# nim-eth - Node Discovery Protocol v5 # Copyright (c) 2020-2021 Status Research & Development GmbH # Licensed and distributed under either of # * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. ## Node Discovery Protocol v5 ## ## Node discovery protocol implementation as per specification: ## https://github.com/ethereum/devp2p/blob/master/discv5/discv5.md ## ## This node discovery protocol implementation uses the same underlying ## implementation of routing table as is also used for the discovery v4 ## implementation, which is the same or similar as the one described in the ## original Kademlia paper: ## https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf ## ## This might not be the most optimal implementation for the node discovery ## protocol v5. Why? ## ## The Kademlia paper describes an implementation that starts off from one ## k-bucket, and keeps splitting the bucket as more nodes are discovered and ## added. The bucket splits only on the part of the binary tree where our own ## node its id belongs too (same prefix). Resulting eventually in a k-bucket per ## logarithmic distance (log base2 distance). Well, not really, as nodes with ## ids in the closer distance ranges will never be found. And because of this an ## optimisation is done where buckets will also split sometimes even if the ## nodes own id does not have the same prefix (this is to avoid creating highly ## unbalanced branches which would require longer lookups). ## ## Now, some implementations take a more simplified approach. They just create ## directly a bucket for each possible logarithmic distance (e.g. here 1->256). ## Some implementations also don't create buckets with logarithmic distance ## lower than a certain value (e.g. only 1/15th of the highest buckets), ## because the closer to the node (the lower the distance), the less chance ## there is to still find nodes. ## ## The discovery protocol v4 its `FindNode` call will request the k closest ## nodes. As does original Kademlia. This effectively puts the work at the node ## that gets the request. This node will have to check its buckets and gather ## the closest. Some implementations go over all the nodes in all the buckets ## for this (e.g. go-ethereum discovery v4). However, in our bucket splitting ## approach, this search is improved. ## ## In the discovery protocol v5 the `FindNode` call is changed and now the ## logarithmic distance is passed as parameter instead of the NodeId. And only ## nodes that match that logarithmic distance are allowed to be returned. ## This change was made to not put the trust at the requested node for selecting ## the closest nodes. To counter a possible (mistaken) difference in ## implementation, but more importantly for security reasons. See also: ## https://github.com/ethereum/devp2p/blob/master/discv5/discv5-rationale.md#115-guard-against-kademlia-implementation-flaws ## ## The result is that in an implementation which just stores buckets per ## logarithmic distance, it simply needs to return the right bucket. In our ## split-bucket implementation, this cannot be done as such and thus the closest ## neighbours search is still done. And to do this, a reverse calculation of an ## id at given logarithmic distance is needed (which is why there is the ## `idAtDistance` proc). Next, nodes with invalid distances need to be filtered ## out to be compliant to the specification. This can most likely get further ## optimised, but it sounds likely better to switch away from the split-bucket ## approach. I believe that the main benefit it has is improved lookups ## (due to no unbalanced branches), and it looks like this will be negated by ## limiting the returned nodes to only the ones of the requested logarithmic ## distance for the `FindNode` call. ## This `FindNode` change in discovery v5 will also have an effect on the ## efficiency of the network. Work will be moved from the receiver of ## `FindNodes` to the requester. But this also means more network traffic, ## as less nodes will potentially be passed around per `FindNode` call, and thus ## more requests will be needed for a lookup (adding bandwidth and latency). ## This might be a concern for mobile devices. {.push raises: [Defect].} import std/[tables, sets, options, math, sequtils, algorithm], stew/shims/net as stewNet, json_serialization/std/net, stew/[endians2, results], chronicles, chronos, stint, bearssl, metrics, eth/[rlp, keys, async_utils], "."/[transport, messages, messages_encoding, node, routing_table, enr, random2, ip_vote, nodes_verification] import nimcrypto except toHex export options, results, node, enr declareCounter discovery_message_requests_outgoing, "Discovery protocol outgoing message requests", labels = ["response"] declareCounter discovery_message_requests_incoming, "Discovery protocol incoming message requests", labels = ["response"] declareCounter discovery_unsolicited_messages, "Discovery protocol unsolicited or timed-out messages" declareCounter discovery_enr_auto_update, "Amount of discovery IP:port address ENR auto updates" logScope: topics = "discv5" const alpha = 3 ## Kademlia concurrency factor lookupRequestLimit = 3 ## Amount of distances requested in a single Findnode ## message for a lookup or query findNodeResultLimit = 16 ## Maximum amount of ENRs in the total Nodes messages ## that will be processed maxNodesPerMessage = 3 ## Maximum amount of ENRs per individual Nodes message refreshInterval = 5.minutes ## Interval of launching a random query to ## refresh the routing table. revalidateMax = 10000 ## Revalidation of a peer is done between 0 and this ## value in milliseconds ipMajorityInterval = 5.minutes ## Interval for checking the latest IP:Port ## majority and updating this when ENR auto update is set. initialLookups = 1 ## Amount of lookups done when populating the routing table responseTimeout* = 4.seconds ## timeout for the response of a request-response ## call type DiscoveryConfig* = object tableIpLimits*: TableIpLimits bitsPerHop*: int Protocol* = ref object localNode*: Node privateKey: PrivateKey transport*: Transport[Protocol] # exported for tests routingTable*: RoutingTable awaitedMessages: Table[(NodeId, RequestId), Future[Option[Message]]] refreshLoop: Future[void] revalidateLoop: Future[void] ipMajorityLoop: Future[void] lastLookup: chronos.Moment bootstrapRecords*: seq[Record] ipVote: IpVote enrAutoUpdate: bool talkProtocols*: Table[seq[byte], TalkProtocol] # TODO: Table is a bit of # overkill here, use sequence rng*: ref BrHmacDrbgContext TalkProtocolHandler* = proc(p: TalkProtocol, request: seq[byte], fromId: NodeId, fromUdpAddress: Address): seq[byte] {.gcsafe, raises: [Defect].} TalkProtocol* = ref object of RootObj protocolHandler*: TalkProtocolHandler DiscResult*[T] = Result[T, cstring] const defaultDiscoveryConfig* = DiscoveryConfig( tableIpLimits: DefaultTableIpLimits, bitsPerHop: DefaultBitsPerHop) proc addNode*(d: Protocol, node: Node): bool = ## Add `Node` to discovery routing table. ## ## Returns true only when `Node` was added as a new entry to a bucket in the ## routing table. if d.routingTable.addNode(node) == Added: return true else: return false proc addNode*(d: Protocol, r: Record): bool = ## Add `Node` from a `Record` to discovery routing table. ## ## Returns false only if no valid `Node` can be created from the `Record` or ## on the conditions of `addNode` from a `Node`. let node = newNode(r) if node.isOk(): return d.addNode(node[]) proc addNode*(d: Protocol, enr: EnrUri): bool = ## Add `Node` from a ENR URI to discovery routing table. ## ## Returns false if no valid ENR URI, or on the conditions of `addNode` from ## an `Record`. var r: Record let res = r.fromURI(enr) if res: return d.addNode(r) proc getNode*(d: Protocol, id: NodeId): Option[Node] = ## Get the node with id from the routing table. d.routingTable.getNode(id) proc randomNodes*(d: Protocol, maxAmount: int): seq[Node] = ## Get a `maxAmount` of random nodes from the local routing table. d.routingTable.randomNodes(maxAmount) proc randomNodes*(d: Protocol, maxAmount: int, pred: proc(x: Node): bool {.gcsafe, noSideEffect.}): seq[Node] = ## Get a `maxAmount` of random nodes from the local routing table with the ## `pred` predicate function applied as filter on the nodes selected. d.routingTable.randomNodes(maxAmount, pred) proc randomNodes*(d: Protocol, maxAmount: int, enrField: (string, seq[byte])): seq[Node] = ## Get a `maxAmount` of random nodes from the local routing table. The ## the nodes selected are filtered by provided `enrField`. d.randomNodes(maxAmount, proc(x: Node): bool = x.record.contains(enrField)) proc neighbours*(d: Protocol, id: NodeId, k: int = BUCKET_SIZE, seenOnly = false): seq[Node] = ## Return up to k neighbours (closest node ids) of the given node id. d.routingTable.neighbours(id, k, seenOnly) proc neighboursAtDistances*(d: Protocol, distances: seq[uint16], k: int = BUCKET_SIZE, seenOnly = false): seq[Node] = ## Return up to k neighbours (closest node ids) at given distances. d.routingTable.neighboursAtDistances(distances, k, seenOnly) proc nodesDiscovered*(d: Protocol): int = d.routingTable.len func privKey*(d: Protocol): lent PrivateKey = d.privateKey func getRecord*(d: Protocol): Record = ## Get the ENR of the local node. d.localNode.record proc updateRecord*( d: Protocol, enrFields: openArray[(string, seq[byte])]): DiscResult[void] = ## Update the ENR of the local node with provided `enrFields` k:v pairs. let fields = mapIt(enrFields, toFieldPair(it[0], it[1])) d.localNode.record.update(d.privateKey, fields) # TODO: Would it make sense to actively ping ("broadcast") to all the peers # we stored a handshake with in order to get that ENR updated? proc sendResponse(d: Protocol, dstId: NodeId, dstAddr: Address, message: SomeMessage, reqId: RequestId) = ## send Response using the specifid reqId d.transport.sendMessage(dstId, dstAddr, encodeMessage(message, reqId)) proc sendNodes(d: Protocol, toId: NodeId, toAddr: Address, reqId: RequestId, nodes: openArray[Node]) = proc sendNodes(d: Protocol, toId: NodeId, toAddr: Address, message: NodesMessage, reqId: RequestId) {.nimcall.} = trace "Respond message packet", dstId = toId, address = toAddr, kind = MessageKind.nodes d.sendResponse(toId, toAddr, message, reqId) if nodes.len == 0: # In case of 0 nodes, a reply is still needed d.sendNodes(toId, toAddr, NodesMessage(total: 1, enrs: @[]), reqId) return var message: NodesMessage # TODO: Do the total calculation based on the max UDP packet size we want to # send and the ENR size of all (max 16) nodes. # Which UDP packet size to take? 1280? 576? message.total = ceil(nodes.len / maxNodesPerMessage).uint32 for i in 0 ..< nodes.len: message.enrs.add(nodes[i].record) if message.enrs.len == maxNodesPerMessage: d.sendNodes(toId, toAddr, message, reqId) message.enrs.setLen(0) if message.enrs.len != 0: d.sendNodes(toId, toAddr, message, reqId) proc handlePing(d: Protocol, fromId: NodeId, fromAddr: Address, ping: PingMessage, reqId: RequestId) = let pong = PongMessage(enrSeq: d.localNode.record.seqNum, ip: fromAddr.ip, port: fromAddr.port.uint16) trace "Respond message packet", dstId = fromId, address = fromAddr, kind = MessageKind.pong d.sendResponse(fromId, fromAddr, pong, reqId) proc handleFindNode(d: Protocol, fromId: NodeId, fromAddr: Address, fn: FindNodeMessage, reqId: RequestId) = if fn.distances.len == 0: d.sendNodes(fromId, fromAddr, reqId, []) elif fn.distances.contains(0): # A request for our own record. # It would be a weird request if there are more distances next to 0 # requested, so in this case lets just pass only our own. TODO: OK? d.sendNodes(fromId, fromAddr, reqId, [d.localNode]) else: # TODO: Still deduplicate also? if fn.distances.all(proc (x: uint16): bool = return x <= 256): d.sendNodes(fromId, fromAddr, reqId, d.routingTable.neighboursAtDistances(fn.distances, seenOnly = true)) else: # At least one invalid distance, but the polite node we are, still respond # with empty nodes. d.sendNodes(fromId, fromAddr, reqId, []) proc handleTalkReq(d: Protocol, fromId: NodeId, fromAddr: Address, talkreq: TalkReqMessage, reqId: RequestId) = let talkProtocol = d.talkProtocols.getOrDefault(talkreq.protocol) let talkresp = if talkProtocol.isNil() or talkProtocol.protocolHandler.isNil(): # Protocol identifier that is not registered and thus not supported. An # empty response is send as per specification. TalkRespMessage(response: @[]) else: TalkRespMessage(response: talkProtocol.protocolHandler(talkProtocol, talkreq.request, fromId, fromAddr)) trace "Respond message packet", dstId = fromId, address = fromAddr, kind = MessageKind.talkresp d.sendResponse(fromId, fromAddr, talkresp, reqId) proc handleMessage(d: Protocol, srcId: NodeId, fromAddr: Address, message: Message) = case message.kind of ping: discovery_message_requests_incoming.inc() d.handlePing(srcId, fromAddr, message.ping, message.reqId) of findNode: discovery_message_requests_incoming.inc() d.handleFindNode(srcId, fromAddr, message.findNode, message.reqId) of talkReq: discovery_message_requests_incoming.inc() d.handleTalkReq(srcId, fromAddr, message.talkReq, message.reqId) of regTopic, topicQuery: discovery_message_requests_incoming.inc() discovery_message_requests_incoming.inc(labelValues = ["no_response"]) trace "Received unimplemented message kind", kind = message.kind, origin = fromAddr else: var waiter: Future[Option[Message]] if d.awaitedMessages.take((srcId, message.reqId), waiter): waiter.complete(some(message)) else: discovery_unsolicited_messages.inc() trace "Timed out or unrequested message", kind = message.kind, origin = fromAddr proc registerTalkProtocol*(d: Protocol, protocolId: seq[byte], protocol: TalkProtocol): DiscResult[void] = # Currently allow only for one handler per talk protocol. if d.talkProtocols.hasKeyOrPut(protocolId, protocol): err("Protocol identifier already registered") else: ok() proc replaceNode(d: Protocol, n: Node) = if n.record notin d.bootstrapRecords: d.routingTable.replaceNode(n) else: # For now we never remove bootstrap nodes. It might make sense to actually # do so and to retry them only in case we drop to a really low amount of # peers in the routing table. debug "Message request to bootstrap node failed", enr = toURI(n.record) proc waitMessage(d: Protocol, fromNode: Node, reqId: RequestId): Future[Option[Message]] = result = newFuture[Option[Message]]("waitMessage") let res = result let key = (fromNode.id, reqId) sleepAsync(responseTimeout).addCallback() do(data: pointer): d.awaitedMessages.del(key) if not res.finished: res.complete(none(Message)) d.awaitedMessages[key] = result proc waitNodes(d: Protocol, fromNode: Node, reqId: RequestId): Future[DiscResult[seq[Record]]] {.async.} = ## Wait for one or more nodes replies. ## ## The first reply will hold the total number of replies expected, and based ## on that, more replies will be awaited. ## If one reply is lost here (timed out), others are ignored too. ## Same counts for out of order receival. var op = await d.waitMessage(fromNode, reqId) if op.isSome: if op.get.kind == nodes: var res = op.get.nodes.enrs let total = op.get.nodes.total for i in 1 ..< total: op = await d.waitMessage(fromNode, reqId) if op.isSome and op.get.kind == nodes: res.add(op.get.nodes.enrs) else: # No error on this as we received some nodes. break return ok(res) else: discovery_message_requests_outgoing.inc(labelValues = ["invalid_response"]) return err("Invalid response to find node message") else: discovery_message_requests_outgoing.inc(labelValues = ["no_response"]) return err("Nodes message not received in time") proc sendRequest*[T: SomeMessage](d: Protocol, toId: NodeId, toAddr: Address, m: T): RequestId = let reqId = RequestId.init(d.rng[]) message = encodeMessage(m, reqId) trace "Send message packet", dstId = toId, toAddr, kind = messageKind(T) discovery_message_requests_outgoing.inc() d.transport.sendMessage(toId, toAddr, message) return reqId proc sendRequest*[T: SomeMessage](d: Protocol, toNode: Node, m: T): RequestId = doAssert(toNode.address.isSome()) let reqId = RequestId.init(d.rng[]) message = encodeMessage(m, reqId) trace "Send message packet", dstId = toNode.id, address = toNode.address, kind = messageKind(T) discovery_message_requests_outgoing.inc() d.transport.sendMessage(toNode, message) return reqId proc ping*(d: Protocol, toNode: Node): Future[DiscResult[PongMessage]] {.async.} = ## Send a discovery ping message. ## ## Returns the received pong message or an error. let reqId = d.sendRequest(toNode, PingMessage(enrSeq: d.localNode.record.seqNum)) let resp = await d.waitMessage(toNode, reqId) if resp.isSome(): if resp.get().kind == pong: d.routingTable.setJustSeen(toNode) return ok(resp.get().pong) else: d.replaceNode(toNode) discovery_message_requests_outgoing.inc(labelValues = ["invalid_response"]) return err("Invalid response to ping message") else: d.replaceNode(toNode) discovery_message_requests_outgoing.inc(labelValues = ["no_response"]) return err("Pong message not received in time") proc findNode*(d: Protocol, toNode: Node, distances: seq[uint16]): Future[DiscResult[seq[Node]]] {.async.} = ## Send a discovery findNode message. ## ## Returns the received nodes or an error. ## Received ENRs are already validated and converted to `Node`. let reqId = d.sendRequest(toNode, FindNodeMessage(distances: distances)) let nodes = await d.waitNodes(toNode, reqId) if nodes.isOk: let res = verifyNodesRecords(nodes.get(), toNode, findNodeResultLimit, distances) d.routingTable.setJustSeen(toNode) return ok(res) else: d.replaceNode(toNode) return err(nodes.error) proc talkReq*(d: Protocol, toNode: Node, protocol, request: seq[byte]): Future[DiscResult[seq[byte]]] {.async.} = ## Send a discovery talkreq message. ## ## Returns the received talkresp message or an error. let reqId = d.sendRequest(toNode, TalkReqMessage(protocol: protocol, request: request)) let resp = await d.waitMessage(toNode, reqId) if resp.isSome(): if resp.get().kind == talkResp: d.routingTable.setJustSeen(toNode) return ok(resp.get().talkResp.response) else: d.replaceNode(toNode) discovery_message_requests_outgoing.inc(labelValues = ["invalid_response"]) return err("Invalid response to talk request message") else: d.replaceNode(toNode) discovery_message_requests_outgoing.inc(labelValues = ["no_response"]) return err("Talk response message not received in time") proc lookupDistances*(target, dest: NodeId): seq[uint16] = let td = logDistance(target, dest) let tdAsInt = int(td) result.add(td) var i = 1 while result.len < lookupRequestLimit: if tdAsInt + i < 256: result.add(td + uint16(i)) if tdAsInt - i > 0: result.add(td - uint16(i)) inc i proc lookupWorker(d: Protocol, destNode: Node, target: NodeId): Future[seq[Node]] {.async.} = let dists = lookupDistances(target, destNode.id) # Instead of doing max `lookupRequestLimit` findNode requests, make use # of the discv5.1 functionality to request nodes for multiple distances. let r = await d.findNode(destNode, dists) if r.isOk: result.add(r[]) # Attempt to add all nodes discovered for n in result: discard d.addNode(n) proc lookup*(d: Protocol, target: NodeId): Future[seq[Node]] {.async.} = ## Perform a lookup for the given target, return the closest n nodes to the ## target. Maximum value for n is `BUCKET_SIZE`. # `closestNodes` holds the k closest nodes to target found, sorted by distance # Unvalidated nodes are used for requests as a form of validation. var closestNodes = d.routingTable.neighbours(target, BUCKET_SIZE, seenOnly = false) var asked, seen = initHashSet[NodeId]() asked.incl(d.localNode.id) # No need to ask our own node seen.incl(d.localNode.id) # No need to discover our own node for node in closestNodes: seen.incl(node.id) var pendingQueries = newSeqOfCap[Future[seq[Node]]](alpha) while true: var i = 0 # Doing `alpha` amount of requests at once as long as closer non queried # nodes are discovered. while i < closestNodes.len and pendingQueries.len < alpha: let n = closestNodes[i] if not asked.containsOrIncl(n.id): pendingQueries.add(d.lookupWorker(n, target)) inc i trace "discv5 pending queries", total = pendingQueries.len if pendingQueries.len == 0: break let query = await one(pendingQueries) trace "Got discv5 lookup query response" let index = pendingQueries.find(query) if index != -1: pendingQueries.del(index) else: error "Resulting query should have been in the pending queries" let nodes = query.read # TODO: Remove node on timed-out query? for n in nodes: if not seen.containsOrIncl(n.id): # If it wasn't seen before, insert node while remaining sorted closestNodes.insert(n, closestNodes.lowerBound(n, proc(x: Node, n: Node): int = cmp(distance(x.id, target), distance(n.id, target)) )) if closestNodes.len > BUCKET_SIZE: closestNodes.del(closestNodes.high()) d.lastLookup = now(chronos.Moment) return closestNodes proc query*(d: Protocol, target: NodeId, k = BUCKET_SIZE): Future[seq[Node]] {.async.} = ## Query k nodes for the given target, returns all nodes found, including the ## nodes queried. ## ## This will take k nodes from the routing table closest to target and ## query them for nodes closest to target. If there are less than k nodes in ## the routing table, nodes returned by the first queries will be used. var queryBuffer = d.routingTable.neighbours(target, k, seenOnly = false) var asked, seen = initHashSet[NodeId]() asked.incl(d.localNode.id) # No need to ask our own node seen.incl(d.localNode.id) # No need to discover our own node for node in queryBuffer: seen.incl(node.id) var pendingQueries = newSeqOfCap[Future[seq[Node]]](alpha) while true: var i = 0 while i < min(queryBuffer.len, k) and pendingQueries.len < alpha: let n = queryBuffer[i] if not asked.containsOrIncl(n.id): pendingQueries.add(d.lookupWorker(n, target)) inc i trace "discv5 pending queries", total = pendingQueries.len if pendingQueries.len == 0: break let query = await one(pendingQueries) trace "Got discv5 lookup query response" let index = pendingQueries.find(query) if index != -1: pendingQueries.del(index) else: error "Resulting query should have been in the pending queries" let nodes = query.read # TODO: Remove node on timed-out query? for n in nodes: if not seen.containsOrIncl(n.id): queryBuffer.add(n) d.lastLookup = now(chronos.Moment) return queryBuffer proc queryRandom*(d: Protocol): Future[seq[Node]] = ## Perform a query for a random target, return all nodes discovered. d.query(NodeId.random(d.rng[])) proc queryRandom*(d: Protocol, enrField: (string, seq[byte])): Future[seq[Node]] {.async.} = ## Perform a query for a random target, return all nodes discovered which ## contain enrField. let nodes = await d.queryRandom() var filtered: seq[Node] for n in nodes: if n.record.contains(enrField): filtered.add(n) return filtered proc resolve*(d: Protocol, id: NodeId): Future[Option[Node]] {.async.} = ## Resolve a `Node` based on provided `NodeId`. ## ## This will first look in the own routing table. If the node is known, it ## will try to contact if for newer information. If node is not known or it ## does not reply, a lookup is done to see if it can find a (newer) record of ## the node on the network. if id == d.localNode.id: return some(d.localNode) let node = d.getNode(id) if node.isSome(): let request = await d.findNode(node.get(), @[0'u16]) # TODO: Handle failures better. E.g. stop on different failures than timeout if request.isOk() and request[].len > 0: return some(request[][0]) let discovered = await d.lookup(id) for n in discovered: if n.id == id: if node.isSome() and node.get().record.seqNum >= n.record.seqNum: return node else: return some(n) return node proc seedTable*(d: Protocol) = ## Seed the table with known nodes. for record in d.bootstrapRecords: if d.addNode(record): debug "Added bootstrap node", uri = toURI(record) else: debug "Bootstrap node could not be added", uri = toURI(record) # TODO: # Persistent stored nodes could be added to seed from here # See: https://github.com/status-im/nim-eth/issues/189 proc populateTable*(d: Protocol) {.async.} = ## Do a set of initial lookups to quickly populate the table. # start with a self target query (neighbour nodes) let selfQuery = await d.query(d.localNode.id) trace "Discovered nodes in self target query", nodes = selfQuery.len # `initialLookups` random queries for i in 0.. n.record.seqNum: # Request new ENR let nodes = await d.findNode(n, @[0'u16]) if nodes.isOk() and nodes[].len > 0: discard d.addNode(nodes[][0]) # Get IP and port from pong message and add it to the ip votes let a = Address(ip: ValidIpAddress.init(res.ip), port: Port(res.port)) d.ipVote.insert(n.id, a) proc revalidateLoop(d: Protocol) {.async.} = ## Loop which revalidates the nodes in the routing table by sending the ping ## message. try: while true: await sleepAsync(milliseconds(d.rng[].rand(revalidateMax))) let n = d.routingTable.nodeToRevalidate() if not n.isNil: traceAsyncErrors d.revalidateNode(n) except CancelledError: trace "revalidateLoop canceled" proc refreshLoop(d: Protocol) {.async.} = ## Loop that refreshes the routing table by starting a random query in case ## no queries were done since `refreshInterval` or more. ## It also refreshes the majority address voted for via pong responses. try: await d.populateTable() while true: let currentTime = now(chronos.Moment) if currentTime > (d.lastLookup + refreshInterval): let randomQuery = await d.queryRandom() trace "Discovered nodes in random target query", nodes = randomQuery.len debug "Total nodes in discv5 routing table", total = d.routingTable.len() await sleepAsync(refreshInterval) except CancelledError: trace "refreshLoop canceled" proc ipMajorityLoop(d: Protocol) {.async.} = ## When `enrAutoUpdate` is enabled, the IP:port combination returned ## by the majority will be used to update the local ENR. ## This should be safe as long as the routing table is not overwhelmed by ## malicious nodes trying to provide invalid addresses. ## Why is that? ## - Only one vote per NodeId is counted, and they are removed over time. ## - IP:port values are provided through the pong message. The local node ## initiates this by first sending a ping message. Unsolicited pong messages ## are ignored. ## - At interval pings are send to the least recently contacted node (tail of ## bucket) from a random bucket from the routing table. ## - Only messages that our node initiates (ping, findnode, talkreq) and that ## successfully get a response move a node to the head of the bucket. ## Additionally, findNode requests have typically a randomness to it, as they ## usually come from a query for random NodeId. ## - Currently, when a peer fails the respond, it gets replaced. It doesn't ## remain at the tail of the bucket. ## - There are IP limits on the buckets and the whole routing table. try: while true: let majority = d.ipVote.majority() if majority.isSome(): if d.localNode.address != majority: let address = majority.get() let previous = d.localNode.address if d.enrAutoUpdate: let res = d.localNode.update(d.privateKey, ip = some(address.ip), udpPort = some(address.port)) if res.isErr: warn "Failed updating ENR with newly discovered external address", majority, previous, error = res.error else: discovery_enr_auto_update.inc() info "Updated ENR with newly discovered external address", majority, previous, uri = toURI(d.localNode.record) else: warn "Discovered new external address but ENR auto update is off", majority, previous else: debug "Discovered external address matches current address", majority, current = d.localNode.address await sleepAsync(ipMajorityInterval) except CancelledError: trace "ipMajorityLoop canceled" func init*( T: type DiscoveryConfig, tableIpLimit: uint, bucketIpLimit: uint, bitsPerHop: int): T = DiscoveryConfig( tableIpLimits: TableIpLimits( tableIpLimit: tableIpLimit, bucketIpLimit: bucketIpLimit), bitsPerHop: bitsPerHop ) proc newProtocol*( privKey: PrivateKey, enrIp: Option[ValidIpAddress], enrTcpPort, enrUdpPort: Option[Port], localEnrFields: openArray[(string, seq[byte])] = [], bootstrapRecords: openArray[Record] = [], previousRecord = none[enr.Record](), bindPort: Port, bindIp = IPv4_any(), enrAutoUpdate = false, config = defaultDiscoveryConfig, rng = newRng()): Protocol = # TODO: Tried adding bindPort = udpPort as parameter but that gave # "Error: internal error: environment misses: udpPort" in nim-beacon-chain. # Anyhow, nim-beacon-chain would also require some changes to support port # remapping through NAT and this API is also subject to change once we # introduce support for ipv4 + ipv6 binding/listening. let extraFields = mapIt(localEnrFields, toFieldPair(it[0], it[1])) # TODO: # - Defect as is now or return a result for enr errors? # - In case incorrect key, allow for new enr based on new key (new node id)? var record: Record if previousRecord.isSome(): record = previousRecord.get() record.update(privKey, enrIp, enrTcpPort, enrUdpPort, extraFields).expect("Record within size limits and correct key") else: record = enr.Record.init(1, privKey, enrIp, enrTcpPort, enrUdpPort, extraFields).expect("Record within size limits") info "ENR initialized", ip = enrIp, tcp = enrTcpPort, udp = enrUdpPort, seqNum = record.seqNum, uri = toURI(record) if enrIp.isNone(): if enrAutoUpdate: notice "No external IP provided for the ENR, this node will not be " & "discoverable until the ENR is updated with the discovered external IP address" else: warn "No external IP provided for the ENR, this node will not be discoverable" let node = newNode(record).expect("Properly initialized record") # TODO Consider whether this should be a Defect doAssert rng != nil, "RNG initialization failed" result = Protocol( privateKey: privKey, localNode: node, bootstrapRecords: @bootstrapRecords, ipVote: IpVote.init(), enrAutoUpdate: enrAutoUpdate, routingTable: RoutingTable.init( node, config.bitsPerHop, config.tableIpLimits, rng), rng: rng) result.transport = newTransport(result, privKey, node, bindPort, bindIp, rng) proc open*(d: Protocol) {.raises: [Defect, CatchableError].} = info "Starting discovery node", node = d.localNode d.transport.open() d.seedTable() proc start*(d: Protocol) = d.refreshLoop = refreshLoop(d) d.revalidateLoop = revalidateLoop(d) d.ipMajorityLoop = ipMajorityLoop(d) proc close*(d: Protocol) = doAssert(not d.transport.closed) debug "Closing discovery node", node = d.localNode if not d.revalidateLoop.isNil: d.revalidateLoop.cancel() if not d.refreshLoop.isNil: d.refreshLoop.cancel() if not d.ipMajorityLoop.isNil: d.ipMajorityLoop.cancel() d.transport.close() proc closeWait*(d: Protocol) {.async.} = doAssert(not d.transport.closed) debug "Closing discovery node", node = d.localNode if not d.revalidateLoop.isNil: await d.revalidateLoop.cancelAndWait() if not d.refreshLoop.isNil: await d.refreshLoop.cancelAndWait() if not d.ipMajorityLoop.isNil: await d.ipMajorityLoop.cancelAndWait() await d.transport.closeWait()