.Transform(dst, &m, src, srcb, xdraw.Op(op), &xdraw.Options{
SrcMask: mask,
})
}