leopard/lhc_rs.cpp

1096 lines
29 KiB
C++

/*
S.-J. Lin, T. Y. Al-Naffouri, Y. S. Han, and W.-H. Chung,
"Novel Polynomial Basis with Fast Fourier Transform and Its Application to Reed-Solomon Erasure Codes"
IEEE Trans. on Information Theory, pp. 6284-6299, November, 2016.
http://ct.ee.ntust.edu.tw/it2016-2.pdf
*/
#include <string.h>
#include <time.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
//------------------------------------------------------------------------------
// Debug
// Some bugs only repro in release mode, so this can be helpful
//#define LHC_DEBUG_IN_RELEASE
#if defined(_DEBUG) || defined(DEBUG) || defined(LHC_DEBUG_IN_RELEASE)
#define LHC_DEBUG
#ifdef _WIN32
#define LHC_DEBUG_BREAK __debugbreak()
#else
#define LHC_DEBUG_BREAK __builtin_trap()
#endif
#define LHC_DEBUG_ASSERT(cond) { if (!(cond)) { LHC_DEBUG_BREAK; } }
#else
#define LHC_DEBUG_BREAK ;
#define LHC_DEBUG_ASSERT(cond) ;
#endif
//------------------------------------------------------------------------------
// Platform/Architecture
#if defined(ANDROID) || defined(IOS)
#define LHC_TARGET_MOBILE
#endif // ANDROID
#if defined(__AVX2__) || (defined (_MSC_VER) && _MSC_VER >= 1900)
#define LHC_TRY_AVX2 /* 256-bit */
#include <immintrin.h>
#define LHC_ALIGN_BYTES 32
#else // __AVX2__
#define LHC_ALIGN_BYTES 16
#endif // __AVX2__
#if !defined(LHC_TARGET_MOBILE)
// Note: MSVC currently only supports SSSE3 but not AVX2
#include <tmmintrin.h> // SSSE3: _mm_shuffle_epi8
#include <emmintrin.h> // SSE2
#endif // LHC_TARGET_MOBILE
#if defined(HAVE_ARM_NEON_H)
#include <arm_neon.h>
#endif // HAVE_ARM_NEON_H
#if defined(LHC_TARGET_MOBILE)
#define LHC_ALIGNED_ACCESSES /* Inputs must be aligned to LHC_ALIGN_BYTES */
# if defined(HAVE_ARM_NEON_H)
// Compiler-specific 128-bit SIMD register keyword
#define LHC_M128 uint8x16_t
#define LHC_TRY_NEON
#else
#define LHC_M128 uint64_t
# endif
#else // LHC_TARGET_MOBILE
// Compiler-specific 128-bit SIMD register keyword
#define LHC_M128 __m128i
#endif // LHC_TARGET_MOBILE
#ifdef LHC_TRY_AVX2
// Compiler-specific 256-bit SIMD register keyword
#define LHC_M256 __m256i
#endif
// Compiler-specific C++11 restrict keyword
#define LHC_RESTRICT __restrict
// Compiler-specific force inline keyword
#ifdef _MSC_VER
#define LHC_FORCE_INLINE inline __forceinline
#else
#define LHC_FORCE_INLINE inline __attribute__((always_inline))
#endif
// Compiler-specific alignment keyword
// Note: Alignment only matters for ARM NEON where it should be 16
#ifdef _MSC_VER
#define LHC_ALIGNED __declspec(align(LHC_ALIGN_BYTES))
#else // _MSC_VER
#define LHC_ALIGNED __attribute__((aligned(LHC_ALIGN_BYTES)))
#endif // _MSC_VER
//------------------------------------------------------------------------------
// Runtime CPU Architecture Check
//
// Feature checks stolen shamelessly from
// https://github.com/jedisct1/libsodium/blob/master/src/libsodium/sodium/runtime.c
#if defined(HAVE_ANDROID_GETCPUFEATURES)
#include <cpu-features.h>
#endif
#if defined(LHC_TRY_NEON)
# if defined(IOS) && defined(__ARM_NEON__)
// Requires iPhone 5S or newer
static const bool CpuHasNeon = true;
static const bool CpuHasNeon64 = true;
# else
// Remember to add LOCAL_STATIC_LIBRARIES := cpufeatures
static bool CpuHasNeon = false; // V6 / V7
static bool CpuHasNeon64 = false; // 64-bit
# endif
#endif
#if !defined(LHC_TARGET_MOBILE)
#ifdef _MSC_VER
#include <intrin.h> // __cpuid
#pragma warning(disable: 4752) // found Intel(R) Advanced Vector Extensions; consider using /arch:AVX
#endif
#ifdef LHC_TRY_AVX2
static bool CpuHasAVX2 = false;
#endif
static bool CpuHasSSSE3 = false;
#define CPUID_EBX_AVX2 0x00000020
#define CPUID_ECX_SSSE3 0x00000200
static void _cpuid(unsigned int cpu_info[4U], const unsigned int cpu_info_type)
{
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_AMD64) || defined(_M_IX86))
__cpuid((int *) cpu_info, cpu_info_type);
#else //if defined(HAVE_CPUID)
cpu_info[0] = cpu_info[1] = cpu_info[2] = cpu_info[3] = 0;
# ifdef __i386__
__asm__ __volatile__ ("pushfl; pushfl; "
"popl %0; "
"movl %0, %1; xorl %2, %0; "
"pushl %0; "
"popfl; pushfl; popl %0; popfl" :
"=&r" (cpu_info[0]), "=&r" (cpu_info[1]) :
"i" (0x200000));
if (((cpu_info[0] ^ cpu_info[1]) & 0x200000) == 0) {
return; /* LCOV_EXCL_LINE */
}
# endif
# ifdef __i386__
__asm__ __volatile__ ("xchgl %%ebx, %k1; cpuid; xchgl %%ebx, %k1" :
"=a" (cpu_info[0]), "=&r" (cpu_info[1]),
"=c" (cpu_info[2]), "=d" (cpu_info[3]) :
"0" (cpu_info_type), "2" (0U));
# elif defined(__x86_64__)
__asm__ __volatile__ ("xchgq %%rbx, %q1; cpuid; xchgq %%rbx, %q1" :
"=a" (cpu_info[0]), "=&r" (cpu_info[1]),
"=c" (cpu_info[2]), "=d" (cpu_info[3]) :
"0" (cpu_info_type), "2" (0U));
# else
__asm__ __volatile__ ("cpuid" :
"=a" (cpu_info[0]), "=b" (cpu_info[1]),
"=c" (cpu_info[2]), "=d" (cpu_info[3]) :
"0" (cpu_info_type), "2" (0U));
# endif
#endif
}
#endif // defined(LHC_TARGET_MOBILE)
static void lhc_architecture_init()
{
#if defined(LHC_TRY_NEON) && defined(HAVE_ANDROID_GETCPUFEATURES)
AndroidCpuFamily family = android_getCpuFamily();
if (family == ANDROID_CPU_FAMILY_ARM)
{
if (android_getCpuFeatures() & ANDROID_CPU_ARM_FEATURE_NEON)
CpuHasNeon = true;
}
else if (family == ANDROID_CPU_FAMILY_ARM64)
{
CpuHasNeon = true;
if (android_getCpuFeatures() & ANDROID_CPU_ARM64_FEATURE_ASIMD)
CpuHasNeon64 = true;
}
#endif
#if !defined(LHC_TARGET_MOBILE)
unsigned int cpu_info[4];
_cpuid(cpu_info, 1);
CpuHasSSSE3 = ((cpu_info[2] & CPUID_ECX_SSSE3) != 0);
#if defined(LHC_TRY_AVX2)
_cpuid(cpu_info, 7);
CpuHasAVX2 = ((cpu_info[1] & CPUID_EBX_AVX2) != 0);
#endif // LHC_TRY_AVX2
#endif // LHC_TARGET_MOBILE
}
//------------------------------------------------------------------------------
// SIMD-Safe Aligned Memory Allocations
static const unsigned kAlignmentBytes = LHC_ALIGN_BYTES;
LHC_FORCE_INLINE unsigned NextAlignedOffset(unsigned offset)
{
return (offset + kAlignmentBytes - 1) & ~(kAlignmentBytes - 1);
}
static LHC_FORCE_INLINE uint8_t* SIMDSafeAllocate(size_t size)
{
uint8_t* data = (uint8_t*)calloc(1, kAlignmentBytes + size);
if (!data)
return nullptr;
unsigned offset = (unsigned)((uintptr_t)data % kAlignmentBytes);
data += kAlignmentBytes - offset;
data[-1] = (uint8_t)offset;
return data;
}
static LHC_FORCE_INLINE void SIMDSafeFree(void* ptr)
{
if (!ptr)
return;
uint8_t* data = (uint8_t*)ptr;
unsigned offset = data[-1];
if (offset >= kAlignmentBytes)
{
LHC_DEBUG_BREAK; // Should never happen
return;
}
data -= kAlignmentBytes - offset;
free(data);
}
//------------------------------------------------------------------------------
// Field
#if 0
typedef uint8_t GFSymbol;
static const unsigned kGFBits = 8;
static const unsigned kGFPolynomial = 0x11D;
GFSymbol kGFCantorBasis[kGFBits] = {
1, 214, 152, 146, 86, 200, 88, 230
};
#else
typedef uint16_t GFSymbol;
static const unsigned kGFBits = 16;
static const unsigned kGFPolynomial = 0x1002D;
GFSymbol kGFCantorBasis[kGFBits] = {
0x0001, 0xACCA, 0x3C0E, 0x163E,
0xC582, 0xED2E, 0x914C, 0x4012,
0x6C98, 0x10D8, 0x6A72, 0xB900,
0xFDB8, 0xFB34, 0xFF38, 0x991E
};
#endif
/*
Cantor Basis introduced by the paper:
D. G. Cantor, "On arithmetical algorithms over finite fields",
Journal of Combinatorial Theory, Series A, vol. 50, no. 2, pp. 285-300, 1989.
*/
static const unsigned kFieldSize = (unsigned)1 << kGFBits; //Field size
static const unsigned kFieldModulus = kFieldSize - 1;
static GFSymbol GFLog[kFieldSize];
static GFSymbol GFExp[kFieldSize];
// Initialize GFLog[], GFExp[]
static void InitField()
{
// Use GFExp temporarily to store the monomial basis logarithm table
GFSymbol* MonoLog = GFExp;
unsigned state = 1;
for (unsigned i = 0; i < kFieldModulus; ++i)
{
MonoLog[state] = static_cast<GFSymbol>(i);
state <<= 1;
if (state >= kFieldSize)
state ^= kGFPolynomial;
}
MonoLog[0] = kFieldModulus;
// Conversion to polynomial basis:
GFLog[0] = 0;
for (unsigned i = 0; i < kGFBits; ++i)
{
const GFSymbol basis = kGFCantorBasis[i];
const unsigned width = (unsigned)(1UL << i);
for (unsigned j = 0; j < width; ++j)
GFLog[j + width] = GFLog[j] ^ basis;
}
for (unsigned i = 0; i < kFieldSize; ++i)
GFLog[i] = MonoLog[GFLog[i]];
for (unsigned i = 0; i < kFieldSize; ++i)
GFExp[GFLog[i]] = i;
GFExp[kFieldModulus] = GFExp[0];
}
//------------------------------------------------------------------------------
// Mod Q Field Operations
//
// Q is the maximum symbol value, e.g. 255 or 65535.
// z = x + y (mod Q)
static inline GFSymbol AddModQ(GFSymbol a, GFSymbol b)
{
const unsigned sum = (unsigned)a + b;
// Partial reduction step, allowing for Q to be returned
return static_cast<GFSymbol>(sum + (sum >> kGFBits));
}
// z = x - y (mod Q)
static inline GFSymbol SubModQ(GFSymbol a, GFSymbol b)
{
const unsigned dif = (unsigned)a - b;
// Partial reduction step, allowing for Q to be returned
return static_cast<GFSymbol>(dif + (dif >> kGFBits));
}
// vx[] += vy[] * z
static void muladd_mem(GFSymbol * LHC_RESTRICT vx, const GFSymbol * LHC_RESTRICT vy, GFSymbol z, unsigned symbolCount)
{
for (unsigned i = 0; i < symbolCount; ++i)
{
const GFSymbol a = vy[i];
if (a == 0)
continue;
/*
This function consumes all the runtime.
I have no idea how to speed this up because the GFLog and GFExp do not have any structure.
*/
const GFSymbol sum = static_cast<GFSymbol>(AddModQ(GFLog[a], z));
vx[i] ^= GFExp[sum];
}
}
// return a*GFExp[b] over GF(2^r)
static GFSymbol mulE(GFSymbol a, GFSymbol b)
{
if (a == 0)
return 0;
const GFSymbol sum = static_cast<GFSymbol>(AddModQ(GFLog[a], b));
return GFExp[sum];
}
//------------------------------------------------------------------------------
// Fast Walsh-Hadamard Transform (FWHT) Mod Q
//
// Q is the maximum symbol value, e.g. 255 or 65535.
// Define this to enable the optimized version of FWHT()
#define LHC_FWHT_OPTIMIZED
#ifndef LHC_FWHT_OPTIMIZED
// Reference implementation
static void FWHT(GFSymbol* data, const unsigned bits)
{
const unsigned size = (unsigned)(1UL << bits);
for (unsigned width = 1; width < size; width <<= 1)
for (unsigned i = 0; i < size; i += (width << 1))
for (unsigned j = i; j < (width + i); ++j)
CrossAddSubModQ(data[j], data[j + width]);
}
#else
// {a, b} = {a + b, a - b} (mod Q)
static inline void FWHT_2(GFSymbol& a, GFSymbol& b)
{
const GFSymbol dif = SubModQ(a, b);
const GFSymbol sum = AddModQ(a, b);
a = sum, b = dif;
}
static inline void FWHT_4(GFSymbol* data)
{
GFSymbol t0 = data[0];
GFSymbol t1 = data[1];
GFSymbol t2 = data[2];
GFSymbol t3 = data[3];
FWHT_2(t0, t1);
FWHT_2(t2, t3);
FWHT_2(t0, t2);
FWHT_2(t1, t3);
data[0] = t0;
data[1] = t1;
data[2] = t2;
data[3] = t3;
}
static inline void FWHT_4(GFSymbol* data, unsigned s)
{
unsigned x = 0;
GFSymbol t0 = data[x]; x += s;
GFSymbol t1 = data[x]; x += s;
GFSymbol t2 = data[x]; x += s;
GFSymbol t3 = data[x];
FWHT_2(t0, t1);
FWHT_2(t2, t3);
FWHT_2(t0, t2);
FWHT_2(t1, t3);
unsigned y = 0;
data[y] = t0; y += s;
data[y] = t1; y += s;
data[y] = t2; y += s;
data[y] = t3;
}
static inline void FWHT_8(GFSymbol* data)
{
GFSymbol t0 = data[0];
GFSymbol t1 = data[1];
GFSymbol t2 = data[2];
GFSymbol t3 = data[3];
GFSymbol t4 = data[4];
GFSymbol t5 = data[5];
GFSymbol t6 = data[6];
GFSymbol t7 = data[7];
FWHT_2(t0, t1);
FWHT_2(t2, t3);
FWHT_2(t4, t5);
FWHT_2(t6, t7);
FWHT_2(t0, t2);
FWHT_2(t1, t3);
FWHT_2(t4, t6);
FWHT_2(t5, t7);
FWHT_2(t0, t4);
FWHT_2(t1, t5);
FWHT_2(t2, t6);
FWHT_2(t3, t7);
data[0] = t0;
data[1] = t1;
data[2] = t2;
data[3] = t3;
data[4] = t4;
data[5] = t5;
data[6] = t6;
data[7] = t7;
}
static inline void FWHT_16(GFSymbol* data)
{
GFSymbol t0 = data[0];
GFSymbol t1 = data[1];
GFSymbol t2 = data[2];
GFSymbol t3 = data[3];
GFSymbol t4 = data[4];
GFSymbol t5 = data[5];
GFSymbol t6 = data[6];
GFSymbol t7 = data[7];
GFSymbol t8 = data[8];
GFSymbol t9 = data[9];
GFSymbol t10 = data[10];
GFSymbol t11 = data[11];
GFSymbol t12 = data[12];
GFSymbol t13 = data[13];
GFSymbol t14 = data[14];
GFSymbol t15 = data[15];
FWHT_2(t0, t1);
FWHT_2(t2, t3);
FWHT_2(t4, t5);
FWHT_2(t6, t7);
FWHT_2(t8, t9);
FWHT_2(t10, t11);
FWHT_2(t12, t13);
FWHT_2(t14, t15);
FWHT_2(t0, t2);
FWHT_2(t1, t3);
FWHT_2(t4, t6);
FWHT_2(t5, t7);
FWHT_2(t8, t10);
FWHT_2(t9, t11);
FWHT_2(t12, t14);
FWHT_2(t13, t15);
FWHT_2(t0, t4);
FWHT_2(t1, t5);
FWHT_2(t2, t6);
FWHT_2(t3, t7);
FWHT_2(t8, t12);
FWHT_2(t9, t13);
FWHT_2(t10, t14);
FWHT_2(t11, t15);
FWHT_2(t0, t8);
FWHT_2(t1, t9);
FWHT_2(t2, t10);
FWHT_2(t3, t11);
FWHT_2(t4, t12);
FWHT_2(t5, t13);
FWHT_2(t6, t14);
FWHT_2(t7, t15);
data[0] = t0;
data[1] = t1;
data[2] = t2;
data[3] = t3;
data[4] = t4;
data[5] = t5;
data[6] = t6;
data[7] = t7;
data[8] = t8;
data[9] = t9;
data[10] = t10;
data[11] = t11;
data[12] = t12;
data[13] = t13;
data[14] = t14;
data[15] = t15;
}
void FWHT_SmallData(GFSymbol* data, unsigned ldn)
{
const unsigned n = (1UL << ldn);
if (n <= 2)
{
if (n == 2)
FWHT_2(data[0], data[1]);
return;
}
for (unsigned ldm = ldn; ldm > 3; ldm -= 2)
{
unsigned m = (1UL << ldm);
unsigned m4 = (m >> 2);
for (unsigned r = 0; r < n; r += m)
for (unsigned j = 0; j < m4; j++)
FWHT_4(data + j + r, m4);
}
if (ldn & 1)
{
for (unsigned i0 = 0; i0 < n; i0 += 8)
FWHT_8(data + i0);
}
else
{
for (unsigned i0 = 0; i0 < n; i0 += 4)
FWHT_4(data + i0);
}
}
// Decimation in time version of the transform
static void FWHT(GFSymbol* data, const unsigned ldn)
{
if (ldn <= 13)
{
FWHT_SmallData(data, ldn);
return;
}
FWHT_2(data[2], data[3]);
FWHT_4(data + 4);
FWHT_8(data + 8);
FWHT_16(data + 16);
for (unsigned ldm = 5; ldm < ldn; ++ldm)
FWHT(data + (unsigned)(1UL << ldm), ldm);
for (unsigned ldm = 1; ldm <= ldn; ++ldm)
{
const unsigned m = (1UL << ldm);
const unsigned mh = (m >> 1);
for (unsigned t1 = 0, t2 = mh; t1 < mh; ++t1, ++t2)
FWHT_2(data[t1], data[t2]);
}
}
#endif
//------------------------------------------------------------------------------
// Memory Buffer XOR
static void xor_mem(void * LHC_RESTRICT vx, const void * LHC_RESTRICT vy, unsigned bytes)
{
LHC_M128 * LHC_RESTRICT x16 = reinterpret_cast<LHC_M128 *>(vx);
const LHC_M128 * LHC_RESTRICT y16 = reinterpret_cast<const LHC_M128 *>(vy);
#if defined(LHC_TARGET_MOBILE)
# if defined(LHC_TRY_NEON)
// Handle multiples of 64 bytes
if (CpuHasNeon)
{
while (bytes >= 64)
{
LHC_M128 x0 = vld1q_u8(x16);
LHC_M128 x1 = vld1q_u8(x16 + 1);
LHC_M128 x2 = vld1q_u8(x16 + 2);
LHC_M128 x3 = vld1q_u8(x16 + 3);
LHC_M128 y0 = vld1q_u8(y16);
LHC_M128 y1 = vld1q_u8(y16 + 1);
LHC_M128 y2 = vld1q_u8(y16 + 2);
LHC_M128 y3 = vld1q_u8(y16 + 3);
vst1q_u8(x16, veorq_u8(x0, y0));
vst1q_u8(x16 + 1, veorq_u8(x1, y1));
vst1q_u8(x16 + 2, veorq_u8(x2, y2));
vst1q_u8(x16 + 3, veorq_u8(x3, y3));
bytes -= 64, x16 += 4, y16 += 4;
}
// Handle multiples of 16 bytes
while (bytes >= 16)
{
LHC_M128 x0 = vld1q_u8(x16);
LHC_M128 y0 = vld1q_u8(y16);
vst1q_u8(x16, veorq_u8(x0, y0));
bytes -= 16, ++x16, ++y16;
}
}
else
# endif // LHC_TRY_NEON
{
uint64_t * LHC_RESTRICT x8 = reinterpret_cast<uint64_t *>(x16);
const uint64_t * LHC_RESTRICT y8 = reinterpret_cast<const uint64_t *>(y16);
const unsigned count = (unsigned)bytes / 8;
for (unsigned ii = 0; ii < count; ++ii)
x8[ii] ^= y8[ii];
x16 = reinterpret_cast<LHC_M128 *>(x8 + count);
y16 = reinterpret_cast<const LHC_M128 *>(y8 + count);
}
#else // LHC_TARGET_MOBILE
# if defined(LHC_TRY_AVX2)
if (CpuHasAVX2)
{
LHC_M256 * LHC_RESTRICT x32 = reinterpret_cast<LHC_M256 *>(x16);
const LHC_M256 * LHC_RESTRICT y32 = reinterpret_cast<const LHC_M256 *>(y16);
while (bytes >= 128)
{
LHC_M256 x0 = _mm256_loadu_si256(x32);
LHC_M256 y0 = _mm256_loadu_si256(y32);
x0 = _mm256_xor_si256(x0, y0);
LHC_M256 x1 = _mm256_loadu_si256(x32 + 1);
LHC_M256 y1 = _mm256_loadu_si256(y32 + 1);
x1 = _mm256_xor_si256(x1, y1);
LHC_M256 x2 = _mm256_loadu_si256(x32 + 2);
LHC_M256 y2 = _mm256_loadu_si256(y32 + 2);
x2 = _mm256_xor_si256(x2, y2);
LHC_M256 x3 = _mm256_loadu_si256(x32 + 3);
LHC_M256 y3 = _mm256_loadu_si256(y32 + 3);
x3 = _mm256_xor_si256(x3, y3);
_mm256_storeu_si256(x32, x0);
_mm256_storeu_si256(x32 + 1, x1);
_mm256_storeu_si256(x32 + 2, x2);
_mm256_storeu_si256(x32 + 3, x3);
bytes -= 128, x32 += 4, y32 += 4;
}
// Handle multiples of 32 bytes
while (bytes >= 32)
{
// x[i] = x[i] xor y[i]
_mm256_storeu_si256(x32,
_mm256_xor_si256(
_mm256_loadu_si256(x32),
_mm256_loadu_si256(y32)));
bytes -= 32, ++x32, ++y32;
}
x16 = reinterpret_cast<LHC_M128 *>(x32);
y16 = reinterpret_cast<const LHC_M128 *>(y32);
}
else
# endif // LHC_TRY_AVX2
{
while (bytes >= 64)
{
LHC_M128 x0 = _mm_loadu_si128(x16);
LHC_M128 y0 = _mm_loadu_si128(y16);
x0 = _mm_xor_si128(x0, y0);
LHC_M128 x1 = _mm_loadu_si128(x16 + 1);
LHC_M128 y1 = _mm_loadu_si128(y16 + 1);
x1 = _mm_xor_si128(x1, y1);
LHC_M128 x2 = _mm_loadu_si128(x16 + 2);
LHC_M128 y2 = _mm_loadu_si128(y16 + 2);
x2 = _mm_xor_si128(x2, y2);
LHC_M128 x3 = _mm_loadu_si128(x16 + 3);
LHC_M128 y3 = _mm_loadu_si128(y16 + 3);
x3 = _mm_xor_si128(x3, y3);
_mm_storeu_si128(x16, x0);
_mm_storeu_si128(x16 + 1, x1);
_mm_storeu_si128(x16 + 2, x2);
_mm_storeu_si128(x16 + 3, x3);
bytes -= 64, x16 += 4, y16 += 4;
}
}
#endif // LHC_TARGET_MOBILE
// Handle multiples of 16 bytes
while (bytes >= 16)
{
// x[i] = x[i] xor y[i]
_mm_storeu_si128(x16,
_mm_xor_si128(
_mm_loadu_si128(x16),
_mm_loadu_si128(y16)));
bytes -= 16, ++x16, ++y16;
}
uint8_t * LHC_RESTRICT x1 = reinterpret_cast<uint8_t *>(x16);
const uint8_t * LHC_RESTRICT y1 = reinterpret_cast<const uint8_t *>(y16);
// Handle a block of 8 bytes
const unsigned eight = bytes & 8;
if (eight)
{
uint64_t * LHC_RESTRICT x8 = reinterpret_cast<uint64_t *>(x1);
const uint64_t * LHC_RESTRICT y8 = reinterpret_cast<const uint64_t *>(y1);
*x8 ^= *y8;
}
// Handle a block of 4 bytes
const unsigned four = bytes & 4;
if (four)
{
uint32_t * LHC_RESTRICT x4 = reinterpret_cast<uint32_t *>(x1 + eight);
const uint32_t * LHC_RESTRICT y4 = reinterpret_cast<const uint32_t *>(y1 + eight);
*x4 ^= *y4;
}
// Handle final bytes
const unsigned offset = eight + four;
switch (bytes & 3)
{
case 3: x1[offset + 2] ^= y1[offset + 2];
case 2: x1[offset + 1] ^= y1[offset + 1];
case 1: x1[offset] ^= y1[offset];
default:
break;
}
}
//------------------------------------------------------------------------------
// Formal Derivative
// Formal derivative of polynomial in the new basis
static void formal_derivative(GFSymbol* cos, const unsigned size)
{
for (unsigned i = 1; i < size; ++i)
{
const unsigned leng = ((i ^ (i - 1)) + 1) >> 1;
// If a large number of values are being XORed:
if (leng >= 8)
xor_mem(cos + i - leng, cos + i, leng * sizeof(GFSymbol));
else
for (unsigned j = i - leng; j < i; j++)
cos[j] ^= cos[j + leng];
}
for (unsigned i = size; i < kFieldSize; i <<= 1)
xor_mem(cos, cos + i, size * sizeof(GFSymbol));
}
//------------------------------------------------------------------------------
// Fast Fourier Transform
static GFSymbol skewVec[kFieldModulus]; // twisted factors used in FFT
// IFFT in the proposed basis
static void IFLT(GFSymbol* data, const unsigned size, const unsigned index)
{
for (unsigned depart_no = 1; depart_no < size; depart_no <<= 1)
{
for (unsigned j = depart_no; j < size; j += (depart_no << 1))
{
// If a large number of values are being XORed:
if (depart_no >= 8)
xor_mem(data + j, data + j - depart_no, depart_no * sizeof(GFSymbol));
else
for (unsigned i = j - depart_no; i < j; ++i)
data[i + depart_no] ^= data[i];
const GFSymbol skew = skewVec[j + index - 1];
if (skew != kFieldModulus)
muladd_mem(data + j - depart_no, data + j, skew, depart_no);
}
}
}
// FFT in the proposed basis
static void FLT(GFSymbol* data, const unsigned size, const unsigned index)
{
for (unsigned depart_no = (size >> 1); depart_no > 0; depart_no >>= 1)
{
for (unsigned j = depart_no; j < size; j += (depart_no << 1))
{
const GFSymbol skew = skewVec[j + index - 1];
if (skew != kFieldModulus)
muladd_mem(data + j - depart_no, data + j, skew, depart_no);
// If a large number of values are being XORed:
if (depart_no >= 8)
xor_mem(data + j, data + j - depart_no, depart_no * sizeof(GFSymbol));
else
for (unsigned i = j - depart_no; i < j; ++i)
data[i + depart_no] ^= data[i];
}
}
}
//------------------------------------------------------------------------------
// FFT Initialization
static GFSymbol B[kFieldSize >> 1]; // factors used in formal derivative
static GFSymbol log_walsh[kFieldSize]; // factors used in the evaluation of the error locator polynomial
// Initialize skewVec[], B[], log_walsh[]
static void InitFieldOperations()
{
GFSymbol temp[kGFBits - 1];
for (unsigned i = 1; i < kGFBits; ++i)
temp[i - 1] = (GFSymbol)((unsigned)1 << i);
for (unsigned m = 0; m < (kGFBits - 1); ++m)
{
const unsigned step = (unsigned)1 << (m + 1);
skewVec[((unsigned)1 << m) - 1] = 0;
for (unsigned i = m; i < (kGFBits - 1); ++i)
{
const unsigned s = ((unsigned)1 << (i + 1));
for (unsigned j = ((unsigned)1 << m) - 1; j < s; j += step)
skewVec[j + s] = skewVec[j] ^ temp[i];
}
temp[m] = kFieldModulus - GFLog[mulE(temp[m], GFLog[temp[m] ^ 1])];
for (unsigned i = m + 1; i < (kGFBits - 1); ++i)
temp[i] = mulE(temp[i], (GFLog[temp[i] ^ 1] + temp[m]) % kFieldModulus);
}
for (unsigned i = 0; i < kFieldSize; ++i)
skewVec[i] = GFLog[skewVec[i]];
temp[0] = kFieldModulus - temp[0];
for (unsigned i = 1; i < (kGFBits - 1); ++i)
temp[i] = (kFieldModulus - temp[i] + temp[i - 1]) % kFieldModulus;
B[0] = 0;
for (unsigned i = 0; i < (kGFBits - 1); ++i)
{
const unsigned depart = ((unsigned)1 << i);
for (unsigned j = 0; j < depart; ++j)
B[j + depart] = (B[j] + temp[i]) % kFieldModulus;
}
for (unsigned i = 0; i < kFieldSize; ++i)
log_walsh[i] = GFLog[i];
log_walsh[0] = 0;
FWHT(log_walsh, kGFBits);
}
//------------------------------------------------------------------------------
// Encoder
// Encoding alg for k/n<0.5: message is a power of two
static void encodeL(GFSymbol* data, const unsigned k, GFSymbol* codeword)
{
memcpy(codeword, data, sizeof(GFSymbol) * k);
IFLT(codeword, k, 0);
for (unsigned i = k; i < kFieldSize; i += k)
{
memcpy(&codeword[i], codeword, sizeof(GFSymbol) * k);
FLT(&codeword[i], k, i);
}
memcpy(codeword, data, sizeof(GFSymbol) * k);
}
// Encoding alg for k/n>0.5: parity is a power of two.
// data: message array. parity: parity array. mem: buffer(size>= n-k)
static void encodeH(const GFSymbol* data, const unsigned k, GFSymbol* parity, GFSymbol* mem)
{
const unsigned t = kFieldSize - k;
memset(parity, 0, sizeof(GFSymbol) * t);
for (unsigned i = t; i < kFieldSize; i += t)
{
memcpy(mem, &data[i - t], sizeof(GFSymbol) * t);
IFLT(mem, t, i);
xor_mem(parity, mem, t * sizeof(GFSymbol));
}
FLT(parity, t, 0);
}
//------------------------------------------------------------------------------
// Decoder
static void decode(GFSymbol* codeword, const bool* erasure)
{
GFSymbol log_walsh2[kFieldSize];
// Compute the evaluations of the error locator polynomial
for (unsigned i = 0; i < kFieldSize; ++i)
log_walsh2[i] = erasure[i] ? 1 : 0;
FWHT(log_walsh2, kGFBits);
for (unsigned i = 0; i < kFieldSize; ++i)
log_walsh2[i] = ((unsigned)log_walsh2[i] * log_walsh[i]) % kFieldModulus;
FWHT(log_walsh2, kGFBits);
for (unsigned i = 0; i < kFieldSize; ++i)
if (erasure[i])
log_walsh2[i] = kFieldModulus - log_walsh2[i];
// k2 can be replaced with k
const unsigned k2 = kFieldSize;
for (unsigned i = 0; i < kFieldSize; ++i)
codeword[i] = erasure[i] ? 0 : mulE(codeword[i], log_walsh2[i]);
IFLT(codeword, kFieldSize, 0);
// formal derivative
for (unsigned i = 0; i < kFieldSize; i += 2)
{
codeword[i] = mulE(codeword[i], kFieldModulus - B[i >> 1]);
codeword[i + 1] = mulE(codeword[i + 1], kFieldModulus - B[i >> 1]);
}
formal_derivative(codeword, k2);
for (unsigned i = 0; i < k2; i += 2)
{
codeword[i] = mulE(codeword[i], B[i >> 1]);
codeword[i + 1] = mulE(codeword[i + 1], B[i >> 1]);
}
FLT(codeword, k2, 0);
for (unsigned i = 0; i < k2; ++i)
codeword[i] = erasure[i] ? mulE(codeword[i], log_walsh2[i]) : 0;
}
//------------------------------------------------------------------------------
// Test Application
void test(unsigned k)
{
//-----------Generating message----------
// Message array
GFSymbol data[kFieldSize] = {0};
// Filled with random numbers
for (unsigned i = kFieldSize - k; i < kFieldSize; ++i)
data[i] = (GFSymbol)rand();
//---------encoding----------
GFSymbol codeword[kFieldSize];
encodeH(&data[kFieldSize - k], k, data, codeword);
//encodeL(data, k, codeword);
memcpy(codeword, data, sizeof(GFSymbol) * kFieldSize);
//--------erasure simulation---------
// Array indicating erasures
bool erasure[kFieldSize] = {
false
};
for (unsigned i = k; i < kFieldSize; ++i)
erasure[i] = true;
// permuting the erasure array
for (unsigned i = kFieldSize - 1; i > 0; --i)
{
unsigned pos = rand() % (i + 1);
if (i != pos)
{
bool tmp = erasure[i];
erasure[i] = erasure[pos];
erasure[pos] = tmp;
}
}
// erasure codeword symbols
for (unsigned i = 0; i < kFieldSize; ++i)
if (erasure[i])
codeword[i] = 0;
//---------main processing----------
decode(codeword, erasure);
// Check the correctness of the result
for (unsigned i = 0; i < kFieldSize; ++i)
{
if (erasure[i] == 1)
{
if (data[i] != codeword[i])
{
printf("Decoding Error!\n");
return;
}
}
}
printf("Decoding is successful!\n");
}
//------------------------------------------------------------------------------
// Entrypoint
int main(int argc, char **argv)
{
srand((unsigned)time(NULL));
// Initialize architecture-specific code
lhc_architecture_init();
// Fill GFLog table and GFExp table
InitField();
// Compute factors used in erasure decoder
InitFieldOperations();
for (;;)
{
// test(int k), k: message size
test(kFieldSize / 2);
}
return 0;
}