matterbridge/vendor/golang.org/x/text/internal/language/language.go

597 lines
17 KiB
Go
Raw Normal View History

2020-08-09 22:29:54 +00:00
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go gen_common.go -output tables.go
package language // import "golang.org/x/text/internal/language"
// TODO: Remove above NOTE after:
// - verifying that tables are dropped correctly (most notably matcher tables).
import (
"errors"
"fmt"
"strings"
)
const (
// maxCoreSize is the maximum size of a BCP 47 tag without variants and
// extensions. Equals max lang (3) + script (4) + max reg (3) + 2 dashes.
maxCoreSize = 12
// max99thPercentileSize is a somewhat arbitrary buffer size that presumably
// is large enough to hold at least 99% of the BCP 47 tags.
max99thPercentileSize = 32
// maxSimpleUExtensionSize is the maximum size of a -u extension with one
// key-type pair. Equals len("-u-") + key (2) + dash + max value (8).
maxSimpleUExtensionSize = 14
)
// Tag represents a BCP 47 language tag. It is used to specify an instance of a
// specific language or locale. All language tag values are guaranteed to be
// well-formed. The zero value of Tag is Und.
type Tag struct {
// TODO: the following fields have the form TagTypeID. This name is chosen
// to allow refactoring the public package without conflicting with its
// Base, Script, and Region methods. Once the transition is fully completed
// the ID can be stripped from the name.
LangID Language
RegionID Region
// TODO: we will soon run out of positions for ScriptID. Idea: instead of
// storing lang, region, and ScriptID codes, store only the compact index and
// have a lookup table from this code to its expansion. This greatly speeds
// up table lookup, speed up common variant cases.
// This will also immediately free up 3 extra bytes. Also, the pVariant
// field can now be moved to the lookup table, as the compact index uniquely
// determines the offset of a possible variant.
ScriptID Script
pVariant byte // offset in str, includes preceding '-'
pExt uint16 // offset of first extension, includes preceding '-'
// str is the string representation of the Tag. It will only be used if the
// tag has variants or extensions.
str string
}
// Make is a convenience wrapper for Parse that omits the error.
// In case of an error, a sensible default is returned.
func Make(s string) Tag {
t, _ := Parse(s)
return t
}
// Raw returns the raw base language, script and region, without making an
// attempt to infer their values.
// TODO: consider removing
func (t Tag) Raw() (b Language, s Script, r Region) {
return t.LangID, t.ScriptID, t.RegionID
}
// equalTags compares language, script and region subtags only.
func (t Tag) equalTags(a Tag) bool {
return t.LangID == a.LangID && t.ScriptID == a.ScriptID && t.RegionID == a.RegionID
}
// IsRoot returns true if t is equal to language "und".
func (t Tag) IsRoot() bool {
if int(t.pVariant) < len(t.str) {
return false
}
return t.equalTags(Und)
}
// IsPrivateUse reports whether the Tag consists solely of an IsPrivateUse use
// tag.
func (t Tag) IsPrivateUse() bool {
return t.str != "" && t.pVariant == 0
}
// RemakeString is used to update t.str in case lang, script or region changed.
// It is assumed that pExt and pVariant still point to the start of the
// respective parts.
func (t *Tag) RemakeString() {
if t.str == "" {
return
}
extra := t.str[t.pVariant:]
if t.pVariant > 0 {
extra = extra[1:]
}
if t.equalTags(Und) && strings.HasPrefix(extra, "x-") {
t.str = extra
t.pVariant = 0
t.pExt = 0
return
}
var buf [max99thPercentileSize]byte // avoid extra memory allocation in most cases.
b := buf[:t.genCoreBytes(buf[:])]
if extra != "" {
diff := len(b) - int(t.pVariant)
b = append(b, '-')
b = append(b, extra...)
t.pVariant = uint8(int(t.pVariant) + diff)
t.pExt = uint16(int(t.pExt) + diff)
} else {
t.pVariant = uint8(len(b))
t.pExt = uint16(len(b))
}
t.str = string(b)
}
// genCoreBytes writes a string for the base languages, script and region tags
// to the given buffer and returns the number of bytes written. It will never
// write more than maxCoreSize bytes.
func (t *Tag) genCoreBytes(buf []byte) int {
n := t.LangID.StringToBuf(buf[:])
if t.ScriptID != 0 {
n += copy(buf[n:], "-")
n += copy(buf[n:], t.ScriptID.String())
}
if t.RegionID != 0 {
n += copy(buf[n:], "-")
n += copy(buf[n:], t.RegionID.String())
}
return n
}
// String returns the canonical string representation of the language tag.
func (t Tag) String() string {
if t.str != "" {
return t.str
}
if t.ScriptID == 0 && t.RegionID == 0 {
return t.LangID.String()
}
buf := [maxCoreSize]byte{}
return string(buf[:t.genCoreBytes(buf[:])])
}
// MarshalText implements encoding.TextMarshaler.
func (t Tag) MarshalText() (text []byte, err error) {
if t.str != "" {
text = append(text, t.str...)
} else if t.ScriptID == 0 && t.RegionID == 0 {
text = append(text, t.LangID.String()...)
} else {
buf := [maxCoreSize]byte{}
text = buf[:t.genCoreBytes(buf[:])]
}
return text, nil
}
// UnmarshalText implements encoding.TextUnmarshaler.
func (t *Tag) UnmarshalText(text []byte) error {
tag, err := Parse(string(text))
*t = tag
return err
}
// Variants returns the part of the tag holding all variants or the empty string
// if there are no variants defined.
func (t Tag) Variants() string {
if t.pVariant == 0 {
return ""
}
return t.str[t.pVariant:t.pExt]
}
// VariantOrPrivateUseTags returns variants or private use tags.
func (t Tag) VariantOrPrivateUseTags() string {
if t.pExt > 0 {
return t.str[t.pVariant:t.pExt]
}
return t.str[t.pVariant:]
}
// HasString reports whether this tag defines more than just the raw
// components.
func (t Tag) HasString() bool {
return t.str != ""
}
// Parent returns the CLDR parent of t. In CLDR, missing fields in data for a
// specific language are substituted with fields from the parent language.
// The parent for a language may change for newer versions of CLDR.
func (t Tag) Parent() Tag {
if t.str != "" {
// Strip the variants and extensions.
b, s, r := t.Raw()
t = Tag{LangID: b, ScriptID: s, RegionID: r}
if t.RegionID == 0 && t.ScriptID != 0 && t.LangID != 0 {
base, _ := addTags(Tag{LangID: t.LangID})
if base.ScriptID == t.ScriptID {
return Tag{LangID: t.LangID}
}
}
return t
}
if t.LangID != 0 {
if t.RegionID != 0 {
maxScript := t.ScriptID
if maxScript == 0 {
max, _ := addTags(t)
maxScript = max.ScriptID
}
for i := range parents {
if Language(parents[i].lang) == t.LangID && Script(parents[i].maxScript) == maxScript {
for _, r := range parents[i].fromRegion {
if Region(r) == t.RegionID {
return Tag{
LangID: t.LangID,
ScriptID: Script(parents[i].script),
RegionID: Region(parents[i].toRegion),
}
}
}
}
}
// Strip the script if it is the default one.
base, _ := addTags(Tag{LangID: t.LangID})
if base.ScriptID != maxScript {
return Tag{LangID: t.LangID, ScriptID: maxScript}
}
return Tag{LangID: t.LangID}
} else if t.ScriptID != 0 {
// The parent for an base-script pair with a non-default script is
// "und" instead of the base language.
base, _ := addTags(Tag{LangID: t.LangID})
if base.ScriptID != t.ScriptID {
return Und
}
return Tag{LangID: t.LangID}
}
}
return Und
}
// ParseExtension parses s as an extension and returns it on success.
func ParseExtension(s string) (ext string, err error) {
scan := makeScannerString(s)
var end int
if n := len(scan.token); n != 1 {
return "", ErrSyntax
}
scan.toLower(0, len(scan.b))
end = parseExtension(&scan)
if end != len(s) {
return "", ErrSyntax
}
return string(scan.b), nil
}
// HasVariants reports whether t has variants.
func (t Tag) HasVariants() bool {
return uint16(t.pVariant) < t.pExt
}
// HasExtensions reports whether t has extensions.
func (t Tag) HasExtensions() bool {
return int(t.pExt) < len(t.str)
}
// Extension returns the extension of type x for tag t. It will return
// false for ok if t does not have the requested extension. The returned
// extension will be invalid in this case.
func (t Tag) Extension(x byte) (ext string, ok bool) {
for i := int(t.pExt); i < len(t.str)-1; {
var ext string
i, ext = getExtension(t.str, i)
if ext[0] == x {
return ext, true
}
}
return "", false
}
// Extensions returns all extensions of t.
func (t Tag) Extensions() []string {
e := []string{}
for i := int(t.pExt); i < len(t.str)-1; {
var ext string
i, ext = getExtension(t.str, i)
e = append(e, ext)
}
return e
}
// TypeForKey returns the type associated with the given key, where key and type
// are of the allowed values defined for the Unicode locale extension ('u') in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
// TypeForKey will traverse the inheritance chain to get the correct value.
func (t Tag) TypeForKey(key string) string {
if start, end, _ := t.findTypeForKey(key); end != start {
return t.str[start:end]
}
return ""
}
var (
errPrivateUse = errors.New("cannot set a key on a private use tag")
errInvalidArguments = errors.New("invalid key or type")
)
// SetTypeForKey returns a new Tag with the key set to type, where key and type
// are of the allowed values defined for the Unicode locale extension ('u') in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
// An empty value removes an existing pair with the same key.
func (t Tag) SetTypeForKey(key, value string) (Tag, error) {
if t.IsPrivateUse() {
return t, errPrivateUse
}
if len(key) != 2 {
return t, errInvalidArguments
}
// Remove the setting if value is "".
if value == "" {
start, end, _ := t.findTypeForKey(key)
if start != end {
// Remove key tag and leading '-'.
start -= 4
// Remove a possible empty extension.
if (end == len(t.str) || t.str[end+2] == '-') && t.str[start-2] == '-' {
start -= 2
}
if start == int(t.pVariant) && end == len(t.str) {
t.str = ""
t.pVariant, t.pExt = 0, 0
} else {
t.str = fmt.Sprintf("%s%s", t.str[:start], t.str[end:])
}
}
return t, nil
}
if len(value) < 3 || len(value) > 8 {
return t, errInvalidArguments
}
var (
buf [maxCoreSize + maxSimpleUExtensionSize]byte
uStart int // start of the -u extension.
)
// Generate the tag string if needed.
if t.str == "" {
uStart = t.genCoreBytes(buf[:])
buf[uStart] = '-'
uStart++
}
// Create new key-type pair and parse it to verify.
b := buf[uStart:]
copy(b, "u-")
copy(b[2:], key)
b[4] = '-'
b = b[:5+copy(b[5:], value)]
scan := makeScanner(b)
if parseExtensions(&scan); scan.err != nil {
return t, scan.err
}
// Assemble the replacement string.
if t.str == "" {
t.pVariant, t.pExt = byte(uStart-1), uint16(uStart-1)
t.str = string(buf[:uStart+len(b)])
} else {
s := t.str
start, end, hasExt := t.findTypeForKey(key)
if start == end {
if hasExt {
b = b[2:]
}
t.str = fmt.Sprintf("%s-%s%s", s[:start], b, s[end:])
} else {
t.str = fmt.Sprintf("%s%s%s", s[:start], value, s[end:])
}
}
return t, nil
}
// findKeyAndType returns the start and end position for the type corresponding
// to key or the point at which to insert the key-value pair if the type
// wasn't found. The hasExt return value reports whether an -u extension was present.
// Note: the extensions are typically very small and are likely to contain
// only one key-type pair.
func (t Tag) findTypeForKey(key string) (start, end int, hasExt bool) {
p := int(t.pExt)
if len(key) != 2 || p == len(t.str) || p == 0 {
return p, p, false
}
s := t.str
// Find the correct extension.
for p++; s[p] != 'u'; p++ {
if s[p] > 'u' {
p--
return p, p, false
}
if p = nextExtension(s, p); p == len(s) {
return len(s), len(s), false
}
}
// Proceed to the hyphen following the extension name.
p++
// curKey is the key currently being processed.
curKey := ""
// Iterate over keys until we get the end of a section.
for {
// p points to the hyphen preceding the current token.
if p3 := p + 3; s[p3] == '-' {
// Found a key.
// Check whether we just processed the key that was requested.
if curKey == key {
return start, p, true
}
// Set to the next key and continue scanning type tokens.
curKey = s[p+1 : p3]
if curKey > key {
return p, p, true
}
// Start of the type token sequence.
start = p + 4
// A type is at least 3 characters long.
p += 7 // 4 + 3
} else {
// Attribute or type, which is at least 3 characters long.
p += 4
}
// p points past the third character of a type or attribute.
max := p + 5 // maximum length of token plus hyphen.
if len(s) < max {
max = len(s)
}
for ; p < max && s[p] != '-'; p++ {
}
// Bail if we have exhausted all tokens or if the next token starts
// a new extension.
if p == len(s) || s[p+2] == '-' {
if curKey == key {
return start, p, true
}
return p, p, true
}
}
}
// ParseBase parses a 2- or 3-letter ISO 639 code.
// It returns a ValueError if s is a well-formed but unknown language identifier
// or another error if another error occurred.
func ParseBase(s string) (Language, error) {
if n := len(s); n < 2 || 3 < n {
return 0, ErrSyntax
}
var buf [3]byte
return getLangID(buf[:copy(buf[:], s)])
}
// ParseScript parses a 4-letter ISO 15924 code.
// It returns a ValueError if s is a well-formed but unknown script identifier
// or another error if another error occurred.
func ParseScript(s string) (Script, error) {
if len(s) != 4 {
return 0, ErrSyntax
}
var buf [4]byte
return getScriptID(script, buf[:copy(buf[:], s)])
}
// EncodeM49 returns the Region for the given UN M.49 code.
// It returns an error if r is not a valid code.
func EncodeM49(r int) (Region, error) {
return getRegionM49(r)
}
// ParseRegion parses a 2- or 3-letter ISO 3166-1 or a UN M.49 code.
// It returns a ValueError if s is a well-formed but unknown region identifier
// or another error if another error occurred.
func ParseRegion(s string) (Region, error) {
if n := len(s); n < 2 || 3 < n {
return 0, ErrSyntax
}
var buf [3]byte
return getRegionID(buf[:copy(buf[:], s)])
}
// IsCountry returns whether this region is a country or autonomous area. This
// includes non-standard definitions from CLDR.
func (r Region) IsCountry() bool {
if r == 0 || r.IsGroup() || r.IsPrivateUse() && r != _XK {
return false
}
return true
}
// IsGroup returns whether this region defines a collection of regions. This
// includes non-standard definitions from CLDR.
func (r Region) IsGroup() bool {
if r == 0 {
return false
}
return int(regionInclusion[r]) < len(regionContainment)
}
// Contains returns whether Region c is contained by Region r. It returns true
// if c == r.
func (r Region) Contains(c Region) bool {
if r == c {
return true
}
g := regionInclusion[r]
if g >= nRegionGroups {
return false
}
m := regionContainment[g]
d := regionInclusion[c]
b := regionInclusionBits[d]
// A contained country may belong to multiple disjoint groups. Matching any
// of these indicates containment. If the contained region is a group, it
// must strictly be a subset.
if d >= nRegionGroups {
return b&m != 0
}
return b&^m == 0
}
var errNoTLD = errors.New("language: region is not a valid ccTLD")
// TLD returns the country code top-level domain (ccTLD). UK is returned for GB.
// In all other cases it returns either the region itself or an error.
//
// This method may return an error for a region for which there exists a
// canonical form with a ccTLD. To get that ccTLD canonicalize r first. The
// region will already be canonicalized it was obtained from a Tag that was
// obtained using any of the default methods.
func (r Region) TLD() (Region, error) {
// See http://en.wikipedia.org/wiki/Country_code_top-level_domain for the
// difference between ISO 3166-1 and IANA ccTLD.
if r == _GB {
r = _UK
}
if (r.typ() & ccTLD) == 0 {
return 0, errNoTLD
}
return r, nil
}
// Canonicalize returns the region or a possible replacement if the region is
// deprecated. It will not return a replacement for deprecated regions that
// are split into multiple regions.
func (r Region) Canonicalize() Region {
if cr := normRegion(r); cr != 0 {
return cr
}
return r
}
// Variant represents a registered variant of a language as defined by BCP 47.
type Variant struct {
ID uint8
str string
}
// ParseVariant parses and returns a Variant. An error is returned if s is not
// a valid variant.
func ParseVariant(s string) (Variant, error) {
s = strings.ToLower(s)
if id, ok := variantIndex[s]; ok {
return Variant{id, s}, nil
}
return Variant{}, NewValueError([]byte(s))
}
// String returns the string representation of the variant.
func (v Variant) String() string {
return v.str
}