mobile/example/basic/main.go

147 lines
3.6 KiB
Go
Raw Normal View History

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// An app that draws a green triangle on a red background.
//
// Note: This demo is an early preview of Go 1.5. In order to build this
// program as an Android APK using the gomobile tool.
//
// See http://godoc.org/golang.org/x/mobile/cmd/gomobile to install gomobile.
//
// Get the basic example and use gomobile to build or install it on your device.
//
// $ go get -d golang.org/x/mobile/example/basic
// $ gomobile build golang.org/x/mobile/example/basic # will build an APK
//
// # plug your Android device to your computer or start an Android emulator.
// # if you have adb installed on your machine, use gomobile install to
// # build and deploy the APK to an Android target.
// $ gomobile install golang.org/x/mobile/example/basic
//
// Switch to your device or emulator to start the Basic application from
// the launcher.
// You can also run the application on your desktop by running the command
// below. (Note: It currently doesn't work on Windows.)
// $ go install golang.org/x/mobile/example/basic && basic
package main
import (
"encoding/binary"
"log"
"golang.org/x/mobile/app"
"golang.org/x/mobile/event"
"golang.org/x/mobile/exp/app/debug"
"golang.org/x/mobile/exp/f32"
"golang.org/x/mobile/exp/gl/glutil"
"golang.org/x/mobile/geom"
"golang.org/x/mobile/gl"
)
var (
program gl.Program
position gl.Attrib
offset gl.Uniform
color gl.Uniform
buf gl.Buffer
green float32
touchLoc geom.Point
)
func main() {
app.Run(app.Callbacks{
app: use one thread for both GL and other UI C code. This change will break Darwin. I have only built and tested this on desktop linux and Android linux. A follow-up CL will fix Darwin. Currently, OpenGL gets its own thread, and UI C code (e.g. the Android event loop, or the X11 event loop) gets its own thread. This relies on multiple system-provided UI-related C libraries working nicely together, even when running on different threads. Keeping all the C code on the one thread seems more sound. As side-effects: - In package app/debug, DrawFPS now takes an explicit Config. - In package app, some callbacks now take an explicit Config. - In package exp/sprite, Render now takes an explicit Config. - In package event, there are new events (Config, Draw, Lifecycle), and an event filter mechanism to replace multiple app Callbacks. - In package geom, the deprecated Width, Height and PixelsPerPt global variables were removed in favor of an event.Config that is explicitly passed around (and does not require mutex-locking). Converting a geom.Pt to pixels now requires passing a pixelsPerPt. - In package gl, the Do, Start and Stop functions are removed, as well as the need to call Start in its own goroutine. There is no longer a separate GL thread. Instead, package app explicitly performs any GL work (gl.DoWork) when some is available (gl.WorkAvailable). - In package gl/glutil, Image.Draw now takes an explicit Config. Callbacks are no longer executed on 'the UI thread'. Changing the app programming model from callbacks to events (since a channel of events works with select) will be a follow-up change. Change-Id: Id9865cd9ee1c45a98c613e9021a63c17226a64b1 Reviewed-on: https://go-review.googlesource.com/11351 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2015-06-23 06:41:48 +00:00
Start: start,
Stop: stop,
Draw: draw,
Touch: touch,
Config: config,
})
}
func start() {
var err error
program, err = glutil.CreateProgram(vertexShader, fragmentShader)
if err != nil {
log.Printf("error creating GL program: %v", err)
return
}
buf = gl.CreateBuffer()
gl.BindBuffer(gl.ARRAY_BUFFER, buf)
gl.BufferData(gl.ARRAY_BUFFER, triangleData, gl.STATIC_DRAW)
position = gl.GetAttribLocation(program, "position")
color = gl.GetUniformLocation(program, "color")
offset = gl.GetUniformLocation(program, "offset")
// TODO(crawshaw): the debug package needs to put GL state init here
app: use one thread for both GL and other UI C code. This change will break Darwin. I have only built and tested this on desktop linux and Android linux. A follow-up CL will fix Darwin. Currently, OpenGL gets its own thread, and UI C code (e.g. the Android event loop, or the X11 event loop) gets its own thread. This relies on multiple system-provided UI-related C libraries working nicely together, even when running on different threads. Keeping all the C code on the one thread seems more sound. As side-effects: - In package app/debug, DrawFPS now takes an explicit Config. - In package app, some callbacks now take an explicit Config. - In package exp/sprite, Render now takes an explicit Config. - In package event, there are new events (Config, Draw, Lifecycle), and an event filter mechanism to replace multiple app Callbacks. - In package geom, the deprecated Width, Height and PixelsPerPt global variables were removed in favor of an event.Config that is explicitly passed around (and does not require mutex-locking). Converting a geom.Pt to pixels now requires passing a pixelsPerPt. - In package gl, the Do, Start and Stop functions are removed, as well as the need to call Start in its own goroutine. There is no longer a separate GL thread. Instead, package app explicitly performs any GL work (gl.DoWork) when some is available (gl.WorkAvailable). - In package gl/glutil, Image.Draw now takes an explicit Config. Callbacks are no longer executed on 'the UI thread'. Changing the app programming model from callbacks to events (since a channel of events works with select) will be a follow-up change. Change-Id: Id9865cd9ee1c45a98c613e9021a63c17226a64b1 Reviewed-on: https://go-review.googlesource.com/11351 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2015-06-23 06:41:48 +00:00
// Can this be an event.Register call now??
}
func stop() {
gl.DeleteProgram(program)
gl.DeleteBuffer(buf)
}
app: use one thread for both GL and other UI C code. This change will break Darwin. I have only built and tested this on desktop linux and Android linux. A follow-up CL will fix Darwin. Currently, OpenGL gets its own thread, and UI C code (e.g. the Android event loop, or the X11 event loop) gets its own thread. This relies on multiple system-provided UI-related C libraries working nicely together, even when running on different threads. Keeping all the C code on the one thread seems more sound. As side-effects: - In package app/debug, DrawFPS now takes an explicit Config. - In package app, some callbacks now take an explicit Config. - In package exp/sprite, Render now takes an explicit Config. - In package event, there are new events (Config, Draw, Lifecycle), and an event filter mechanism to replace multiple app Callbacks. - In package geom, the deprecated Width, Height and PixelsPerPt global variables were removed in favor of an event.Config that is explicitly passed around (and does not require mutex-locking). Converting a geom.Pt to pixels now requires passing a pixelsPerPt. - In package gl, the Do, Start and Stop functions are removed, as well as the need to call Start in its own goroutine. There is no longer a separate GL thread. Instead, package app explicitly performs any GL work (gl.DoWork) when some is available (gl.WorkAvailable). - In package gl/glutil, Image.Draw now takes an explicit Config. Callbacks are no longer executed on 'the UI thread'. Changing the app programming model from callbacks to events (since a channel of events works with select) will be a follow-up change. Change-Id: Id9865cd9ee1c45a98c613e9021a63c17226a64b1 Reviewed-on: https://go-review.googlesource.com/11351 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2015-06-23 06:41:48 +00:00
func config(new, old event.Config) {
touchLoc = geom.Point{new.Width / 2, new.Height / 2}
}
func touch(t event.Touch, c event.Config) {
touchLoc = t.Loc
}
app: use one thread for both GL and other UI C code. This change will break Darwin. I have only built and tested this on desktop linux and Android linux. A follow-up CL will fix Darwin. Currently, OpenGL gets its own thread, and UI C code (e.g. the Android event loop, or the X11 event loop) gets its own thread. This relies on multiple system-provided UI-related C libraries working nicely together, even when running on different threads. Keeping all the C code on the one thread seems more sound. As side-effects: - In package app/debug, DrawFPS now takes an explicit Config. - In package app, some callbacks now take an explicit Config. - In package exp/sprite, Render now takes an explicit Config. - In package event, there are new events (Config, Draw, Lifecycle), and an event filter mechanism to replace multiple app Callbacks. - In package geom, the deprecated Width, Height and PixelsPerPt global variables were removed in favor of an event.Config that is explicitly passed around (and does not require mutex-locking). Converting a geom.Pt to pixels now requires passing a pixelsPerPt. - In package gl, the Do, Start and Stop functions are removed, as well as the need to call Start in its own goroutine. There is no longer a separate GL thread. Instead, package app explicitly performs any GL work (gl.DoWork) when some is available (gl.WorkAvailable). - In package gl/glutil, Image.Draw now takes an explicit Config. Callbacks are no longer executed on 'the UI thread'. Changing the app programming model from callbacks to events (since a channel of events works with select) will be a follow-up change. Change-Id: Id9865cd9ee1c45a98c613e9021a63c17226a64b1 Reviewed-on: https://go-review.googlesource.com/11351 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2015-06-23 06:41:48 +00:00
func draw(c event.Config) {
gl.ClearColor(1, 0, 0, 1)
gl.Clear(gl.COLOR_BUFFER_BIT)
gl.UseProgram(program)
green += 0.01
if green > 1 {
green = 0
}
gl.Uniform4f(color, 0, green, 0, 1)
app: use one thread for both GL and other UI C code. This change will break Darwin. I have only built and tested this on desktop linux and Android linux. A follow-up CL will fix Darwin. Currently, OpenGL gets its own thread, and UI C code (e.g. the Android event loop, or the X11 event loop) gets its own thread. This relies on multiple system-provided UI-related C libraries working nicely together, even when running on different threads. Keeping all the C code on the one thread seems more sound. As side-effects: - In package app/debug, DrawFPS now takes an explicit Config. - In package app, some callbacks now take an explicit Config. - In package exp/sprite, Render now takes an explicit Config. - In package event, there are new events (Config, Draw, Lifecycle), and an event filter mechanism to replace multiple app Callbacks. - In package geom, the deprecated Width, Height and PixelsPerPt global variables were removed in favor of an event.Config that is explicitly passed around (and does not require mutex-locking). Converting a geom.Pt to pixels now requires passing a pixelsPerPt. - In package gl, the Do, Start and Stop functions are removed, as well as the need to call Start in its own goroutine. There is no longer a separate GL thread. Instead, package app explicitly performs any GL work (gl.DoWork) when some is available (gl.WorkAvailable). - In package gl/glutil, Image.Draw now takes an explicit Config. Callbacks are no longer executed on 'the UI thread'. Changing the app programming model from callbacks to events (since a channel of events works with select) will be a follow-up change. Change-Id: Id9865cd9ee1c45a98c613e9021a63c17226a64b1 Reviewed-on: https://go-review.googlesource.com/11351 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2015-06-23 06:41:48 +00:00
gl.Uniform2f(offset, float32(touchLoc.X/c.Width), float32(touchLoc.Y/c.Height))
gl.BindBuffer(gl.ARRAY_BUFFER, buf)
gl.EnableVertexAttribArray(position)
gl.VertexAttribPointer(position, coordsPerVertex, gl.FLOAT, false, 0, 0)
gl.DrawArrays(gl.TRIANGLES, 0, vertexCount)
gl.DisableVertexAttribArray(position)
app: use one thread for both GL and other UI C code. This change will break Darwin. I have only built and tested this on desktop linux and Android linux. A follow-up CL will fix Darwin. Currently, OpenGL gets its own thread, and UI C code (e.g. the Android event loop, or the X11 event loop) gets its own thread. This relies on multiple system-provided UI-related C libraries working nicely together, even when running on different threads. Keeping all the C code on the one thread seems more sound. As side-effects: - In package app/debug, DrawFPS now takes an explicit Config. - In package app, some callbacks now take an explicit Config. - In package exp/sprite, Render now takes an explicit Config. - In package event, there are new events (Config, Draw, Lifecycle), and an event filter mechanism to replace multiple app Callbacks. - In package geom, the deprecated Width, Height and PixelsPerPt global variables were removed in favor of an event.Config that is explicitly passed around (and does not require mutex-locking). Converting a geom.Pt to pixels now requires passing a pixelsPerPt. - In package gl, the Do, Start and Stop functions are removed, as well as the need to call Start in its own goroutine. There is no longer a separate GL thread. Instead, package app explicitly performs any GL work (gl.DoWork) when some is available (gl.WorkAvailable). - In package gl/glutil, Image.Draw now takes an explicit Config. Callbacks are no longer executed on 'the UI thread'. Changing the app programming model from callbacks to events (since a channel of events works with select) will be a follow-up change. Change-Id: Id9865cd9ee1c45a98c613e9021a63c17226a64b1 Reviewed-on: https://go-review.googlesource.com/11351 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2015-06-23 06:41:48 +00:00
debug.DrawFPS(c)
}
var triangleData = f32.Bytes(binary.LittleEndian,
0.0, 0.4, 0.0, // top left
0.0, 0.0, 0.0, // bottom left
0.4, 0.0, 0.0, // bottom right
)
const (
coordsPerVertex = 3
vertexCount = 3
)
const vertexShader = `#version 100
uniform vec2 offset;
attribute vec4 position;
void main() {
// offset comes in with x/y values between 0 and 1.
// position bounds are -1 to 1.
vec4 offset4 = vec4(2.0*offset.x-1.0, 1.0-2.0*offset.y, 0, 0);
gl_Position = position + offset4;
}`
const fragmentShader = `#version 100
precision mediump float;
uniform vec4 color;
void main() {
gl_FragColor = color;
}`