mirror of
https://github.com/status-im/miniupnp.git
synced 2025-01-11 22:54:17 +00:00
532 lines
18 KiB
C
532 lines
18 KiB
C
/* $OpenBSD: queue.h,v 1.31 2005/11/25 08:06:25 otto Exp $ */
|
|
/* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)queue.h 8.5 (Berkeley) 8/20/94
|
|
*/
|
|
|
|
#ifndef _SYS_QUEUE_H_
|
|
#define _SYS_QUEUE_H_
|
|
|
|
/*
|
|
* This file defines five types of data structures: singly-linked lists,
|
|
* lists, simple queues, tail queues, and circular queues.
|
|
*
|
|
*
|
|
* A singly-linked list is headed by a single forward pointer. The elements
|
|
* are singly linked for minimum space and pointer manipulation overhead at
|
|
* the expense of O(n) removal for arbitrary elements. New elements can be
|
|
* added to the list after an existing element or at the head of the list.
|
|
* Elements being removed from the head of the list should use the explicit
|
|
* macro for this purpose for optimum efficiency. A singly-linked list may
|
|
* only be traversed in the forward direction. Singly-linked lists are ideal
|
|
* for applications with large datasets and few or no removals or for
|
|
* implementing a LIFO queue.
|
|
*
|
|
* A list is headed by a single forward pointer (or an array of forward
|
|
* pointers for a hash table header). The elements are doubly linked
|
|
* so that an arbitrary element can be removed without a need to
|
|
* traverse the list. New elements can be added to the list before
|
|
* or after an existing element or at the head of the list. A list
|
|
* may only be traversed in the forward direction.
|
|
*
|
|
* A simple queue is headed by a pair of pointers, one the head of the
|
|
* list and the other to the tail of the list. The elements are singly
|
|
* linked to save space, so elements can only be removed from the
|
|
* head of the list. New elements can be added to the list before or after
|
|
* an existing element, at the head of the list, or at the end of the
|
|
* list. A simple queue may only be traversed in the forward direction.
|
|
*
|
|
* A tail queue is headed by a pair of pointers, one to the head of the
|
|
* list and the other to the tail of the list. The elements are doubly
|
|
* linked so that an arbitrary element can be removed without a need to
|
|
* traverse the list. New elements can be added to the list before or
|
|
* after an existing element, at the head of the list, or at the end of
|
|
* the list. A tail queue may be traversed in either direction.
|
|
*
|
|
* A circle queue is headed by a pair of pointers, one to the head of the
|
|
* list and the other to the tail of the list. The elements are doubly
|
|
* linked so that an arbitrary element can be removed without a need to
|
|
* traverse the list. New elements can be added to the list before or after
|
|
* an existing element, at the head of the list, or at the end of the list.
|
|
* A circle queue may be traversed in either direction, but has a more
|
|
* complex end of list detection.
|
|
*
|
|
* For details on the use of these macros, see the queue(3) manual page.
|
|
*/
|
|
|
|
#ifdef QUEUE_MACRO_DEBUG
|
|
#define _Q_INVALIDATE(a) (a) = ((void *)-1)
|
|
#else
|
|
#define _Q_INVALIDATE(a)
|
|
#endif
|
|
|
|
/*
|
|
* Singly-linked List definitions.
|
|
*/
|
|
#define SLIST_HEAD(name, type) \
|
|
struct name { \
|
|
struct type *slh_first; /* first element */ \
|
|
}
|
|
|
|
#define SLIST_HEAD_INITIALIZER(head) \
|
|
{ NULL }
|
|
|
|
#ifdef SLIST_ENTRY
|
|
#undef SLIST_ENTRY
|
|
#endif
|
|
|
|
#define SLIST_ENTRY(type) \
|
|
struct { \
|
|
struct type *sle_next; /* next element */ \
|
|
}
|
|
|
|
/*
|
|
* Singly-linked List access methods.
|
|
*/
|
|
#define SLIST_FIRST(head) ((head)->slh_first)
|
|
#define SLIST_END(head) NULL
|
|
#define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
|
|
#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
|
|
|
|
#define SLIST_FOREACH(var, head, field) \
|
|
for((var) = SLIST_FIRST(head); \
|
|
(var) != SLIST_END(head); \
|
|
(var) = SLIST_NEXT(var, field))
|
|
|
|
#define SLIST_FOREACH_PREVPTR(var, varp, head, field) \
|
|
for ((varp) = &SLIST_FIRST((head)); \
|
|
((var) = *(varp)) != SLIST_END(head); \
|
|
(varp) = &SLIST_NEXT((var), field))
|
|
|
|
/*
|
|
* Singly-linked List functions.
|
|
*/
|
|
#define SLIST_INIT(head) { \
|
|
SLIST_FIRST(head) = SLIST_END(head); \
|
|
}
|
|
|
|
#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
|
|
(elm)->field.sle_next = (slistelm)->field.sle_next; \
|
|
(slistelm)->field.sle_next = (elm); \
|
|
} while (0)
|
|
|
|
#define SLIST_INSERT_HEAD(head, elm, field) do { \
|
|
(elm)->field.sle_next = (head)->slh_first; \
|
|
(head)->slh_first = (elm); \
|
|
} while (0)
|
|
|
|
#define SLIST_REMOVE_NEXT(head, elm, field) do { \
|
|
(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
|
|
} while (0)
|
|
|
|
#define SLIST_REMOVE_HEAD(head, field) do { \
|
|
(head)->slh_first = (head)->slh_first->field.sle_next; \
|
|
} while (0)
|
|
|
|
#define SLIST_REMOVE(head, elm, type, field) do { \
|
|
if ((head)->slh_first == (elm)) { \
|
|
SLIST_REMOVE_HEAD((head), field); \
|
|
} else { \
|
|
struct type *curelm = (head)->slh_first; \
|
|
\
|
|
while (curelm->field.sle_next != (elm)) \
|
|
curelm = curelm->field.sle_next; \
|
|
curelm->field.sle_next = \
|
|
curelm->field.sle_next->field.sle_next; \
|
|
_Q_INVALIDATE((elm)->field.sle_next); \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* List definitions.
|
|
*/
|
|
#define LIST_HEAD(name, type) \
|
|
struct name { \
|
|
struct type *lh_first; /* first element */ \
|
|
}
|
|
|
|
#define LIST_HEAD_INITIALIZER(head) \
|
|
{ NULL }
|
|
|
|
#define LIST_ENTRY(type) \
|
|
struct { \
|
|
struct type *le_next; /* next element */ \
|
|
struct type **le_prev; /* address of previous next element */ \
|
|
}
|
|
|
|
/*
|
|
* List access methods
|
|
*/
|
|
#define LIST_FIRST(head) ((head)->lh_first)
|
|
#define LIST_END(head) NULL
|
|
#define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
|
|
#define LIST_NEXT(elm, field) ((elm)->field.le_next)
|
|
|
|
#define LIST_FOREACH(var, head, field) \
|
|
for((var) = LIST_FIRST(head); \
|
|
(var)!= LIST_END(head); \
|
|
(var) = LIST_NEXT(var, field))
|
|
|
|
/*
|
|
* List functions.
|
|
*/
|
|
#define LIST_INIT(head) do { \
|
|
LIST_FIRST(head) = LIST_END(head); \
|
|
} while (0)
|
|
|
|
#define LIST_INSERT_AFTER(listelm, elm, field) do { \
|
|
if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
|
|
(listelm)->field.le_next->field.le_prev = \
|
|
&(elm)->field.le_next; \
|
|
(listelm)->field.le_next = (elm); \
|
|
(elm)->field.le_prev = &(listelm)->field.le_next; \
|
|
} while (0)
|
|
|
|
#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
|
|
(elm)->field.le_prev = (listelm)->field.le_prev; \
|
|
(elm)->field.le_next = (listelm); \
|
|
*(listelm)->field.le_prev = (elm); \
|
|
(listelm)->field.le_prev = &(elm)->field.le_next; \
|
|
} while (0)
|
|
|
|
#define LIST_INSERT_HEAD(head, elm, field) do { \
|
|
if (((elm)->field.le_next = (head)->lh_first) != NULL) \
|
|
(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
|
|
(head)->lh_first = (elm); \
|
|
(elm)->field.le_prev = &(head)->lh_first; \
|
|
} while (0)
|
|
|
|
#define LIST_REMOVE(elm, field) do { \
|
|
if ((elm)->field.le_next != NULL) \
|
|
(elm)->field.le_next->field.le_prev = \
|
|
(elm)->field.le_prev; \
|
|
*(elm)->field.le_prev = (elm)->field.le_next; \
|
|
_Q_INVALIDATE((elm)->field.le_prev); \
|
|
_Q_INVALIDATE((elm)->field.le_next); \
|
|
} while (0)
|
|
|
|
#define LIST_REPLACE(elm, elm2, field) do { \
|
|
if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
|
|
(elm2)->field.le_next->field.le_prev = \
|
|
&(elm2)->field.le_next; \
|
|
(elm2)->field.le_prev = (elm)->field.le_prev; \
|
|
*(elm2)->field.le_prev = (elm2); \
|
|
_Q_INVALIDATE((elm)->field.le_prev); \
|
|
_Q_INVALIDATE((elm)->field.le_next); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Simple queue definitions.
|
|
*/
|
|
#define SIMPLEQ_HEAD(name, type) \
|
|
struct name { \
|
|
struct type *sqh_first; /* first element */ \
|
|
struct type **sqh_last; /* addr of last next element */ \
|
|
}
|
|
|
|
#define SIMPLEQ_HEAD_INITIALIZER(head) \
|
|
{ NULL, &(head).sqh_first }
|
|
|
|
#define SIMPLEQ_ENTRY(type) \
|
|
struct { \
|
|
struct type *sqe_next; /* next element */ \
|
|
}
|
|
|
|
/*
|
|
* Simple queue access methods.
|
|
*/
|
|
#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
|
|
#define SIMPLEQ_END(head) NULL
|
|
#define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
|
|
#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
|
|
|
|
#define SIMPLEQ_FOREACH(var, head, field) \
|
|
for((var) = SIMPLEQ_FIRST(head); \
|
|
(var) != SIMPLEQ_END(head); \
|
|
(var) = SIMPLEQ_NEXT(var, field))
|
|
|
|
/*
|
|
* Simple queue functions.
|
|
*/
|
|
#define SIMPLEQ_INIT(head) do { \
|
|
(head)->sqh_first = NULL; \
|
|
(head)->sqh_last = &(head)->sqh_first; \
|
|
} while (0)
|
|
|
|
#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
|
|
if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
|
|
(head)->sqh_last = &(elm)->field.sqe_next; \
|
|
(head)->sqh_first = (elm); \
|
|
} while (0)
|
|
|
|
#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
|
|
(elm)->field.sqe_next = NULL; \
|
|
*(head)->sqh_last = (elm); \
|
|
(head)->sqh_last = &(elm)->field.sqe_next; \
|
|
} while (0)
|
|
|
|
#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
|
|
if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
|
|
(head)->sqh_last = &(elm)->field.sqe_next; \
|
|
(listelm)->field.sqe_next = (elm); \
|
|
} while (0)
|
|
|
|
#define SIMPLEQ_REMOVE_HEAD(head, field) do { \
|
|
if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
|
|
(head)->sqh_last = &(head)->sqh_first; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Tail queue definitions.
|
|
*/
|
|
#define TAILQ_HEAD(name, type) \
|
|
struct name { \
|
|
struct type *tqh_first; /* first element */ \
|
|
struct type **tqh_last; /* addr of last next element */ \
|
|
}
|
|
|
|
#define TAILQ_HEAD_INITIALIZER(head) \
|
|
{ NULL, &(head).tqh_first }
|
|
|
|
#define TAILQ_ENTRY(type) \
|
|
struct { \
|
|
struct type *tqe_next; /* next element */ \
|
|
struct type **tqe_prev; /* address of previous next element */ \
|
|
}
|
|
|
|
/*
|
|
* tail queue access methods
|
|
*/
|
|
#define TAILQ_FIRST(head) ((head)->tqh_first)
|
|
#define TAILQ_END(head) NULL
|
|
#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
|
|
#define TAILQ_LAST(head, headname) \
|
|
(*(((struct headname *)((head)->tqh_last))->tqh_last))
|
|
/* XXX */
|
|
#define TAILQ_PREV(elm, headname, field) \
|
|
(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
|
|
#define TAILQ_EMPTY(head) \
|
|
(TAILQ_FIRST(head) == TAILQ_END(head))
|
|
|
|
#define TAILQ_FOREACH(var, head, field) \
|
|
for((var) = TAILQ_FIRST(head); \
|
|
(var) != TAILQ_END(head); \
|
|
(var) = TAILQ_NEXT(var, field))
|
|
|
|
#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
|
|
for((var) = TAILQ_LAST(head, headname); \
|
|
(var) != TAILQ_END(head); \
|
|
(var) = TAILQ_PREV(var, headname, field))
|
|
|
|
/*
|
|
* Tail queue functions.
|
|
*/
|
|
#define TAILQ_INIT(head) do { \
|
|
(head)->tqh_first = NULL; \
|
|
(head)->tqh_last = &(head)->tqh_first; \
|
|
} while (0)
|
|
|
|
#define TAILQ_INSERT_HEAD(head, elm, field) do { \
|
|
if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
|
|
(head)->tqh_first->field.tqe_prev = \
|
|
&(elm)->field.tqe_next; \
|
|
else \
|
|
(head)->tqh_last = &(elm)->field.tqe_next; \
|
|
(head)->tqh_first = (elm); \
|
|
(elm)->field.tqe_prev = &(head)->tqh_first; \
|
|
} while (0)
|
|
|
|
#define TAILQ_INSERT_TAIL(head, elm, field) do { \
|
|
(elm)->field.tqe_next = NULL; \
|
|
(elm)->field.tqe_prev = (head)->tqh_last; \
|
|
*(head)->tqh_last = (elm); \
|
|
(head)->tqh_last = &(elm)->field.tqe_next; \
|
|
} while (0)
|
|
|
|
#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
|
|
if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
|
|
(elm)->field.tqe_next->field.tqe_prev = \
|
|
&(elm)->field.tqe_next; \
|
|
else \
|
|
(head)->tqh_last = &(elm)->field.tqe_next; \
|
|
(listelm)->field.tqe_next = (elm); \
|
|
(elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
|
|
} while (0)
|
|
|
|
#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
|
|
(elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
|
|
(elm)->field.tqe_next = (listelm); \
|
|
*(listelm)->field.tqe_prev = (elm); \
|
|
(listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
|
|
} while (0)
|
|
|
|
#define TAILQ_REMOVE(head, elm, field) do { \
|
|
if (((elm)->field.tqe_next) != NULL) \
|
|
(elm)->field.tqe_next->field.tqe_prev = \
|
|
(elm)->field.tqe_prev; \
|
|
else \
|
|
(head)->tqh_last = (elm)->field.tqe_prev; \
|
|
*(elm)->field.tqe_prev = (elm)->field.tqe_next; \
|
|
_Q_INVALIDATE((elm)->field.tqe_prev); \
|
|
_Q_INVALIDATE((elm)->field.tqe_next); \
|
|
} while (0)
|
|
|
|
#define TAILQ_REPLACE(head, elm, elm2, field) do { \
|
|
if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
|
|
(elm2)->field.tqe_next->field.tqe_prev = \
|
|
&(elm2)->field.tqe_next; \
|
|
else \
|
|
(head)->tqh_last = &(elm2)->field.tqe_next; \
|
|
(elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
|
|
*(elm2)->field.tqe_prev = (elm2); \
|
|
_Q_INVALIDATE((elm)->field.tqe_prev); \
|
|
_Q_INVALIDATE((elm)->field.tqe_next); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Circular queue definitions.
|
|
*/
|
|
#define CIRCLEQ_HEAD(name, type) \
|
|
struct name { \
|
|
struct type *cqh_first; /* first element */ \
|
|
struct type *cqh_last; /* last element */ \
|
|
}
|
|
|
|
#define CIRCLEQ_HEAD_INITIALIZER(head) \
|
|
{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
|
|
|
|
#define CIRCLEQ_ENTRY(type) \
|
|
struct { \
|
|
struct type *cqe_next; /* next element */ \
|
|
struct type *cqe_prev; /* previous element */ \
|
|
}
|
|
|
|
/*
|
|
* Circular queue access methods
|
|
*/
|
|
#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
|
|
#define CIRCLEQ_LAST(head) ((head)->cqh_last)
|
|
#define CIRCLEQ_END(head) ((void *)(head))
|
|
#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
|
|
#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
|
|
#define CIRCLEQ_EMPTY(head) \
|
|
(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
|
|
|
|
#define CIRCLEQ_FOREACH(var, head, field) \
|
|
for((var) = CIRCLEQ_FIRST(head); \
|
|
(var) != CIRCLEQ_END(head); \
|
|
(var) = CIRCLEQ_NEXT(var, field))
|
|
|
|
#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
|
|
for((var) = CIRCLEQ_LAST(head); \
|
|
(var) != CIRCLEQ_END(head); \
|
|
(var) = CIRCLEQ_PREV(var, field))
|
|
|
|
/*
|
|
* Circular queue functions.
|
|
*/
|
|
#define CIRCLEQ_INIT(head) do { \
|
|
(head)->cqh_first = CIRCLEQ_END(head); \
|
|
(head)->cqh_last = CIRCLEQ_END(head); \
|
|
} while (0)
|
|
|
|
#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
|
|
(elm)->field.cqe_next = (listelm)->field.cqe_next; \
|
|
(elm)->field.cqe_prev = (listelm); \
|
|
if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
|
|
(head)->cqh_last = (elm); \
|
|
else \
|
|
(listelm)->field.cqe_next->field.cqe_prev = (elm); \
|
|
(listelm)->field.cqe_next = (elm); \
|
|
} while (0)
|
|
|
|
#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
|
|
(elm)->field.cqe_next = (listelm); \
|
|
(elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
|
|
if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
|
|
(head)->cqh_first = (elm); \
|
|
else \
|
|
(listelm)->field.cqe_prev->field.cqe_next = (elm); \
|
|
(listelm)->field.cqe_prev = (elm); \
|
|
} while (0)
|
|
|
|
#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
|
|
(elm)->field.cqe_next = (head)->cqh_first; \
|
|
(elm)->field.cqe_prev = CIRCLEQ_END(head); \
|
|
if ((head)->cqh_last == CIRCLEQ_END(head)) \
|
|
(head)->cqh_last = (elm); \
|
|
else \
|
|
(head)->cqh_first->field.cqe_prev = (elm); \
|
|
(head)->cqh_first = (elm); \
|
|
} while (0)
|
|
|
|
#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
|
|
(elm)->field.cqe_next = CIRCLEQ_END(head); \
|
|
(elm)->field.cqe_prev = (head)->cqh_last; \
|
|
if ((head)->cqh_first == CIRCLEQ_END(head)) \
|
|
(head)->cqh_first = (elm); \
|
|
else \
|
|
(head)->cqh_last->field.cqe_next = (elm); \
|
|
(head)->cqh_last = (elm); \
|
|
} while (0)
|
|
|
|
#define CIRCLEQ_REMOVE(head, elm, field) do { \
|
|
if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
|
|
(head)->cqh_last = (elm)->field.cqe_prev; \
|
|
else \
|
|
(elm)->field.cqe_next->field.cqe_prev = \
|
|
(elm)->field.cqe_prev; \
|
|
if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
|
|
(head)->cqh_first = (elm)->field.cqe_next; \
|
|
else \
|
|
(elm)->field.cqe_prev->field.cqe_next = \
|
|
(elm)->field.cqe_next; \
|
|
_Q_INVALIDATE((elm)->field.cqe_prev); \
|
|
_Q_INVALIDATE((elm)->field.cqe_next); \
|
|
} while (0)
|
|
|
|
#define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
|
|
if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
|
|
CIRCLEQ_END(head)) \
|
|
(head).cqh_last = (elm2); \
|
|
else \
|
|
(elm2)->field.cqe_next->field.cqe_prev = (elm2); \
|
|
if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
|
|
CIRCLEQ_END(head)) \
|
|
(head).cqh_first = (elm2); \
|
|
else \
|
|
(elm2)->field.cqe_prev->field.cqe_next = (elm2); \
|
|
_Q_INVALIDATE((elm)->field.cqe_prev); \
|
|
_Q_INVALIDATE((elm)->field.cqe_next); \
|
|
} while (0)
|
|
|
|
#endif /* !_SYS_QUEUE_H_ */
|