2
0
mirror of synced 2025-02-23 23:08:14 +00:00
mobile/bind/genclasses.go

780 lines
20 KiB
Go
Raw Normal View History

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bind
import (
"fmt"
"path"
"strings"
"unicode"
"unicode/utf8"
"golang.org/x/mobile/internal/importers/java"
)
type (
// ClassGen generates Go and C stubs for Java classes so import statements
// on the form
//
//
// import "Java/classpath/to/Class"
//
// will work.
ClassGen struct {
*Printer
imported map[string]struct{}
// The list of imported Java classes
classes []*java.Class
// The list of Go package paths with Java interfaces inside
jpkgs []string
// For each Go package path, the list of Java classes.
typePkgs map[string][]*java.Class
// For each Go package path, the Java class with static functions
// or constants.
clsPkgs map[string]*java.Class
bind,cmd,internal: generate reverse bindings for exported Go structs Before this CL, the type of the implicit "this" parameter to Java methods implemented in Go could only be a super class of the generated Java class. For example, the following GoRunnable type is an implementation of the Java interface java.lang.Runnable with a toString method: package somepkg import "Java/java/lang" type GoRunnable struct { lang.Runnable } func (r *GoRunnable) ToString(this lang.Runnable) string { ... } The "this" parameter is implicit in the sense that the reverse generator automatically fills it with a reference to the Java instance of GoRunnable. Note that "this" has the type Java/java/lang.Runnable, not Java/go/somepkg.GoRunnable, which renders it impossible to call Java methods and functions that expect GoRunnable. The most practical example of this is the Android databinding libraries. This CL changes the implicit this parameter to always match the exact type. In the example, the toString implementation becomes: import gopkg "Java/go/somepkg" func (r *GoRunnable) ToString(this gopkg.GoRunnable) string { ... } One strategy would be to simply treat the generated Java classes (GoRunnable in our example) as any other Java class and import it through javap. However, since the Java classes are generated after importing, this present a chicken-and-egg problem. Instead, use the newly added support for structs with embedded prefixed types and synthesize class descriptors for every exported Go struct type. Change-Id: Ic5ce4a151312bd89f91798ed4088c9959225b448 Reviewed-on: https://go-review.googlesource.com/34776 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2016-12-31 16:41:36 +01:00
// supers is the map of classes that need Super methods
supers map[string]struct{}
}
)
func (g *ClassGen) isSupported(t *java.Type) bool {
switch t.Kind {
case java.Array:
// TODO: Support all array types
return t.Elem.Kind == java.Byte
default:
return true
}
}
func (g *ClassGen) isFuncSupported(f *java.Func) bool {
for _, a := range f.Params {
if !g.isSupported(a) {
return false
}
}
if f.Ret != nil {
return g.isSupported(f.Ret)
}
return true
}
func (g *ClassGen) goType(t *java.Type, local bool) string {
switch t.Kind {
case java.Int:
return "int32"
case java.Boolean:
return "bool"
case java.Short:
return "int16"
case java.Char:
return "uint16"
case java.Byte:
return "byte"
case java.Long:
return "int64"
case java.Float:
return "float32"
case java.Double:
return "float64"
case java.String:
return "string"
case java.Array:
return "[]" + g.goType(t.Elem, local)
case java.Object:
name := goClsName(t.Class)
if !local {
name = "Java." + name
}
return name
default:
panic("invalid kind")
}
}
bind,cmd,internal: generate reverse bindings for exported Go structs Before this CL, the type of the implicit "this" parameter to Java methods implemented in Go could only be a super class of the generated Java class. For example, the following GoRunnable type is an implementation of the Java interface java.lang.Runnable with a toString method: package somepkg import "Java/java/lang" type GoRunnable struct { lang.Runnable } func (r *GoRunnable) ToString(this lang.Runnable) string { ... } The "this" parameter is implicit in the sense that the reverse generator automatically fills it with a reference to the Java instance of GoRunnable. Note that "this" has the type Java/java/lang.Runnable, not Java/go/somepkg.GoRunnable, which renders it impossible to call Java methods and functions that expect GoRunnable. The most practical example of this is the Android databinding libraries. This CL changes the implicit this parameter to always match the exact type. In the example, the toString implementation becomes: import gopkg "Java/go/somepkg" func (r *GoRunnable) ToString(this gopkg.GoRunnable) string { ... } One strategy would be to simply treat the generated Java classes (GoRunnable in our example) as any other Java class and import it through javap. However, since the Java classes are generated after importing, this present a chicken-and-egg problem. Instead, use the newly added support for structs with embedded prefixed types and synthesize class descriptors for every exported Go struct type. Change-Id: Ic5ce4a151312bd89f91798ed4088c9959225b448 Reviewed-on: https://go-review.googlesource.com/34776 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2016-12-31 16:41:36 +01:00
// Init initializes the class wrapper generator. Classes is the
// list of classes to wrap, supers is the list of class names
// that need Super methods.
func (g *ClassGen) Init(classes []*java.Class, supers []string) {
g.supers = make(map[string]struct{})
for _, s := range supers {
g.supers[s] = struct{}{}
}
g.classes = classes
g.imported = make(map[string]struct{})
g.typePkgs = make(map[string][]*java.Class)
g.clsPkgs = make(map[string]*java.Class)
pkgSet := make(map[string]struct{})
for _, cls := range classes {
g.imported[cls.Name] = struct{}{}
clsPkg := strings.Replace(cls.Name, ".", "/", -1)
g.clsPkgs[clsPkg] = cls
typePkg := path.Dir(clsPkg)
g.typePkgs[typePkg] = append(g.typePkgs[typePkg], cls)
if _, exists := pkgSet[clsPkg]; !exists {
pkgSet[clsPkg] = struct{}{}
g.jpkgs = append(g.jpkgs, clsPkg)
}
if _, exists := pkgSet[typePkg]; !exists {
pkgSet[typePkg] = struct{}{}
g.jpkgs = append(g.jpkgs, typePkg)
}
}
}
// Packages return the list of Go packages to be generated.
func (g *ClassGen) Packages() []string {
return g.jpkgs
}
func (g *ClassGen) GenPackage(idx int) {
jpkg := g.jpkgs[idx]
g.Printf("// File is generated by gobind. Do not edit.\n\n")
g.Printf("package %s\n\n", path.Base(jpkg))
g.Printf("import \"Java\"\n\n")
g.Printf("const _ = Java.Dummy\n\n")
for _, cls := range g.typePkgs[jpkg] {
g.Printf("type %s Java.%s\n", cls.PkgName, goClsName(cls.Name))
}
if cls, ok := g.clsPkgs[jpkg]; ok {
g.Printf("const (\n")
g.Indent()
// Constants
for _, v := range cls.Vars {
if g.isSupported(v.Type) && v.Constant() {
g.Printf("%s = %s\n", initialUpper(v.Name), v.Val)
}
}
g.Outdent()
g.Printf(")\n\n")
g.Printf("var (\n")
g.Indent()
// Functions
for _, f := range cls.Funcs {
if !f.Public || !g.isFuncSupported(f) {
continue
}
g.Printf("%s func", f.GoName)
g.genFuncDecl(false, f)
g.Printf("\n")
}
g.Printf("// Cast takes a proxy for a Java object and converts it to a %s proxy.\n", cls.Name)
g.Printf("// Cast panics if the argument is not a proxy or if the underlying object does\n")
g.Printf("// not extend or implement %s.\n", cls.Name)
g.Printf("Cast func(v interface{}) Java.%s\n", goClsName(cls.Name))
g.Outdent()
g.Printf(")\n\n")
}
}
func (g *ClassGen) GenGo() {
g.Printf(classesGoHeader)
for _, cls := range g.classes {
pkgName := strings.Replace(cls.Name, ".", "/", -1)
g.Printf("import %q\n", "Java/"+pkgName)
}
if len(g.classes) > 0 {
g.Printf("import \"unsafe\"\n\n")
g.Printf("import \"reflect\"\n\n")
g.Printf("import \"fmt\"\n\n")
}
g.Printf("type proxy interface { Bind_proxy_refnum__() int32 }\n\n")
g.Printf("// Suppress unused package error\n\n")
g.Printf("var _ = _seq.FromRefNum\n")
g.Printf("const _ = Java.Dummy\n\n")
g.Printf("//export initClasses\n")
g.Printf("func initClasses() {\n")
g.Indent()
g.Printf("C.init_proxies()\n")
for _, cls := range g.classes {
g.Printf("init_%s()\n", cls.JNIName)
}
g.Outdent()
g.Printf("}\n\n")
for _, cls := range g.classes {
g.genGo(cls)
}
}
func (g *ClassGen) GenH() {
g.Printf(classesHHeader)
for _, tn := range []string{"jint", "jboolean", "jshort", "jchar", "jbyte", "jlong", "jfloat", "jdouble", "nstring", "nbyteslice"} {
g.Printf("typedef struct ret_%s {\n", tn)
g.Printf(" %s res;\n", tn)
g.Printf(" jint exc;\n")
g.Printf("} ret_%s;\n", tn)
}
g.Printf("\n")
for _, cls := range g.classes {
for _, f := range cls.AllMethods {
if !g.isFuncSupported(f) {
continue
}
g.Printf("extern ")
g.genCMethodDecl("cproxy", cls.JNIName, f)
g.Printf(";\n")
bind,cmd,internal: generate reverse bindings for exported Go structs Before this CL, the type of the implicit "this" parameter to Java methods implemented in Go could only be a super class of the generated Java class. For example, the following GoRunnable type is an implementation of the Java interface java.lang.Runnable with a toString method: package somepkg import "Java/java/lang" type GoRunnable struct { lang.Runnable } func (r *GoRunnable) ToString(this lang.Runnable) string { ... } The "this" parameter is implicit in the sense that the reverse generator automatically fills it with a reference to the Java instance of GoRunnable. Note that "this" has the type Java/java/lang.Runnable, not Java/go/somepkg.GoRunnable, which renders it impossible to call Java methods and functions that expect GoRunnable. The most practical example of this is the Android databinding libraries. This CL changes the implicit this parameter to always match the exact type. In the example, the toString implementation becomes: import gopkg "Java/go/somepkg" func (r *GoRunnable) ToString(this gopkg.GoRunnable) string { ... } One strategy would be to simply treat the generated Java classes (GoRunnable in our example) as any other Java class and import it through javap. However, since the Java classes are generated after importing, this present a chicken-and-egg problem. Instead, use the newly added support for structs with embedded prefixed types and synthesize class descriptors for every exported Go struct type. Change-Id: Ic5ce4a151312bd89f91798ed4088c9959225b448 Reviewed-on: https://go-review.googlesource.com/34776 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2016-12-31 16:41:36 +01:00
if _, ok := g.supers[cls.Name]; ok {
g.Printf("extern ")
g.genCMethodDecl("csuper", cls.JNIName, f)
g.Printf(";\n")
}
}
}
for _, cls := range g.classes {
g.genH(cls)
}
}
func (g *ClassGen) GenC() {
g.Printf(classesCHeader)
for _, cls := range g.classes {
g.genC(cls)
g.Printf("static jclass class_%s;\n", cls.JNIName)
bind,cmd,internal: generate reverse bindings for exported Go structs Before this CL, the type of the implicit "this" parameter to Java methods implemented in Go could only be a super class of the generated Java class. For example, the following GoRunnable type is an implementation of the Java interface java.lang.Runnable with a toString method: package somepkg import "Java/java/lang" type GoRunnable struct { lang.Runnable } func (r *GoRunnable) ToString(this lang.Runnable) string { ... } The "this" parameter is implicit in the sense that the reverse generator automatically fills it with a reference to the Java instance of GoRunnable. Note that "this" has the type Java/java/lang.Runnable, not Java/go/somepkg.GoRunnable, which renders it impossible to call Java methods and functions that expect GoRunnable. The most practical example of this is the Android databinding libraries. This CL changes the implicit this parameter to always match the exact type. In the example, the toString implementation becomes: import gopkg "Java/go/somepkg" func (r *GoRunnable) ToString(this gopkg.GoRunnable) string { ... } One strategy would be to simply treat the generated Java classes (GoRunnable in our example) as any other Java class and import it through javap. However, since the Java classes are generated after importing, this present a chicken-and-egg problem. Instead, use the newly added support for structs with embedded prefixed types and synthesize class descriptors for every exported Go struct type. Change-Id: Ic5ce4a151312bd89f91798ed4088c9959225b448 Reviewed-on: https://go-review.googlesource.com/34776 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2016-12-31 16:41:36 +01:00
if _, ok := g.supers[cls.Name]; ok {
g.Printf("static jclass sclass_%s;\n", cls.JNIName)
}
for _, f := range cls.AllMethods {
if g.isFuncSupported(f) {
g.Printf("static jmethodID m_%s_%s;\n", cls.JNIName, f.JNIName)
bind,cmd,internal: generate reverse bindings for exported Go structs Before this CL, the type of the implicit "this" parameter to Java methods implemented in Go could only be a super class of the generated Java class. For example, the following GoRunnable type is an implementation of the Java interface java.lang.Runnable with a toString method: package somepkg import "Java/java/lang" type GoRunnable struct { lang.Runnable } func (r *GoRunnable) ToString(this lang.Runnable) string { ... } The "this" parameter is implicit in the sense that the reverse generator automatically fills it with a reference to the Java instance of GoRunnable. Note that "this" has the type Java/java/lang.Runnable, not Java/go/somepkg.GoRunnable, which renders it impossible to call Java methods and functions that expect GoRunnable. The most practical example of this is the Android databinding libraries. This CL changes the implicit this parameter to always match the exact type. In the example, the toString implementation becomes: import gopkg "Java/go/somepkg" func (r *GoRunnable) ToString(this gopkg.GoRunnable) string { ... } One strategy would be to simply treat the generated Java classes (GoRunnable in our example) as any other Java class and import it through javap. However, since the Java classes are generated after importing, this present a chicken-and-egg problem. Instead, use the newly added support for structs with embedded prefixed types and synthesize class descriptors for every exported Go struct type. Change-Id: Ic5ce4a151312bd89f91798ed4088c9959225b448 Reviewed-on: https://go-review.googlesource.com/34776 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2016-12-31 16:41:36 +01:00
if _, ok := g.supers[cls.Name]; ok {
g.Printf("static jmethodID sm_%s_%s;\n", cls.JNIName, f.JNIName)
}
}
}
}
g.Printf("\n")
g.Printf("void init_proxies() {\n")
g.Indent()
g.Printf("JNIEnv *env = go_seq_push_local_frame(%d);\n", len(g.classes))
g.Printf("jclass clazz;\n")
for _, cls := range g.classes {
g.Printf("clazz = (*env)->FindClass(env, %q);\n", strings.Replace(cls.FindName, ".", "/", -1))
g.Printf("class_%s = (*env)->NewGlobalRef(env, clazz);\n", cls.JNIName)
bind,cmd,internal: generate reverse bindings for exported Go structs Before this CL, the type of the implicit "this" parameter to Java methods implemented in Go could only be a super class of the generated Java class. For example, the following GoRunnable type is an implementation of the Java interface java.lang.Runnable with a toString method: package somepkg import "Java/java/lang" type GoRunnable struct { lang.Runnable } func (r *GoRunnable) ToString(this lang.Runnable) string { ... } The "this" parameter is implicit in the sense that the reverse generator automatically fills it with a reference to the Java instance of GoRunnable. Note that "this" has the type Java/java/lang.Runnable, not Java/go/somepkg.GoRunnable, which renders it impossible to call Java methods and functions that expect GoRunnable. The most practical example of this is the Android databinding libraries. This CL changes the implicit this parameter to always match the exact type. In the example, the toString implementation becomes: import gopkg "Java/go/somepkg" func (r *GoRunnable) ToString(this gopkg.GoRunnable) string { ... } One strategy would be to simply treat the generated Java classes (GoRunnable in our example) as any other Java class and import it through javap. However, since the Java classes are generated after importing, this present a chicken-and-egg problem. Instead, use the newly added support for structs with embedded prefixed types and synthesize class descriptors for every exported Go struct type. Change-Id: Ic5ce4a151312bd89f91798ed4088c9959225b448 Reviewed-on: https://go-review.googlesource.com/34776 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2016-12-31 16:41:36 +01:00
if _, ok := g.supers[cls.Name]; ok {
g.Printf("sclass_%s = (*env)->GetSuperclass(env, clazz);\n", cls.JNIName)
g.Printf("sclass_%s = (*env)->NewGlobalRef(env, sclass_%s);\n", cls.JNIName, cls.JNIName)
}
for _, f := range cls.AllMethods {
if g.isFuncSupported(f) {
g.Printf("m_%s_%s = go_seq_get_method_id(clazz, %q, %q);\n", cls.JNIName, f.JNIName, f.Name, f.Desc)
bind,cmd,internal: generate reverse bindings for exported Go structs Before this CL, the type of the implicit "this" parameter to Java methods implemented in Go could only be a super class of the generated Java class. For example, the following GoRunnable type is an implementation of the Java interface java.lang.Runnable with a toString method: package somepkg import "Java/java/lang" type GoRunnable struct { lang.Runnable } func (r *GoRunnable) ToString(this lang.Runnable) string { ... } The "this" parameter is implicit in the sense that the reverse generator automatically fills it with a reference to the Java instance of GoRunnable. Note that "this" has the type Java/java/lang.Runnable, not Java/go/somepkg.GoRunnable, which renders it impossible to call Java methods and functions that expect GoRunnable. The most practical example of this is the Android databinding libraries. This CL changes the implicit this parameter to always match the exact type. In the example, the toString implementation becomes: import gopkg "Java/go/somepkg" func (r *GoRunnable) ToString(this gopkg.GoRunnable) string { ... } One strategy would be to simply treat the generated Java classes (GoRunnable in our example) as any other Java class and import it through javap. However, since the Java classes are generated after importing, this present a chicken-and-egg problem. Instead, use the newly added support for structs with embedded prefixed types and synthesize class descriptors for every exported Go struct type. Change-Id: Ic5ce4a151312bd89f91798ed4088c9959225b448 Reviewed-on: https://go-review.googlesource.com/34776 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2016-12-31 16:41:36 +01:00
if _, ok := g.supers[cls.Name]; ok {
g.Printf("sm_%s_%s = go_seq_get_method_id(sclass_%s, %q, %q);\n", cls.JNIName, f.JNIName, cls.JNIName, f.Name, f.Desc)
}
}
}
}
g.Printf("go_seq_pop_local_frame(env);\n")
g.Outdent()
g.Printf("}\n\n")
for _, cls := range g.classes {
for _, f := range cls.AllMethods {
if !g.isFuncSupported(f) {
continue
}
g.genCMethodDecl("cproxy", cls.JNIName, f)
g.genCMethodBody(cls, f, false)
bind,cmd,internal: generate reverse bindings for exported Go structs Before this CL, the type of the implicit "this" parameter to Java methods implemented in Go could only be a super class of the generated Java class. For example, the following GoRunnable type is an implementation of the Java interface java.lang.Runnable with a toString method: package somepkg import "Java/java/lang" type GoRunnable struct { lang.Runnable } func (r *GoRunnable) ToString(this lang.Runnable) string { ... } The "this" parameter is implicit in the sense that the reverse generator automatically fills it with a reference to the Java instance of GoRunnable. Note that "this" has the type Java/java/lang.Runnable, not Java/go/somepkg.GoRunnable, which renders it impossible to call Java methods and functions that expect GoRunnable. The most practical example of this is the Android databinding libraries. This CL changes the implicit this parameter to always match the exact type. In the example, the toString implementation becomes: import gopkg "Java/go/somepkg" func (r *GoRunnable) ToString(this gopkg.GoRunnable) string { ... } One strategy would be to simply treat the generated Java classes (GoRunnable in our example) as any other Java class and import it through javap. However, since the Java classes are generated after importing, this present a chicken-and-egg problem. Instead, use the newly added support for structs with embedded prefixed types and synthesize class descriptors for every exported Go struct type. Change-Id: Ic5ce4a151312bd89f91798ed4088c9959225b448 Reviewed-on: https://go-review.googlesource.com/34776 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2016-12-31 16:41:36 +01:00
if _, ok := g.supers[cls.Name]; ok {
g.genCMethodDecl("csuper", cls.JNIName, f)
g.genCMethodBody(cls, f, true)
}
}
}
}
func (g *ClassGen) GenInterfaces() {
g.Printf(classesPkgHeader)
for _, cls := range g.classes {
g.genInterface(cls)
}
}
func (g *ClassGen) genCMethodBody(cls *java.Class, f *java.Func, virtual bool) {
g.Printf(" {\n")
g.Indent()
// Add 1 for the 'this' argument
g.Printf("JNIEnv *env = go_seq_push_local_frame(%d);\n", len(f.Params)+1)
g.Printf("// Must be a Java object\n")
g.Printf("jobject _this = go_seq_from_refnum(env, this, NULL, NULL);\n")
for i, a := range f.Params {
g.genCToJava(fmt.Sprintf("a%d", i), a)
}
if f.Ret != nil {
g.Printf("%s res = ", f.Ret.JNIType())
}
g.Printf("(*env)->Call")
if virtual {
g.Printf("Nonvirtual")
}
if f.Ret != nil {
g.Printf(f.Ret.JNICallType())
} else {
g.Printf("Void")
}
g.Printf("Method(env, _this, ")
if virtual {
bind,cmd,internal: generate reverse bindings for exported Go structs Before this CL, the type of the implicit "this" parameter to Java methods implemented in Go could only be a super class of the generated Java class. For example, the following GoRunnable type is an implementation of the Java interface java.lang.Runnable with a toString method: package somepkg import "Java/java/lang" type GoRunnable struct { lang.Runnable } func (r *GoRunnable) ToString(this lang.Runnable) string { ... } The "this" parameter is implicit in the sense that the reverse generator automatically fills it with a reference to the Java instance of GoRunnable. Note that "this" has the type Java/java/lang.Runnable, not Java/go/somepkg.GoRunnable, which renders it impossible to call Java methods and functions that expect GoRunnable. The most practical example of this is the Android databinding libraries. This CL changes the implicit this parameter to always match the exact type. In the example, the toString implementation becomes: import gopkg "Java/go/somepkg" func (r *GoRunnable) ToString(this gopkg.GoRunnable) string { ... } One strategy would be to simply treat the generated Java classes (GoRunnable in our example) as any other Java class and import it through javap. However, since the Java classes are generated after importing, this present a chicken-and-egg problem. Instead, use the newly added support for structs with embedded prefixed types and synthesize class descriptors for every exported Go struct type. Change-Id: Ic5ce4a151312bd89f91798ed4088c9959225b448 Reviewed-on: https://go-review.googlesource.com/34776 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2016-12-31 16:41:36 +01:00
g.Printf("sclass_%s, sm_%s_%s", cls.JNIName, cls.JNIName, f.JNIName)
} else {
g.Printf("m_%s_%s", cls.JNIName, f.JNIName)
}
for i := range f.Params {
g.Printf(", _a%d", i)
}
g.Printf(");\n")
bind: remove error wrappers to preserve error instance identity CL 24800 changed the error representation from strings to objects. However, since native errors types are not immediately compatible across languages, wrapper types were introduced to bridge the gap. This CL remove those wrappers and instead special case the error proxy types to conform to their language error protocol. Specifically: - The ObjC proxy for Go errors now extends NSError and calls initWithDomain to store the error message. - The Go proxy for ObjC NSError return the localizedDescription property for calls to Error. - The Java proxy for Go errors ow extends Exception and overrides getMessage() to return the error message. - The Go proxy for Java Exceptions returns getMessage whenever Error is called. The end result is that error values behave more like normal objects across the language boundary. In particular, instance identity is now preserved: an error passed across the boundary and back will result in the same instance. There are two semantic changes that followed this change: - The domain for wrapped Go errors is now always "go". The domain wasn't useful before this CL: the domains were set to the package name of function or method where the error happened to cross the language boundary. - If a Go method that returns an error is implemented in ObjC, the implementation must now both return NO _and_ set the error result for the calling Go code to receive a non-nil error. Before this CL, because errors were always wrapped, a nil ObjC could be represented with a non-nil wrapper. Change-Id: Idb415b6b13ecf79ccceb60f675059942bfc48fec Reviewed-on: https://go-review.googlesource.com/29298 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2016-09-19 12:44:13 +02:00
g.Printf("jobject _exc = go_seq_get_exception(env);\n")
g.Printf("int32_t _exc_ref = go_seq_to_refnum(env, _exc);\n")
if f.Ret != nil {
g.genCRetClear("res", f.Ret, "_exc")
g.genJavaToC("res", f.Ret)
}
g.Printf("go_seq_pop_local_frame(env);\n")
if f.Ret != nil {
g.Printf("ret_%s __res = {_res, _exc_ref};\n", f.Ret.CType())
g.Printf("return __res;\n")
} else {
g.Printf("return _exc_ref;\n")
}
g.Outdent()
g.Printf("}\n\n")
}
func initialUpper(s string) string {
if s == "" {
return ""
}
r, n := utf8.DecodeRuneInString(s)
return string(unicode.ToUpper(r)) + s[n:]
}
func (g *ClassGen) genFuncDecl(local bool, f *java.Func) {
g.Printf("(")
for i, a := range f.Params {
if i > 0 {
g.Printf(", ")
}
g.Printf("a%d %s", i, g.goType(a, local))
}
g.Printf(")")
if f.Throws != "" {
if f.Ret != nil {
g.Printf(" (%s, error)", g.goType(f.Ret, local))
} else {
g.Printf(" error")
}
} else if f.Ret != nil {
g.Printf(" %s", g.goType(f.Ret, local))
}
}
func (g *ClassGen) genC(cls *java.Class) {
for _, f := range cls.Funcs {
if !f.Public || !g.isFuncSupported(f) {
continue
}
g.genCFuncDecl(cls.JNIName, f)
g.Printf(" {\n")
g.Indent()
g.Printf("JNIEnv *env = go_seq_push_local_frame(%d);\n", len(f.Params))
for i, a := range f.Params {
g.genCToJava(fmt.Sprintf("a%d", i), a)
}
if f.Constructor {
g.Printf("jobject res = (*env)->NewObject(env")
} else if f.Ret != nil {
g.Printf("%s res = (*env)->CallStatic%sMethod(env", f.Ret.JNIType(), f.Ret.JNICallType())
} else {
g.Printf("(*env)->CallStaticVoidMethod(env")
}
g.Printf(", clazz, m")
for i := range f.Params {
g.Printf(", _a%d", i)
}
g.Printf(");\n")
bind: remove error wrappers to preserve error instance identity CL 24800 changed the error representation from strings to objects. However, since native errors types are not immediately compatible across languages, wrapper types were introduced to bridge the gap. This CL remove those wrappers and instead special case the error proxy types to conform to their language error protocol. Specifically: - The ObjC proxy for Go errors now extends NSError and calls initWithDomain to store the error message. - The Go proxy for ObjC NSError return the localizedDescription property for calls to Error. - The Java proxy for Go errors ow extends Exception and overrides getMessage() to return the error message. - The Go proxy for Java Exceptions returns getMessage whenever Error is called. The end result is that error values behave more like normal objects across the language boundary. In particular, instance identity is now preserved: an error passed across the boundary and back will result in the same instance. There are two semantic changes that followed this change: - The domain for wrapped Go errors is now always "go". The domain wasn't useful before this CL: the domains were set to the package name of function or method where the error happened to cross the language boundary. - If a Go method that returns an error is implemented in ObjC, the implementation must now both return NO _and_ set the error result for the calling Go code to receive a non-nil error. Before this CL, because errors were always wrapped, a nil ObjC could be represented with a non-nil wrapper. Change-Id: Idb415b6b13ecf79ccceb60f675059942bfc48fec Reviewed-on: https://go-review.googlesource.com/29298 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2016-09-19 12:44:13 +02:00
g.Printf("jobject _exc = go_seq_get_exception(env);\n")
g.Printf("int32_t _exc_ref = go_seq_to_refnum(env, _exc);\n")
if f.Ret != nil {
g.genCRetClear("res", f.Ret, "_exc")
g.genJavaToC("res", f.Ret)
}
g.Printf("go_seq_pop_local_frame(env);\n")
if f.Ret != nil {
g.Printf("ret_%s __res = {_res, _exc_ref};\n", f.Ret.CType())
g.Printf("return __res;\n")
} else {
g.Printf("return _exc_ref;\n")
}
g.Outdent()
g.Printf("}\n\n")
}
}
func (g *ClassGen) genH(cls *java.Class) {
for _, f := range cls.Funcs {
if !f.Public || !g.isFuncSupported(f) {
continue
}
g.Printf("extern ")
g.genCFuncDecl(cls.JNIName, f)
g.Printf(";\n")
}
}
func (g *ClassGen) genCMethodDecl(prefix, jniName string, f *java.Func) {
if f.Ret != nil {
g.Printf("ret_%s", f.Ret.CType())
} else {
// Return only the exception, if any
g.Printf("jint")
}
g.Printf(" %s_%s_%s(jint this", prefix, jniName, f.JNIName)
for i, a := range f.Params {
g.Printf(", %s a%d", a.CType(), i)
}
g.Printf(")")
}
func (g *ClassGen) genCFuncDecl(jniName string, f *java.Func) {
if f.Ret != nil {
g.Printf("ret_%s", f.Ret.CType())
} else {
// Return only the exception, if any
g.Printf("jint")
}
g.Printf(" cproxy_s_%s_%s(jclass clazz, jmethodID m", jniName, f.JNIName)
for i, a := range f.Params {
g.Printf(", %s a%d", a.CType(), i)
}
g.Printf(")")
}
func (g *ClassGen) genGo(cls *java.Class) {
g.Printf("var class_%s C.jclass\n\n", cls.JNIName)
g.Printf("func init_%s() {\n", cls.JNIName)
g.Indent()
g.Printf("cls := C.CString(%q)\n", strings.Replace(cls.FindName, ".", "/", -1))
g.Printf("clazz := C.go_seq_find_class(cls)\n")
g.Printf("C.free(unsafe.Pointer(cls))\n")
g.Printf("if clazz == nil {\n")
g.Printf(" return\n")
g.Printf("}\n")
g.Printf("class_%s = clazz\n", cls.JNIName)
for _, f := range cls.Funcs {
if !f.Public || !g.isFuncSupported(f) {
continue
}
g.Printf("{\n")
g.Indent()
name := f.Name
if f.Constructor {
name = "<init>"
}
g.Printf("fn := C.CString(%q)\n", name)
g.Printf("fd := C.CString(%q)\n", f.Desc)
if f.Constructor {
g.Printf("m := C.go_seq_get_method_id(clazz, fn, fd)\n")
} else {
g.Printf("m := C.go_seq_get_static_method_id(clazz, fn, fd)\n")
}
g.Printf("C.free(unsafe.Pointer(fn))\n")
g.Printf("C.free(unsafe.Pointer(fd))\n")
g.Printf("if m != nil {\n")
g.Indent()
g.Printf("%s.%s = func", cls.PkgName, f.GoName)
g.genFuncDecl(false, f)
g.Printf(" {\n")
g.Indent()
for i, a := range f.Params {
g.genWrite(fmt.Sprintf("a%d", i), a, modeTransient)
}
g.Printf("res := C.cproxy_s_%s_%s(clazz, m", cls.JNIName, f.JNIName)
for i := range f.Params {
g.Printf(", _a%d", i)
}
g.Printf(")\n")
g.genFuncRet(f)
g.Outdent()
g.Printf("}\n")
g.Outdent()
g.Printf("}\n")
g.Outdent()
g.Printf("}\n")
}
g.Printf("%s.Cast = func(v interface{}) Java.%s {\n", cls.PkgName, goClsName(cls.Name))
g.Indent()
g.Printf("t := reflect.TypeOf((*proxy_class_%s)(nil))\n", cls.JNIName)
g.Printf("cv := reflect.ValueOf(v).Convert(t).Interface().(*proxy_class_%s)\n", cls.JNIName)
g.Printf("ref := C.jint(_seq.ToRefNum(cv))\n")
g.Printf("if C.go_seq_isinstanceof(ref, class_%s) != 1 {\n", cls.JNIName)
g.Printf(" panic(fmt.Errorf(\"%%T is not an instance of %%s\", v, %q))\n", cls.Name)
g.Printf("}\n")
g.Printf("return cv\n")
g.Outdent()
g.Printf("}\n")
g.Outdent()
g.Printf("}\n\n")
g.Printf("type proxy_class_%s _seq.Ref\n\n", cls.JNIName)
g.Printf("func (p *proxy_class_%s) Bind_proxy_refnum__() int32 { return (*_seq.Ref)(p).Bind_IncNum() }\n\n", cls.JNIName)
for _, f := range cls.AllMethods {
if !g.isFuncSupported(f) {
continue
}
g.Printf("func (p *proxy_class_%s) %s", cls.JNIName, f.GoName)
g.genFuncDecl(false, f)
g.genFuncBody(cls, f, "cproxy")
}
if cls.Throwable {
g.Printf("func (p *proxy_class_%s) Error() string {\n", cls.JNIName)
g.Printf(" return p.ToString()\n")
g.Printf("}\n")
}
bind,cmd,internal: generate reverse bindings for exported Go structs Before this CL, the type of the implicit "this" parameter to Java methods implemented in Go could only be a super class of the generated Java class. For example, the following GoRunnable type is an implementation of the Java interface java.lang.Runnable with a toString method: package somepkg import "Java/java/lang" type GoRunnable struct { lang.Runnable } func (r *GoRunnable) ToString(this lang.Runnable) string { ... } The "this" parameter is implicit in the sense that the reverse generator automatically fills it with a reference to the Java instance of GoRunnable. Note that "this" has the type Java/java/lang.Runnable, not Java/go/somepkg.GoRunnable, which renders it impossible to call Java methods and functions that expect GoRunnable. The most practical example of this is the Android databinding libraries. This CL changes the implicit this parameter to always match the exact type. In the example, the toString implementation becomes: import gopkg "Java/go/somepkg" func (r *GoRunnable) ToString(this gopkg.GoRunnable) string { ... } One strategy would be to simply treat the generated Java classes (GoRunnable in our example) as any other Java class and import it through javap. However, since the Java classes are generated after importing, this present a chicken-and-egg problem. Instead, use the newly added support for structs with embedded prefixed types and synthesize class descriptors for every exported Go struct type. Change-Id: Ic5ce4a151312bd89f91798ed4088c9959225b448 Reviewed-on: https://go-review.googlesource.com/34776 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2016-12-31 16:41:36 +01:00
if _, ok := g.supers[cls.Name]; ok {
g.Printf("func (p *proxy_class_%s) Super() Java.%s {\n", cls.JNIName, goClsName(cls.Name))
g.Printf(" return &super_%s{p}\n", cls.JNIName)
g.Printf("}\n\n")
g.Printf("type super_%s struct {*proxy_class_%[1]s}\n\n", cls.JNIName)
for _, f := range cls.AllMethods {
if !g.isFuncSupported(f) {
continue
}
g.Printf("func (p *super_%s) %s", cls.JNIName, f.GoName)
g.genFuncDecl(false, f)
g.genFuncBody(cls, f, "csuper")
}
}
}
func (g *ClassGen) genFuncBody(cls *java.Class, f *java.Func, prefix string) {
g.Printf(" {\n")
g.Indent()
for i, a := range f.Params {
g.genWrite(fmt.Sprintf("a%d", i), a, modeTransient)
}
g.Printf("res := C.%s_%s_%s(C.jint(p.Bind_proxy_refnum__())", prefix, cls.JNIName, f.JNIName)
for i := range f.Params {
g.Printf(", _a%d", i)
}
g.Printf(")\n")
g.genFuncRet(f)
g.Outdent()
g.Printf("}\n\n")
}
func (g *ClassGen) genFuncRet(f *java.Func) {
if f.Ret != nil {
g.genRead("_res", "res.res", f.Ret, modeRetained)
g.genRefRead("_exc", "res.exc", "error", "proxy_error", true)
} else {
g.genRefRead("_exc", "res", "error", "proxy_error", true)
}
if f.Throws == "" {
g.Printf("if (_exc != nil) { panic(_exc) }\n")
if f.Ret != nil {
g.Printf("return _res\n")
}
} else {
if f.Ret != nil {
g.Printf("return _res, _exc\n")
} else {
g.Printf("return _exc\n")
}
}
}
func (g *ClassGen) genRead(to, from string, t *java.Type, mode varMode) {
switch t.Kind {
case java.Int, java.Short, java.Char, java.Byte, java.Long, java.Float, java.Double:
g.Printf("%s := %s(%s)\n", to, g.goType(t, false), from)
case java.Boolean:
g.Printf("%s := %s != C.JNI_FALSE\n", to, from)
case java.String:
g.Printf("%s := decodeString(%s)\n", to, from)
case java.Array:
if t.Elem.Kind != java.Byte {
panic("unsupported array type")
}
g.Printf("%s := toSlice(%s, %v)\n", to, from, mode == modeRetained)
case java.Object:
_, hasProxy := g.imported[t.Class]
g.genRefRead(to, from, g.goType(t, false), "proxy_class_"+flattenName(t.Class), hasProxy)
default:
panic("invalid kind")
}
}
func (g *ClassGen) genRefRead(to, from string, intfName, proxyName string, hasProxy bool) {
g.Printf("var %s %s\n", to, intfName)
g.Printf("%s_ref := _seq.FromRefNum(int32(%s))\n", to, from)
g.Printf("if %s_ref != nil {\n", to)
g.Printf(" if %s < 0 { // go object\n", from)
g.Printf(" %s = %s_ref.Get().(%s)\n", to, to, intfName)
g.Printf(" } else { // foreign object\n")
if hasProxy {
g.Printf(" %s = (*%s)(%s_ref)\n", to, proxyName, to)
} else {
g.Printf(" %s = %s_ref\n", to, to)
}
g.Printf(" }\n")
g.Printf("}\n")
}
func (g *ClassGen) genWrite(v string, t *java.Type, mode varMode) {
switch t.Kind {
case java.Int, java.Short, java.Char, java.Byte, java.Long, java.Float, java.Double:
g.Printf("_%s := C.%s(%s)\n", v, t.CType(), v)
case java.Boolean:
g.Printf("_%s := C.jboolean(C.JNI_FALSE)\n", v)
g.Printf("if %s {\n", v)
g.Printf(" _%s = C.jboolean(C.JNI_TRUE)\n", v)
g.Printf("}\n")
case java.String:
g.Printf("_%s := encodeString(%s)\n", v, v)
case java.Array:
if t.Elem.Kind != java.Byte {
panic("unsupported array type")
}
g.Printf("_%s := fromSlice(%s, %v)\n", v, v, mode == modeRetained)
case java.Object:
g.Printf("var _%s C.jint = _seq.NullRefNum\n", v)
g.Printf("if %s != nil {\n", v)
g.Printf(" _%s = C.jint(_seq.ToRefNum(%s))\n", v, v)
g.Printf("}\n")
default:
panic("invalid kind")
}
}
// genCRetClear clears the result value from a JNI call if an exception was
// raised.
func (g *ClassGen) genCRetClear(v string, t *java.Type, exc string) {
g.Printf("if (%s != NULL) {\n", exc)
g.Indent()
switch t.Kind {
case java.Int, java.Short, java.Char, java.Byte, java.Long, java.Float, java.Double, java.Boolean:
g.Printf("%s = 0;\n", v)
default:
// Assume a nullable type. It will break if we missed a type.
g.Printf("%s = NULL;\n", v)
}
g.Outdent()
g.Printf("}\n")
}
func (g *ClassGen) genJavaToC(v string, t *java.Type) {
switch t.Kind {
case java.Int, java.Short, java.Char, java.Byte, java.Long, java.Float, java.Double, java.Boolean:
g.Printf("%s _%s = %s;\n", t.JNIType(), v, v)
case java.String:
g.Printf("nstring _%s = go_seq_from_java_string(env, %s);\n", v, v)
case java.Array:
if t.Elem.Kind != java.Byte {
panic("unsupported array type")
}
g.Printf("nbyteslice _%s = go_seq_from_java_bytearray(env, %s, 1);\n", v, v)
case java.Object:
g.Printf("jint _%s = go_seq_to_refnum(env, %s);\n", v, v)
default:
panic("invalid kind")
}
}
func (g *ClassGen) genCToJava(v string, t *java.Type) {
switch t.Kind {
case java.Int, java.Short, java.Char, java.Byte, java.Long, java.Float, java.Double, java.Boolean:
g.Printf("%s _%s = %s;\n", t.JNIType(), v, v)
case java.String:
g.Printf("jstring _%s = go_seq_to_java_string(env, %s);\n", v, v)
case java.Array:
if t.Elem.Kind != java.Byte {
panic("unsupported array type")
}
g.Printf("jbyteArray _%s = go_seq_to_java_bytearray(env, %s, 0);\n", v, v)
case java.Object:
g.Printf("jobject _%s = go_seq_from_refnum(env, %s, NULL, NULL);\n", v, v)
default:
panic("invalid kind")
}
}
func goClsName(n string) string {
return initialUpper(strings.Replace(n, ".", "_", -1))
}
func (g *ClassGen) genInterface(cls *java.Class) {
g.Printf("type %s interface {\n", goClsName(cls.Name))
g.Indent()
// Methods
for _, f := range cls.AllMethods {
if !g.isFuncSupported(f) {
continue
}
g.Printf(f.GoName)
g.genFuncDecl(true, f)
g.Printf("\n")
}
bind,cmd,internal: generate reverse bindings for exported Go structs Before this CL, the type of the implicit "this" parameter to Java methods implemented in Go could only be a super class of the generated Java class. For example, the following GoRunnable type is an implementation of the Java interface java.lang.Runnable with a toString method: package somepkg import "Java/java/lang" type GoRunnable struct { lang.Runnable } func (r *GoRunnable) ToString(this lang.Runnable) string { ... } The "this" parameter is implicit in the sense that the reverse generator automatically fills it with a reference to the Java instance of GoRunnable. Note that "this" has the type Java/java/lang.Runnable, not Java/go/somepkg.GoRunnable, which renders it impossible to call Java methods and functions that expect GoRunnable. The most practical example of this is the Android databinding libraries. This CL changes the implicit this parameter to always match the exact type. In the example, the toString implementation becomes: import gopkg "Java/go/somepkg" func (r *GoRunnable) ToString(this gopkg.GoRunnable) string { ... } One strategy would be to simply treat the generated Java classes (GoRunnable in our example) as any other Java class and import it through javap. However, since the Java classes are generated after importing, this present a chicken-and-egg problem. Instead, use the newly added support for structs with embedded prefixed types and synthesize class descriptors for every exported Go struct type. Change-Id: Ic5ce4a151312bd89f91798ed4088c9959225b448 Reviewed-on: https://go-review.googlesource.com/34776 Reviewed-by: David Crawshaw <crawshaw@golang.org>
2016-12-31 16:41:36 +01:00
if _, ok := g.supers[cls.Name]; ok {
g.Printf("Super() %s\n", goClsName(cls.Name))
}
if cls.Throwable {
g.Printf("Error() string\n")
}
g.Outdent()
g.Printf("}\n\n")
}
// Flatten java class names. "java.package.Class$Inner" is converted to
// "java_package_Class_Inner"
func flattenName(n string) string {
return strings.Replace(strings.Replace(n, ".", "_", -1), "$", "_", -1)
}
var (
classesPkgHeader = `// File is generated by gobind. Do not edit.
package Java
// Used to silence this package not used errors
const Dummy = 0
`
classesCHeader = `// File is generated by gobind. Do not edit.
#include <jni.h>
#include "seq.h"
#include "classes.h"
`
classesHHeader = `// File is generated by gobind. Do not edit.
#include <jni.h>
#include "seq.h"
extern void init_proxies();
`
javaImplHeader = `// File is generated by gobind. Do not edit.
`
classesGoHeader = `// File is generated by gobind. Do not edit.
package gomobile_bind
/*
#include <stdlib.h> // for free()
#include <jni.h>
#include "seq.h"
#include "classes.h"
*/
import "C"
import (
"Java"
_seq "golang.org/x/mobile/bind/seq"
)
`
)