leopard/LeopardFF16.cpp

1800 lines
56 KiB
C++

/*
Copyright (c) 2017 Christopher A. Taylor. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Leopard-RS nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "LeopardFF16.h"
#ifdef LEO_HAS_FF16
#include <string.h>
#ifdef _MSC_VER
#pragma warning(disable: 4752) // found Intel(R) Advanced Vector Extensions; consider using /arch:AVX
#endif
namespace leopard { namespace ff16 {
//------------------------------------------------------------------------------
// Datatypes and Constants
// Basis used for generating logarithm tables
static const ffe_t kCantorBasis[kBits] = {
0x0001, 0xACCA, 0x3C0E, 0x163E,
0xC582, 0xED2E, 0x914C, 0x4012,
0x6C98, 0x10D8, 0x6A72, 0xB900,
0xFDB8, 0xFB34, 0xFF38, 0x991E
};
// Using the Cantor basis here enables us to avoid a lot of extra calculations
// when applying the formal derivative in decoding.
//------------------------------------------------------------------------------
// Field Operations
// z = x + y (mod kModulus)
static inline ffe_t AddMod(const ffe_t a, const ffe_t b)
{
const unsigned sum = (unsigned)a + b;
// Partial reduction step, allowing for kModulus to be returned
return static_cast<ffe_t>(sum + (sum >> kBits));
}
// z = x - y (mod kModulus)
static inline ffe_t SubMod(const ffe_t a, const ffe_t b)
{
const unsigned dif = (unsigned)a - b;
// Partial reduction step, allowing for kModulus to be returned
return static_cast<ffe_t>(dif + (dif >> kBits));
}
//------------------------------------------------------------------------------
// Fast Walsh-Hadamard Transform (FWHT) (mod kModulus)
// {a, b} = {a + b, a - b} (Mod Q)
static LEO_FORCE_INLINE void FWHT_2(ffe_t& LEO_RESTRICT a, ffe_t& LEO_RESTRICT b)
{
const ffe_t sum = AddMod(a, b);
const ffe_t dif = SubMod(a, b);
a = sum;
b = dif;
}
static LEO_FORCE_INLINE void FWHT_4(ffe_t* data, unsigned s)
{
const unsigned s2 = s << 1;
ffe_t t0 = data[0];
ffe_t t1 = data[s];
ffe_t t2 = data[s2];
ffe_t t3 = data[s2 + s];
FWHT_2(t0, t1);
FWHT_2(t2, t3);
FWHT_2(t0, t2);
FWHT_2(t1, t3);
data[0] = t0;
data[s] = t1;
data[s2] = t2;
data[s2 + s] = t3;
}
// Decimation in time (DIT) Fast Walsh-Hadamard Transform
// Unrolls pairs of layers to perform cross-layer operations in registers
// m_truncated: Number of elements that are non-zero at the front of data
static void FWHT(ffe_t* data, const unsigned m, const unsigned m_truncated)
{
// Decimation in time: Unroll 2 layers at a time
unsigned dist = 1, dist4 = 4;
for (; dist4 <= m; dist = dist4, dist4 <<= 2)
{
// For each set of dist*4 elements:
#pragma omp parallel for
for (int r = 0; r < (int)m_truncated; r += dist4)
{
// For each set of dist elements:
const int i_end = r + dist;
for (int i = r; i < i_end; ++i)
FWHT_4(data + i, dist);
}
}
// If there is one layer left:
if (dist < m)
#pragma omp parallel for
for (int i = 0; i < (int)dist; ++i)
FWHT_2(data[i], data[i + dist]);
}
//------------------------------------------------------------------------------
// Logarithm Tables
static ffe_t LogLUT[kOrder];
static ffe_t ExpLUT[kOrder];
// Returns a * Log(b)
static ffe_t MultiplyLog(ffe_t a, ffe_t log_b)
{
/*
Note that this operation is not a normal multiplication in a finite
field because the right operand is already a logarithm. This is done
because it moves K table lookups from the Decode() method into the
initialization step that is less performance critical. The LogWalsh[]
table below contains precalculated logarithms so it is easier to do
all the other multiplies in that form as well.
*/
if (a == 0)
return 0;
return ExpLUT[AddMod(LogLUT[a], log_b)];
}
// Initialize LogLUT[], ExpLUT[]
static void InitializeLogarithmTables()
{
// LFSR table generation:
unsigned state = 1;
for (unsigned i = 0; i < kModulus; ++i)
{
ExpLUT[state] = static_cast<ffe_t>(i);
state <<= 1;
if (state >= kOrder)
state ^= kPolynomial;
}
ExpLUT[0] = kModulus;
// Conversion to Cantor basis:
LogLUT[0] = 0;
for (unsigned i = 0; i < kBits; ++i)
{
const ffe_t basis = kCantorBasis[i];
const unsigned width = static_cast<unsigned>(1UL << i);
for (unsigned j = 0; j < width; ++j)
LogLUT[j + width] = LogLUT[j] ^ basis;
}
for (unsigned i = 0; i < kOrder; ++i)
LogLUT[i] = ExpLUT[LogLUT[i]];
for (unsigned i = 0; i < kOrder; ++i)
ExpLUT[LogLUT[i]] = i;
ExpLUT[kModulus] = ExpLUT[0];
}
//------------------------------------------------------------------------------
// Multiplies
/*
The multiplication algorithm used follows the approach outlined in {4}.
Specifically section 7 outlines the algorithm used here for 16-bit fields.
The ALTMAP memory layout is used since there is no need to convert in/out.
*/
struct Multiply128LUT_t
{
LEO_M128 Lo[4];
LEO_M128 Hi[4];
};
static const Multiply128LUT_t* Multiply128LUT = nullptr;
#define LEO_MUL_TABLES_128(table, log_m) \
const LEO_M128 T0_lo_##table = _mm_loadu_si128(&Multiply128LUT[log_m].Lo[0]); \
const LEO_M128 T1_lo_##table = _mm_loadu_si128(&Multiply128LUT[log_m].Lo[1]); \
const LEO_M128 T2_lo_##table = _mm_loadu_si128(&Multiply128LUT[log_m].Lo[2]); \
const LEO_M128 T3_lo_##table = _mm_loadu_si128(&Multiply128LUT[log_m].Lo[3]); \
const LEO_M128 T0_hi_##table = _mm_loadu_si128(&Multiply128LUT[log_m].Hi[0]); \
const LEO_M128 T1_hi_##table = _mm_loadu_si128(&Multiply128LUT[log_m].Hi[1]); \
const LEO_M128 T2_hi_##table = _mm_loadu_si128(&Multiply128LUT[log_m].Hi[2]); \
const LEO_M128 T3_hi_##table = _mm_loadu_si128(&Multiply128LUT[log_m].Hi[3]);
// 128-bit {prod_lo, prod_hi} = {value_lo, value_hi} * log_m
#define LEO_MUL_128(value_lo, value_hi, table) { \
LEO_M128 data_1 = _mm_srli_epi64(value_lo, 4); \
LEO_M128 data_0 = _mm_and_si128(value_lo, clr_mask); \
data_1 = _mm_and_si128(data_1, clr_mask); \
prod_lo = _mm_shuffle_epi8(T0_lo_##table, data_0); \
prod_hi = _mm_shuffle_epi8(T0_hi_##table, data_0); \
prod_lo = _mm_xor_si128(prod_lo, _mm_shuffle_epi8(T1_lo_##table, data_1)); \
prod_hi = _mm_xor_si128(prod_hi, _mm_shuffle_epi8(T1_hi_##table, data_1)); \
data_0 = _mm_and_si128(value_hi, clr_mask); \
data_1 = _mm_srli_epi64(value_hi, 4); \
data_1 = _mm_and_si128(data_1, clr_mask); \
prod_lo = _mm_xor_si128(prod_lo, _mm_shuffle_epi8(T2_lo_##table, data_0)); \
prod_hi = _mm_xor_si128(prod_hi, _mm_shuffle_epi8(T2_hi_##table, data_0)); \
prod_lo = _mm_xor_si128(prod_lo, _mm_shuffle_epi8(T3_lo_##table, data_1)); \
prod_hi = _mm_xor_si128(prod_hi, _mm_shuffle_epi8(T3_hi_##table, data_1)); }
// {x_lo, x_hi} ^= {y_lo, y_hi} * log_m
#define LEO_MULADD_128(x_lo, x_hi, y_lo, y_hi, table) { \
LEO_M128 prod_lo, prod_hi; \
LEO_MUL_128(y_lo, y_hi, table); \
x_lo = _mm_xor_si128(x_lo, prod_lo); \
x_hi = _mm_xor_si128(x_hi, prod_hi); }
#if defined(LEO_TRY_AVX2)
struct Multiply256LUT_t
{
LEO_M256 Lo[4];
LEO_M256 Hi[4];
};
static const Multiply256LUT_t* Multiply256LUT = nullptr;
#define LEO_MUL_TABLES_256(table, log_m) \
const LEO_M256 T0_lo_##table = _mm256_loadu_si256(&Multiply256LUT[log_m].Lo[0]); \
const LEO_M256 T1_lo_##table = _mm256_loadu_si256(&Multiply256LUT[log_m].Lo[1]); \
const LEO_M256 T2_lo_##table = _mm256_loadu_si256(&Multiply256LUT[log_m].Lo[2]); \
const LEO_M256 T3_lo_##table = _mm256_loadu_si256(&Multiply256LUT[log_m].Lo[3]); \
const LEO_M256 T0_hi_##table = _mm256_loadu_si256(&Multiply256LUT[log_m].Hi[0]); \
const LEO_M256 T1_hi_##table = _mm256_loadu_si256(&Multiply256LUT[log_m].Hi[1]); \
const LEO_M256 T2_hi_##table = _mm256_loadu_si256(&Multiply256LUT[log_m].Hi[2]); \
const LEO_M256 T3_hi_##table = _mm256_loadu_si256(&Multiply256LUT[log_m].Hi[3]);
// 256-bit {prod_lo, prod_hi} = {value_lo, value_hi} * log_m
#define LEO_MUL_256(value_lo, value_hi, table) { \
LEO_M256 data_1 = _mm256_srli_epi64(value_lo, 4); \
LEO_M256 data_0 = _mm256_and_si256(value_lo, clr_mask); \
data_1 = _mm256_and_si256(data_1, clr_mask); \
prod_lo = _mm256_shuffle_epi8(T0_lo_##table, data_0); \
prod_hi = _mm256_shuffle_epi8(T0_hi_##table, data_0); \
prod_lo = _mm256_xor_si256(prod_lo, _mm256_shuffle_epi8(T1_lo_##table, data_1)); \
prod_hi = _mm256_xor_si256(prod_hi, _mm256_shuffle_epi8(T1_hi_##table, data_1)); \
data_0 = _mm256_and_si256(value_hi, clr_mask); \
data_1 = _mm256_srli_epi64(value_hi, 4); \
data_1 = _mm256_and_si256(data_1, clr_mask); \
prod_lo = _mm256_xor_si256(prod_lo, _mm256_shuffle_epi8(T2_lo_##table, data_0)); \
prod_hi = _mm256_xor_si256(prod_hi, _mm256_shuffle_epi8(T2_hi_##table, data_0)); \
prod_lo = _mm256_xor_si256(prod_lo, _mm256_shuffle_epi8(T3_lo_##table, data_1)); \
prod_hi = _mm256_xor_si256(prod_hi, _mm256_shuffle_epi8(T3_hi_##table, data_1)); }
// {x_lo, x_hi} ^= {y_lo, y_hi} * log_m
#define LEO_MULADD_256(x_lo, x_hi, y_lo, y_hi, table) { \
LEO_M256 prod_lo, prod_hi; \
LEO_MUL_256(y_lo, y_hi, table); \
x_lo = _mm256_xor_si256(x_lo, prod_lo); \
x_hi = _mm256_xor_si256(x_hi, prod_hi); }
#endif // LEO_TRY_AVX2
// Stores the partial products of x * y at offset x + y * 65536
// Repeated accesses from the same y value are faster
struct Product16Table
{
ffe_t LUT[4 * 16];
};
static const Product16Table* Multiply16LUT = nullptr;
// Reference version of muladd: x[] ^= y[] * log_m
static LEO_FORCE_INLINE void RefMulAdd(
void* LEO_RESTRICT x,
const void* LEO_RESTRICT y,
ffe_t log_m,
uint64_t bytes)
{
const ffe_t* LEO_RESTRICT lut = Multiply16LUT[log_m].LUT;
const uint8_t * LEO_RESTRICT y1 = reinterpret_cast<const uint8_t *>(y);
uint8_t * LEO_RESTRICT x1 = reinterpret_cast<uint8_t *>(x);
do
{
for (unsigned i = 0; i < 32; ++i)
{
const unsigned lo = y1[i];
const unsigned hi = y1[i + 32];
const ffe_t prod = \
lut[(lo & 15)] ^ \
lut[(lo >> 4) + 16] ^ \
lut[(hi & 15) + 32] ^ \
lut[(hi >> 4) + 48];
x1[i] ^= (uint8_t)prod;
x1[i + 32] ^= (uint8_t)(prod >> 8);
}
x1 += 64, y1 += 64;
bytes -= 64;
} while (bytes > 0);
}
// Reference version of mul: x[] = y[] * log_m
static LEO_FORCE_INLINE void RefMul(
void* LEO_RESTRICT x,
const void* LEO_RESTRICT y,
ffe_t log_m,
uint64_t bytes)
{
const ffe_t* LEO_RESTRICT lut = Multiply16LUT[log_m].LUT;
const uint8_t * LEO_RESTRICT y1 = reinterpret_cast<const uint8_t *>(y);
uint8_t * LEO_RESTRICT x1 = reinterpret_cast<uint8_t *>(x);
do
{
for (unsigned i = 0; i < 32; ++i)
{
const unsigned lo = y1[i];
const unsigned hi = y1[i + 32];
const ffe_t prod = \
lut[(lo & 15)] ^ \
lut[(lo >> 4) + 16] ^ \
lut[(hi & 15) + 32] ^ \
lut[(hi >> 4) + 48];
x1[i] = (uint8_t)prod;
x1[i + 32] = (uint8_t)(prod >> 8);
}
x1 += 64, y1 += 64;
bytes -= 64;
} while (bytes > 0);
}
static void InitializeMultiplyTables()
{
// If we cannot use the PSHUFB instruction, generate Multiply8LUT:
if (!CpuHasSSSE3)
{
Multiply16LUT = new Product16Table[65536];
// For each log_m multiplicand:
#pragma omp parallel for
for (int log_m = 0; log_m < (int)kOrder; ++log_m)
{
const Product16Table& lut = Multiply16LUT[log_m];
for (unsigned nibble = 0, shift = 0; nibble < 4; ++nibble, shift += 4)
{
ffe_t* nibble_lut = (ffe_t*)&lut.LUT[nibble * 16];
for (unsigned x_nibble = 0; x_nibble < 16; ++x_nibble)
{
const ffe_t prod = MultiplyLog(x_nibble << shift, static_cast<ffe_t>(log_m));
nibble_lut[x_nibble] = prod;
}
}
}
return;
}
#if defined(LEO_TRY_AVX2)
if (CpuHasAVX2)
Multiply256LUT = reinterpret_cast<const Multiply256LUT_t*>(SIMDSafeAllocate(sizeof(Multiply256LUT_t) * kOrder));
else
#endif // LEO_TRY_AVX2
Multiply128LUT = reinterpret_cast<const Multiply128LUT_t*>(SIMDSafeAllocate(sizeof(Multiply128LUT_t) * kOrder));
// For each value we could multiply by:
#pragma omp parallel for
for (int log_m = 0; log_m < (int)kOrder; ++log_m)
{
// For each 4 bits of the finite field width in bits:
for (unsigned i = 0, shift = 0; i < 4; ++i, shift += 4)
{
// Construct 16 entry LUT for PSHUFB
uint8_t prod_lo[16], prod_hi[16];
for (ffe_t x = 0; x < 16; ++x)
{
const ffe_t prod = MultiplyLog(x << shift, static_cast<ffe_t>(log_m));
prod_lo[x] = static_cast<uint8_t>(prod);
prod_hi[x] = static_cast<uint8_t>(prod >> 8);
}
const LEO_M128 value_lo = _mm_loadu_si128((LEO_M128*)prod_lo);
const LEO_M128 value_hi = _mm_loadu_si128((LEO_M128*)prod_hi);
// Store in 128-bit wide table
#if defined(LEO_TRY_AVX2)
if (!CpuHasAVX2)
#endif // LEO_TRY_AVX2
{
_mm_storeu_si128((LEO_M128*)&Multiply128LUT[log_m].Lo[i], value_lo);
_mm_storeu_si128((LEO_M128*)&Multiply128LUT[log_m].Hi[i], value_hi);
}
// Store in 256-bit wide table
#if defined(LEO_TRY_AVX2)
if (CpuHasAVX2)
{
_mm256_storeu_si256((LEO_M256*)&Multiply256LUT[log_m].Lo[i],
_mm256_broadcastsi128_si256(value_lo));
_mm256_storeu_si256((LEO_M256*)&Multiply256LUT[log_m].Hi[i],
_mm256_broadcastsi128_si256(value_hi));
}
#endif // LEO_TRY_AVX2
}
}
}
static void mul_mem(
void * LEO_RESTRICT x, const void * LEO_RESTRICT y,
ffe_t log_m, uint64_t bytes)
{
#if defined(LEO_TRY_AVX2)
if (CpuHasAVX2)
{
LEO_MUL_TABLES_256(0, log_m);
const LEO_M256 clr_mask = _mm256_set1_epi8(0x0f);
LEO_M256 * LEO_RESTRICT x32 = reinterpret_cast<LEO_M256 *>(x);
const LEO_M256 * LEO_RESTRICT y32 = reinterpret_cast<const LEO_M256 *>(y);
do
{
#define LEO_MUL_256_LS(x_ptr, y_ptr) { \
const LEO_M256 data_lo = _mm256_loadu_si256(y_ptr); \
const LEO_M256 data_hi = _mm256_loadu_si256(y_ptr + 1); \
LEO_M256 prod_lo, prod_hi; \
LEO_MUL_256(data_lo, data_hi, 0); \
_mm256_storeu_si256(x_ptr, prod_lo); \
_mm256_storeu_si256(x_ptr + 1, prod_hi); }
LEO_MUL_256_LS(x32, y32);
y32 += 2, x32 += 2;
bytes -= 64;
} while (bytes > 0);
return;
}
#endif // LEO_TRY_AVX2
if (CpuHasSSSE3)
{
LEO_MUL_TABLES_128(0, log_m);
const LEO_M128 clr_mask = _mm_set1_epi8(0x0f);
LEO_M128 * LEO_RESTRICT x16 = reinterpret_cast<LEO_M128 *>(x);
const LEO_M128 * LEO_RESTRICT y16 = reinterpret_cast<const LEO_M128 *>(y);
do
{
#define LEO_MUL_128_LS(x_ptr, y_ptr) { \
const LEO_M128 data_lo = _mm_loadu_si128(y_ptr); \
const LEO_M128 data_hi = _mm_loadu_si128(y_ptr + 2); \
LEO_M128 prod_lo, prod_hi; \
LEO_MUL_128(data_lo, data_hi, 0); \
_mm_storeu_si128(x_ptr, prod_lo); \
_mm_storeu_si128(x_ptr + 2, prod_hi); }
LEO_MUL_128_LS(x16 + 1, y16 + 1);
LEO_MUL_128_LS(x16, y16);
x16 += 4, y16 += 4;
bytes -= 64;
} while (bytes > 0);
return;
}
RefMul(x, y, log_m, bytes);
}
//------------------------------------------------------------------------------
// FFT
// Twisted factors used in FFT
static ffe_t FFTSkew[kModulus];
// Factors used in the evaluation of the error locator polynomial
static ffe_t LogWalsh[kOrder];
static void FFTInitialize()
{
ffe_t temp[kBits - 1];
// Generate FFT skew vector {1}:
for (unsigned i = 1; i < kBits; ++i)
temp[i - 1] = static_cast<ffe_t>(1UL << i);
for (unsigned m = 0; m < (kBits - 1); ++m)
{
const unsigned step = 1UL << (m + 1);
FFTSkew[(1UL << m) - 1] = 0;
for (unsigned i = m; i < (kBits - 1); ++i)
{
const unsigned s = (1UL << (i + 1));
for (unsigned j = (1UL << m) - 1; j < s; j += step)
FFTSkew[j + s] = FFTSkew[j] ^ temp[i];
}
temp[m] = kModulus - LogLUT[MultiplyLog(temp[m], LogLUT[temp[m] ^ 1])];
for (unsigned i = m + 1; i < (kBits - 1); ++i)
{
const ffe_t sum = AddMod(LogLUT[temp[i] ^ 1], temp[m]);
temp[i] = MultiplyLog(temp[i], sum);
}
}
for (unsigned i = 0; i < kModulus; ++i)
FFTSkew[i] = LogLUT[FFTSkew[i]];
// Precalculate FWHT(Log[i]):
for (unsigned i = 0; i < kOrder; ++i)
LogWalsh[i] = LogLUT[i];
LogWalsh[0] = 0;
FWHT(LogWalsh, kOrder, kOrder);
}
/*
Decimation in time IFFT:
The decimation in time IFFT algorithm allows us to unroll 2 layers at a time,
performing calculations on local registers and faster cache memory.
Each ^___^ below indicates a butterfly between the associated indices.
The ifft_butterfly(x, y) operation:
y[] ^= x[]
if (log_m != kModulus)
x[] ^= exp(log(y[]) + log_m)
Layer 0:
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
^_^ ^_^ ^_^ ^_^ ^_^ ^_^ ^_^ ^_^
Layer 1:
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
^___^ ^___^ ^___^ ^___^
^___^ ^___^ ^___^ ^___^
Layer 2:
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
^_______^ ^_______^
^_______^ ^_______^
^_______^ ^_______^
^_______^ ^_______^
Layer 3:
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
^_______________^
^_______________^
^_______________^
^_______________^
^_______________^
^_______________^
^_______________^
^_______________^
DIT layer 0-1 operations, grouped 4 at a time:
{0-1, 2-3, 0-2, 1-3},
{4-5, 6-7, 4-6, 5-7},
DIT layer 1-2 operations, grouped 4 at a time:
{0-2, 4-6, 0-4, 2-6},
{1-3, 5-7, 1-5, 3-7},
DIT layer 2-3 operations, grouped 4 at a time:
{0-4, 0'-4', 0-0', 4-4'},
{1-5, 1'-5', 1-1', 5-5'},
*/
// 2-way butterfly
static void IFFT_DIT2(
void * LEO_RESTRICT x, void * LEO_RESTRICT y,
ffe_t log_m, uint64_t bytes)
{
#if defined(LEO_TRY_AVX2)
if (CpuHasAVX2)
{
LEO_MUL_TABLES_256(0, log_m);
const LEO_M256 clr_mask = _mm256_set1_epi8(0x0f);
LEO_M256 * LEO_RESTRICT x32 = reinterpret_cast<LEO_M256 *>(x);
LEO_M256 * LEO_RESTRICT y32 = reinterpret_cast<LEO_M256 *>(y);
do
{
#define LEO_IFFTB_256(x_ptr, y_ptr) { \
LEO_M256 x_lo = _mm256_loadu_si256(x_ptr); \
LEO_M256 x_hi = _mm256_loadu_si256(x_ptr + 1); \
LEO_M256 y_lo = _mm256_loadu_si256(y_ptr); \
LEO_M256 y_hi = _mm256_loadu_si256(y_ptr + 1); \
y_lo = _mm256_xor_si256(y_lo, x_lo); \
y_hi = _mm256_xor_si256(y_hi, x_hi); \
_mm256_storeu_si256(y_ptr, y_lo); \
_mm256_storeu_si256(y_ptr + 1, y_hi); \
LEO_MULADD_256(x_lo, x_hi, y_lo, y_hi, 0); \
_mm256_storeu_si256(x_ptr, x_lo); \
_mm256_storeu_si256(x_ptr + 1, x_hi); }
LEO_IFFTB_256(x32, y32);
y32 += 2, x32 += 2;
bytes -= 64;
} while (bytes > 0);
return;
}
#endif // LEO_TRY_AVX2
if (CpuHasSSSE3)
{
LEO_MUL_TABLES_128(0, log_m);
const LEO_M128 clr_mask = _mm_set1_epi8(0x0f);
LEO_M128 * LEO_RESTRICT x16 = reinterpret_cast<LEO_M128 *>(x);
LEO_M128 * LEO_RESTRICT y16 = reinterpret_cast<LEO_M128 *>(y);
do
{
#define LEO_IFFTB_128(x_ptr, y_ptr) { \
LEO_M128 x_lo = _mm_loadu_si128(x_ptr); \
LEO_M128 x_hi = _mm_loadu_si128(x_ptr + 2); \
LEO_M128 y_lo = _mm_loadu_si128(y_ptr); \
LEO_M128 y_hi = _mm_loadu_si128(y_ptr + 2); \
y_lo = _mm_xor_si128(y_lo, x_lo); \
y_hi = _mm_xor_si128(y_hi, x_hi); \
_mm_storeu_si128(y_ptr, y_lo); \
_mm_storeu_si128(y_ptr + 2, y_hi); \
LEO_MULADD_128(x_lo, x_hi, y_lo, y_hi, 0); \
_mm_storeu_si128(x_ptr, x_lo); \
_mm_storeu_si128(x_ptr + 2, x_hi); }
LEO_IFFTB_128(x16 + 1, y16 + 1);
LEO_IFFTB_128(x16, y16);
x16 += 4, y16 += 4;
bytes -= 64;
} while (bytes > 0);
return;
}
// Reference version:
xor_mem(y, x, bytes);
RefMulAdd(x, y, log_m, bytes);
}
// 4-way butterfly
static void IFFT_DIT4(
uint64_t bytes,
void** work,
unsigned dist,
const ffe_t log_m01,
const ffe_t log_m23,
const ffe_t log_m02)
{
#ifdef LEO_INTERLEAVE_BUTTERFLY4_OPT
#if defined(LEO_TRY_AVX2)
if (CpuHasAVX2)
{
LEO_MUL_TABLES_256(01, log_m01);
LEO_MUL_TABLES_256(23, log_m23);
LEO_MUL_TABLES_256(02, log_m02);
const LEO_M256 clr_mask = _mm256_set1_epi8(0x0f);
LEO_M256 * LEO_RESTRICT work0 = reinterpret_cast<LEO_M256 *>(work[0]);
LEO_M256 * LEO_RESTRICT work1 = reinterpret_cast<LEO_M256 *>(work[dist]);
LEO_M256 * LEO_RESTRICT work2 = reinterpret_cast<LEO_M256 *>(work[dist * 2]);
LEO_M256 * LEO_RESTRICT work3 = reinterpret_cast<LEO_M256 *>(work[dist * 3]);
do
{
LEO_M256 work_reg_lo_0 = _mm256_loadu_si256(work0);
LEO_M256 work_reg_hi_0 = _mm256_loadu_si256(work0 + 1);
LEO_M256 work_reg_lo_1 = _mm256_loadu_si256(work1);
LEO_M256 work_reg_hi_1 = _mm256_loadu_si256(work1 + 1);
// First layer:
work_reg_lo_1 = _mm256_xor_si256(work_reg_lo_0, work_reg_lo_1);
work_reg_hi_1 = _mm256_xor_si256(work_reg_hi_0, work_reg_hi_1);
if (log_m01 != kModulus)
LEO_MULADD_256(work_reg_lo_0, work_reg_hi_0, work_reg_lo_1, work_reg_hi_1, 01);
LEO_M256 work_reg_lo_2 = _mm256_loadu_si256(work2);
LEO_M256 work_reg_hi_2 = _mm256_loadu_si256(work2 + 1);
LEO_M256 work_reg_lo_3 = _mm256_loadu_si256(work3);
LEO_M256 work_reg_hi_3 = _mm256_loadu_si256(work3 + 1);
work_reg_lo_3 = _mm256_xor_si256(work_reg_lo_2, work_reg_lo_3);
work_reg_hi_3 = _mm256_xor_si256(work_reg_hi_2, work_reg_hi_3);
if (log_m23 != kModulus)
LEO_MULADD_256(work_reg_lo_2, work_reg_hi_2, work_reg_lo_3, work_reg_hi_3, 23);
// Second layer:
work_reg_lo_2 = _mm256_xor_si256(work_reg_lo_0, work_reg_lo_2);
work_reg_hi_2 = _mm256_xor_si256(work_reg_hi_0, work_reg_hi_2);
work_reg_lo_3 = _mm256_xor_si256(work_reg_lo_1, work_reg_lo_3);
work_reg_hi_3 = _mm256_xor_si256(work_reg_hi_1, work_reg_hi_3);
if (log_m02 != kModulus)
{
LEO_MULADD_256(work_reg_lo_0, work_reg_hi_0, work_reg_lo_2, work_reg_hi_2, 02);
LEO_MULADD_256(work_reg_lo_1, work_reg_hi_1, work_reg_lo_3, work_reg_hi_3, 02);
}
_mm256_storeu_si256(work0, work_reg_lo_0);
_mm256_storeu_si256(work0 + 1, work_reg_hi_0);
_mm256_storeu_si256(work1, work_reg_lo_1);
_mm256_storeu_si256(work1 + 1, work_reg_hi_1);
_mm256_storeu_si256(work2, work_reg_lo_2);
_mm256_storeu_si256(work2 + 1, work_reg_hi_2);
_mm256_storeu_si256(work3, work_reg_lo_3);
_mm256_storeu_si256(work3 + 1, work_reg_hi_3);
work0 += 2, work1 += 2, work2 += 2, work3 += 2;
bytes -= 64;
} while (bytes > 0);
return;
}
#endif // LEO_TRY_AVX2
if (CpuHasSSSE3)
{
LEO_MUL_TABLES_128(01, log_m01);
LEO_MUL_TABLES_128(23, log_m23);
LEO_MUL_TABLES_128(02, log_m02);
const LEO_M128 clr_mask = _mm_set1_epi8(0x0f);
LEO_M128 * LEO_RESTRICT work0 = reinterpret_cast<LEO_M128 *>(work[0]);
LEO_M128 * LEO_RESTRICT work1 = reinterpret_cast<LEO_M128 *>(work[dist]);
LEO_M128 * LEO_RESTRICT work2 = reinterpret_cast<LEO_M128 *>(work[dist * 2]);
LEO_M128 * LEO_RESTRICT work3 = reinterpret_cast<LEO_M128 *>(work[dist * 3]);
do
{
for (unsigned i = 0; i < 2; ++i)
{
LEO_M128 work_reg_lo_0 = _mm_loadu_si128(work0);
LEO_M128 work_reg_hi_0 = _mm_loadu_si128(work0 + 2);
LEO_M128 work_reg_lo_1 = _mm_loadu_si128(work1);
LEO_M128 work_reg_hi_1 = _mm_loadu_si128(work1 + 2);
// First layer:
work_reg_lo_1 = _mm_xor_si128(work_reg_lo_0, work_reg_lo_1);
work_reg_hi_1 = _mm_xor_si128(work_reg_hi_0, work_reg_hi_1);
if (log_m01 != kModulus)
LEO_MULADD_128(work_reg_lo_0, work_reg_hi_0, work_reg_lo_1, work_reg_hi_1, 01);
LEO_M128 work_reg_lo_2 = _mm_loadu_si128(work2);
LEO_M128 work_reg_hi_2 = _mm_loadu_si128(work2 + 2);
LEO_M128 work_reg_lo_3 = _mm_loadu_si128(work3);
LEO_M128 work_reg_hi_3 = _mm_loadu_si128(work3 + 2);
work_reg_lo_3 = _mm_xor_si128(work_reg_lo_2, work_reg_lo_3);
work_reg_hi_3 = _mm_xor_si128(work_reg_hi_2, work_reg_hi_3);
if (log_m23 != kModulus)
LEO_MULADD_128(work_reg_lo_2, work_reg_hi_2, work_reg_lo_3, work_reg_hi_3, 23);
// Second layer:
work_reg_lo_2 = _mm_xor_si128(work_reg_lo_0, work_reg_lo_2);
work_reg_hi_2 = _mm_xor_si128(work_reg_hi_0, work_reg_hi_2);
work_reg_lo_3 = _mm_xor_si128(work_reg_lo_1, work_reg_lo_3);
work_reg_hi_3 = _mm_xor_si128(work_reg_hi_1, work_reg_hi_3);
if (log_m02 != kModulus)
{
LEO_MULADD_128(work_reg_lo_0, work_reg_hi_0, work_reg_lo_2, work_reg_hi_2, 02);
LEO_MULADD_128(work_reg_lo_1, work_reg_hi_1, work_reg_lo_3, work_reg_hi_3, 02);
}
_mm_storeu_si128(work0, work_reg_lo_0);
_mm_storeu_si128(work0 + 2, work_reg_hi_0);
_mm_storeu_si128(work1, work_reg_lo_1);
_mm_storeu_si128(work1 + 2, work_reg_hi_1);
_mm_storeu_si128(work2, work_reg_lo_2);
_mm_storeu_si128(work2 + 2, work_reg_hi_2);
_mm_storeu_si128(work3, work_reg_lo_3);
_mm_storeu_si128(work3 + 2, work_reg_hi_3);
work0++, work1++, work2++, work3++;
}
work0 += 2, work1 += 2, work2 += 2, work3 += 2;
bytes -= 64;
} while (bytes > 0);
return;
}
#endif // LEO_INTERLEAVE_BUTTERFLY4_OPT
// First layer:
if (log_m01 == kModulus)
xor_mem(work[dist], work[0], bytes);
else
IFFT_DIT2(work[0], work[dist], log_m01, bytes);
if (log_m23 == kModulus)
xor_mem(work[dist * 3], work[dist * 2], bytes);
else
IFFT_DIT2(work[dist * 2], work[dist * 3], log_m23, bytes);
// Second layer:
if (log_m02 == kModulus)
{
xor_mem(work[dist * 2], work[0], bytes);
xor_mem(work[dist * 3], work[dist], bytes);
}
else
{
IFFT_DIT2(work[0], work[dist * 2], log_m02, bytes);
IFFT_DIT2(work[dist], work[dist * 3], log_m02, bytes);
}
}
// Unrolled IFFT for encoder
static void IFFT_DIT_Encoder(
const uint64_t bytes,
const void* const* data,
const unsigned m_truncated,
void** work,
void** xor_result,
const unsigned m,
const ffe_t* skewLUT)
{
// I tried rolling the memcpy/memset into the first layer of the FFT and
// found that it only yields a 4% performance improvement, which is not
// worth the extra complexity.
#pragma omp parallel for
for (int i = 0; i < (int)m_truncated; ++i)
memcpy(work[i], data[i], bytes);
#pragma omp parallel for
for (int i = m_truncated; i < (int)m; ++i)
memset(work[i], 0, bytes);
// I tried splitting up the first few layers into L3-cache sized blocks but
// found that it only provides about 5% performance boost, which is not
// worth the extra complexity.
// Decimation in time: Unroll 2 layers at a time
unsigned dist = 1, dist4 = 4;
for (; dist4 <= m; dist = dist4, dist4 <<= 2)
{
// For each set of dist*4 elements:
#pragma omp parallel for
for (int r = 0; r < (int)m_truncated; r += dist4)
{
const unsigned i_end = r + dist;
const ffe_t log_m01 = skewLUT[i_end];
const ffe_t log_m02 = skewLUT[i_end + dist];
const ffe_t log_m23 = skewLUT[i_end + dist * 2];
// For each set of dist elements:
for (int i = r; i < (int)i_end; ++i)
{
IFFT_DIT4(
bytes,
work + i,
dist,
log_m01,
log_m23,
log_m02);
}
}
// I tried alternating sweeps left->right and right->left to reduce cache misses.
// It provides about 1% performance boost when done for both FFT and IFFT, so it
// does not seem to be worth the extra complexity.
}
// If there is one layer left:
if (dist < m)
{
// Assuming that dist = m / 2
LEO_DEBUG_ASSERT(dist * 2 == m);
const ffe_t log_m = skewLUT[dist];
if (log_m == kModulus)
VectorXOR_Threads(bytes, dist, work + dist, work);
else
{
#pragma omp parallel for
for (int i = 0; i < (int)dist; ++i)
{
IFFT_DIT2(
work[i],
work[i + dist],
log_m,
bytes);
}
}
}
// I tried unrolling this but it does not provide more than 5% performance
// improvement for 16-bit finite fields, so it's not worth the complexity.
if (xor_result)
VectorXOR_Threads(bytes, m, xor_result, work);
}
// Basic no-frills version for decoder
static void IFFT_DIT_Decoder(
const uint64_t bytes,
const unsigned m_truncated,
void** work,
const unsigned m,
const ffe_t* skewLUT)
{
// Decimation in time: Unroll 2 layers at a time
unsigned dist = 1, dist4 = 4;
for (; dist4 <= m; dist = dist4, dist4 <<= 2)
{
// For each set of dist*4 elements:
#pragma omp parallel for
for (int r = 0; r < (int)m_truncated; r += dist4)
{
const unsigned i_end = r + dist;
const ffe_t log_m01 = skewLUT[i_end];
const ffe_t log_m02 = skewLUT[i_end + dist];
const ffe_t log_m23 = skewLUT[i_end + dist * 2];
// For each set of dist elements:
for (int i = r; i < (int)i_end; ++i)
{
IFFT_DIT4(
bytes,
work + i,
dist,
log_m01,
log_m23,
log_m02);
}
}
}
// If there is one layer left:
if (dist < m)
{
// Assuming that dist = m / 2
LEO_DEBUG_ASSERT(dist * 2 == m);
const ffe_t log_m = skewLUT[dist];
if (log_m == kModulus)
VectorXOR_Threads(bytes, dist, work + dist, work);
else
{
#pragma omp parallel for
for (int i = 0; i < (int)dist; ++i)
{
IFFT_DIT2(
work[i],
work[i + dist],
log_m,
bytes);
}
}
}
}
/*
Decimation in time FFT:
The decimation in time FFT algorithm allows us to unroll 2 layers at a time,
performing calculations on local registers and faster cache memory.
Each ^___^ below indicates a butterfly between the associated indices.
The fft_butterfly(x, y) operation:
if (log_m != kModulus)
x[] ^= exp(log(y[]) + log_m)
y[] ^= x[]
Layer 0:
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
^_______________^
^_______________^
^_______________^
^_______________^
^_______________^
^_______________^
^_______________^
^_______________^
Layer 1:
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
^_______^ ^_______^
^_______^ ^_______^
^_______^ ^_______^
^_______^ ^_______^
Layer 2:
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
^___^ ^___^ ^___^ ^___^
^___^ ^___^ ^___^ ^___^
Layer 3:
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
^_^ ^_^ ^_^ ^_^ ^_^ ^_^ ^_^ ^_^
DIT layer 0-1 operations, grouped 4 at a time:
{0-0', 4-4', 0-4, 0'-4'},
{1-1', 5-5', 1-5, 1'-5'},
DIT layer 1-2 operations, grouped 4 at a time:
{0-4, 2-6, 0-2, 4-6},
{1-5, 3-7, 1-3, 5-7},
DIT layer 2-3 operations, grouped 4 at a time:
{0-2, 1-3, 0-1, 2-3},
{4-6, 5-7, 4-5, 6-7},
*/
// 2-way butterfly
static void FFT_DIT2(
void * LEO_RESTRICT x, void * LEO_RESTRICT y,
ffe_t log_m, uint64_t bytes)
{
#if defined(LEO_TRY_AVX2)
if (CpuHasAVX2)
{
LEO_MUL_TABLES_256(0, log_m);
const LEO_M256 clr_mask = _mm256_set1_epi8(0x0f);
LEO_M256 * LEO_RESTRICT x32 = reinterpret_cast<LEO_M256 *>(x);
LEO_M256 * LEO_RESTRICT y32 = reinterpret_cast<LEO_M256 *>(y);
do
{
#define LEO_FFTB_256(x_ptr, y_ptr) { \
LEO_M256 x_lo = _mm256_loadu_si256(x_ptr); \
LEO_M256 x_hi = _mm256_loadu_si256(x_ptr + 1); \
LEO_M256 y_lo = _mm256_loadu_si256(y_ptr); \
LEO_M256 y_hi = _mm256_loadu_si256(y_ptr + 1); \
LEO_MULADD_256(x_lo, x_hi, y_lo, y_hi, 0); \
_mm256_storeu_si256(x_ptr, x_lo); \
_mm256_storeu_si256(x_ptr + 1, x_hi); \
y_lo = _mm256_xor_si256(y_lo, x_lo); \
y_hi = _mm256_xor_si256(y_hi, x_hi); \
_mm256_storeu_si256(y_ptr, y_lo); \
_mm256_storeu_si256(y_ptr + 1, y_hi); }
LEO_FFTB_256(x32, y32);
y32 += 2, x32 += 2;
bytes -= 64;
} while (bytes > 0);
return;
}
#endif // LEO_TRY_AVX2
if (CpuHasSSSE3)
{
LEO_MUL_TABLES_128(0, log_m);
const LEO_M128 clr_mask = _mm_set1_epi8(0x0f);
LEO_M128 * LEO_RESTRICT x16 = reinterpret_cast<LEO_M128 *>(x);
LEO_M128 * LEO_RESTRICT y16 = reinterpret_cast<LEO_M128 *>(y);
do
{
#define LEO_FFTB_128(x_ptr, y_ptr) { \
LEO_M128 x_lo = _mm_loadu_si128(x_ptr); \
LEO_M128 x_hi = _mm_loadu_si128(x_ptr + 2); \
LEO_M128 y_lo = _mm_loadu_si128(y_ptr); \
LEO_M128 y_hi = _mm_loadu_si128(y_ptr + 2); \
LEO_MULADD_128(x_lo, x_hi, y_lo, y_hi, 0); \
_mm_storeu_si128(x_ptr, x_lo); \
_mm_storeu_si128(x_ptr + 2, x_hi); \
y_lo = _mm_xor_si128(y_lo, x_lo); \
y_hi = _mm_xor_si128(y_hi, x_hi); \
_mm_storeu_si128(y_ptr, y_lo); \
_mm_storeu_si128(y_ptr + 2, y_hi); }
LEO_FFTB_128(x16 + 1, y16 + 1);
LEO_FFTB_128(x16, y16);
x16 += 4, y16 += 4;
bytes -= 64;
} while (bytes > 0);
return;
}
// Reference version:
RefMulAdd(x, y, log_m, bytes);
xor_mem(y, x, bytes);
}
// 4-way butterfly
static void FFT_DIT4(
uint64_t bytes,
void** work,
unsigned dist,
const ffe_t log_m01,
const ffe_t log_m23,
const ffe_t log_m02)
{
#ifdef LEO_INTERLEAVE_BUTTERFLY4_OPT
#if defined(LEO_TRY_AVX2)
if (CpuHasAVX2)
{
LEO_MUL_TABLES_256(01, log_m01);
LEO_MUL_TABLES_256(23, log_m23);
LEO_MUL_TABLES_256(02, log_m02);
const LEO_M256 clr_mask = _mm256_set1_epi8(0x0f);
LEO_M256 * LEO_RESTRICT work0 = reinterpret_cast<LEO_M256 *>(work[0]);
LEO_M256 * LEO_RESTRICT work1 = reinterpret_cast<LEO_M256 *>(work[dist]);
LEO_M256 * LEO_RESTRICT work2 = reinterpret_cast<LEO_M256 *>(work[dist * 2]);
LEO_M256 * LEO_RESTRICT work3 = reinterpret_cast<LEO_M256 *>(work[dist * 3]);
do
{
LEO_M256 work_reg_lo_0 = _mm256_loadu_si256(work0);
LEO_M256 work_reg_hi_0 = _mm256_loadu_si256(work0 + 1);
LEO_M256 work_reg_lo_1 = _mm256_loadu_si256(work1);
LEO_M256 work_reg_hi_1 = _mm256_loadu_si256(work1 + 1);
LEO_M256 work_reg_lo_2 = _mm256_loadu_si256(work2);
LEO_M256 work_reg_hi_2 = _mm256_loadu_si256(work2 + 1);
LEO_M256 work_reg_lo_3 = _mm256_loadu_si256(work3);
LEO_M256 work_reg_hi_3 = _mm256_loadu_si256(work3 + 1);
// First layer:
if (log_m02 != kModulus)
{
LEO_MULADD_256(work_reg_lo_0, work_reg_hi_0, work_reg_lo_2, work_reg_hi_2, 02);
LEO_MULADD_256(work_reg_lo_1, work_reg_hi_1, work_reg_lo_3, work_reg_hi_3, 02);
}
work_reg_lo_2 = _mm256_xor_si256(work_reg_lo_0, work_reg_lo_2);
work_reg_hi_2 = _mm256_xor_si256(work_reg_hi_0, work_reg_hi_2);
work_reg_lo_3 = _mm256_xor_si256(work_reg_lo_1, work_reg_lo_3);
work_reg_hi_3 = _mm256_xor_si256(work_reg_hi_1, work_reg_hi_3);
// Second layer:
if (log_m01 != kModulus)
LEO_MULADD_256(work_reg_lo_0, work_reg_hi_0, work_reg_lo_1, work_reg_hi_1, 01);
work_reg_lo_1 = _mm256_xor_si256(work_reg_lo_0, work_reg_lo_1);
work_reg_hi_1 = _mm256_xor_si256(work_reg_hi_0, work_reg_hi_1);
_mm256_storeu_si256(work0, work_reg_lo_0);
_mm256_storeu_si256(work0 + 1, work_reg_hi_0);
_mm256_storeu_si256(work1, work_reg_lo_1);
_mm256_storeu_si256(work1 + 1, work_reg_hi_1);
if (log_m23 != kModulus)
LEO_MULADD_256(work_reg_lo_2, work_reg_hi_2, work_reg_lo_3, work_reg_hi_3, 23);
work_reg_lo_3 = _mm256_xor_si256(work_reg_lo_2, work_reg_lo_3);
work_reg_hi_3 = _mm256_xor_si256(work_reg_hi_2, work_reg_hi_3);
_mm256_storeu_si256(work2, work_reg_lo_2);
_mm256_storeu_si256(work2 + 1, work_reg_hi_2);
_mm256_storeu_si256(work3, work_reg_lo_3);
_mm256_storeu_si256(work3 + 1, work_reg_hi_3);
work0 += 2, work1 += 2, work2 += 2, work3 += 2;
bytes -= 64;
} while (bytes > 0);
return;
}
#endif // LEO_TRY_AVX2
if (CpuHasSSSE3)
{
LEO_MUL_TABLES_128(01, log_m01);
LEO_MUL_TABLES_128(23, log_m23);
LEO_MUL_TABLES_128(02, log_m02);
const LEO_M128 clr_mask = _mm_set1_epi8(0x0f);
LEO_M128 * LEO_RESTRICT work0 = reinterpret_cast<LEO_M128 *>(work[0]);
LEO_M128 * LEO_RESTRICT work1 = reinterpret_cast<LEO_M128 *>(work[dist]);
LEO_M128 * LEO_RESTRICT work2 = reinterpret_cast<LEO_M128 *>(work[dist * 2]);
LEO_M128 * LEO_RESTRICT work3 = reinterpret_cast<LEO_M128 *>(work[dist * 3]);
do
{
for (unsigned i = 0; i < 2; ++i)
{
LEO_M128 work_reg_lo_0 = _mm_loadu_si128(work0);
LEO_M128 work_reg_hi_0 = _mm_loadu_si128(work0 + 2);
LEO_M128 work_reg_lo_1 = _mm_loadu_si128(work1);
LEO_M128 work_reg_hi_1 = _mm_loadu_si128(work1 + 2);
LEO_M128 work_reg_lo_2 = _mm_loadu_si128(work2);
LEO_M128 work_reg_hi_2 = _mm_loadu_si128(work2 + 2);
LEO_M128 work_reg_lo_3 = _mm_loadu_si128(work3);
LEO_M128 work_reg_hi_3 = _mm_loadu_si128(work3 + 2);
// First layer:
if (log_m02 != kModulus)
{
LEO_MULADD_128(work_reg_lo_0, work_reg_hi_0, work_reg_lo_2, work_reg_hi_2, 02);
LEO_MULADD_128(work_reg_lo_1, work_reg_hi_1, work_reg_lo_3, work_reg_hi_3, 02);
}
work_reg_lo_2 = _mm_xor_si128(work_reg_lo_0, work_reg_lo_2);
work_reg_hi_2 = _mm_xor_si128(work_reg_hi_0, work_reg_hi_2);
work_reg_lo_3 = _mm_xor_si128(work_reg_lo_1, work_reg_lo_3);
work_reg_hi_3 = _mm_xor_si128(work_reg_hi_1, work_reg_hi_3);
// Second layer:
if (log_m01 != kModulus)
LEO_MULADD_128(work_reg_lo_0, work_reg_hi_0, work_reg_lo_1, work_reg_hi_1, 01);
work_reg_lo_1 = _mm_xor_si128(work_reg_lo_0, work_reg_lo_1);
work_reg_hi_1 = _mm_xor_si128(work_reg_hi_0, work_reg_hi_1);
_mm_storeu_si128(work0, work_reg_lo_0);
_mm_storeu_si128(work0 + 2, work_reg_hi_0);
_mm_storeu_si128(work1, work_reg_lo_1);
_mm_storeu_si128(work1 + 2, work_reg_hi_1);
if (log_m23 != kModulus)
LEO_MULADD_128(work_reg_lo_2, work_reg_hi_2, work_reg_lo_3, work_reg_hi_3, 23);
work_reg_lo_3 = _mm_xor_si128(work_reg_lo_2, work_reg_lo_3);
work_reg_hi_3 = _mm_xor_si128(work_reg_hi_2, work_reg_hi_3);
_mm_storeu_si128(work2, work_reg_lo_2);
_mm_storeu_si128(work2 + 2, work_reg_hi_2);
_mm_storeu_si128(work3, work_reg_lo_3);
_mm_storeu_si128(work3 + 2, work_reg_hi_3);
work0++, work1++, work2++, work3++;
}
work0 += 2, work1 += 2, work2 += 2, work3 += 2;
bytes -= 64;
} while (bytes > 0);
return;
}
#endif // LEO_INTERLEAVE_BUTTERFLY4_OPT
// First layer:
if (log_m02 == kModulus)
{
xor_mem(work[dist * 2], work[0], bytes);
xor_mem(work[dist * 3], work[dist], bytes);
}
else
{
FFT_DIT2(work[0], work[dist * 2], log_m02, bytes);
FFT_DIT2(work[dist], work[dist * 3], log_m02, bytes);
}
// Second layer:
if (log_m01 == kModulus)
xor_mem(work[dist], work[0], bytes);
else
FFT_DIT2(work[0], work[dist], log_m01, bytes);
if (log_m23 == kModulus)
xor_mem(work[dist * 3], work[dist * 2], bytes);
else
FFT_DIT2(work[dist * 2], work[dist * 3], log_m23, bytes);
}
// In-place FFT for encoder and decoder
static void FFT_DIT(
const uint64_t bytes,
void** work,
const unsigned m_truncated,
const unsigned m,
const ffe_t* skewLUT)
{
// Decimation in time: Unroll 2 layers at a time
unsigned dist4 = m, dist = m >> 2;
for (; dist != 0; dist4 = dist, dist >>= 2)
{
// For each set of dist*4 elements:
#pragma omp parallel for
for (int r = 0; r < (int)m_truncated; r += dist4)
{
const unsigned i_end = r + dist;
const ffe_t log_m01 = skewLUT[i_end];
const ffe_t log_m02 = skewLUT[i_end + dist];
const ffe_t log_m23 = skewLUT[i_end + dist * 2];
// For each set of dist elements:
for (int i = r; i < (int)i_end; ++i)
{
FFT_DIT4(
bytes,
work + i,
dist,
log_m01,
log_m23,
log_m02);
}
}
}
// If there is one layer left:
if (dist4 == 2)
{
#pragma omp parallel for
for (int r = 0; r < (int)m_truncated; r += 2)
{
const ffe_t log_m = skewLUT[r + 1];
if (log_m == kModulus)
xor_mem(work[r + 1], work[r], bytes);
else
{
FFT_DIT2(
work[r],
work[r + 1],
log_m,
bytes);
}
}
}
}
//------------------------------------------------------------------------------
// Reed-Solomon Encode
void ReedSolomonEncode(
uint64_t buffer_bytes,
unsigned original_count,
unsigned recovery_count,
unsigned m,
const void* const * data,
void** work)
{
// work <- IFFT(data, m, m)
const ffe_t* skewLUT = FFTSkew + m - 1;
IFFT_DIT_Encoder(
buffer_bytes,
data,
original_count < m ? original_count : m,
work,
nullptr, // No xor output
m,
skewLUT);
const unsigned last_count = original_count % m;
if (m >= original_count)
goto skip_body;
// For sets of m data pieces:
for (unsigned i = m; i + m <= original_count; i += m)
{
data += m;
skewLUT += m;
// work <- work xor IFFT(data + i, m, m + i)
IFFT_DIT_Encoder(
buffer_bytes,
data, // data source
m,
work + m, // temporary workspace
work, // xor destination
m,
skewLUT);
}
// Handle final partial set of m pieces:
if (last_count != 0)
{
data += m;
skewLUT += m;
// work <- work xor IFFT(data + i, m, m + i)
IFFT_DIT_Encoder(
buffer_bytes,
data, // data source
last_count,
work + m, // temporary workspace
work, // xor destination
m,
skewLUT);
}
skip_body:
// work <- FFT(work, m, 0)
FFT_DIT(
buffer_bytes,
work,
recovery_count,
m,
FFTSkew - 1);
}
//------------------------------------------------------------------------------
// ErrorBitfield
#ifdef LEO_ERROR_BITFIELD_OPT
// Used in decoding to decide which final FFT operations to perform
class ErrorBitfield
{
static const unsigned kWordMips = 5;
static const unsigned kWords = kOrder / 64;
uint64_t Words[kWordMips][kWords] = {};
static const unsigned kBigMips = 6;
static const unsigned kBigWords = (kWords + 63) / 64;
uint64_t BigWords[kBigMips][kBigWords] = {};
static const unsigned kBiggestMips = 4;
uint64_t BiggestWords[kBiggestMips] = {};
public:
LEO_FORCE_INLINE void Set(unsigned i)
{
Words[0][i / 64] |= (uint64_t)1 << (i % 64);
}
void Prepare();
LEO_FORCE_INLINE bool IsNeeded(unsigned mip_level, unsigned bit) const
{
if (mip_level >= 16)
return true;
if (mip_level >= 12)
{
bit /= 4096;
return 0 != (BiggestWords[mip_level - 12] & ((uint64_t)1 << bit));
}
if (mip_level >= 6)
{
bit /= 64;
return 0 != (BigWords[mip_level - 6][bit / 64] & ((uint64_t)1 << (bit % 64)));
}
return 0 != (Words[mip_level - 1][bit / 64] & ((uint64_t)1 << (bit % 64)));
}
};
static const uint64_t kHiMasks[5] = {
0xAAAAAAAAAAAAAAAAULL,
0xCCCCCCCCCCCCCCCCULL,
0xF0F0F0F0F0F0F0F0ULL,
0xFF00FF00FF00FF00ULL,
0xFFFF0000FFFF0000ULL,
};
void ErrorBitfield::Prepare()
{
// First mip level is for final layer of FFT: pairs of data
for (unsigned i = 0; i < kWords; ++i)
{
uint64_t w_i = Words[0][i];
const uint64_t hi2lo0 = w_i | ((w_i & kHiMasks[0]) >> 1);
const uint64_t lo2hi0 = ((w_i & (kHiMasks[0] >> 1)) << 1);
Words[0][i] = w_i = hi2lo0 | lo2hi0;
for (unsigned j = 1, bits = 2; j < kWordMips; ++j, bits <<= 1)
{
const uint64_t hi2lo_j = w_i | ((w_i & kHiMasks[j]) >> bits);
const uint64_t lo2hi_j = ((w_i & (kHiMasks[j] >> bits)) << bits);
Words[j][i] = w_i = hi2lo_j | lo2hi_j;
}
}
for (unsigned i = 0; i < kBigWords; ++i)
{
uint64_t w_i = 0;
uint64_t bit = 1;
const uint64_t* src = &Words[kWordMips - 1][i * 64];
for (unsigned j = 0; j < 64; ++j, bit <<= 1)
{
const uint64_t w = src[j];
w_i |= (w | (w >> 32) | (w << 32)) & bit;
}
BigWords[0][i] = w_i;
for (unsigned j = 1, bits = 1; j < kBigMips; ++j, bits <<= 1)
{
const uint64_t hi2lo_j = w_i | ((w_i & kHiMasks[j - 1]) >> bits);
const uint64_t lo2hi_j = ((w_i & (kHiMasks[j - 1] >> bits)) << bits);
BigWords[j][i] = w_i = hi2lo_j | lo2hi_j;
}
}
uint64_t w_i = 0;
uint64_t bit = 1;
const uint64_t* src = &BigWords[kBigMips - 1][0];
for (unsigned j = 0; j < kBigWords; ++j, bit <<= 1)
{
const uint64_t w = src[j];
w_i |= (w | (w >> 32) | (w << 32)) & bit;
}
BiggestWords[0] = w_i;
for (unsigned j = 1, bits = 1; j < kBiggestMips; ++j, bits <<= 1)
{
const uint64_t hi2lo_j = w_i | ((w_i & kHiMasks[j - 1]) >> bits);
const uint64_t lo2hi_j = ((w_i & (kHiMasks[j - 1] >> bits)) << bits);
BiggestWords[j] = w_i = hi2lo_j | lo2hi_j;
}
}
static void FFT_DIT_ErrorBits(
const uint64_t bytes,
void** work,
const unsigned n_truncated,
const unsigned n,
const ffe_t* skewLUT,
const ErrorBitfield& error_bits)
{
unsigned mip_level = LastNonzeroBit32(n);
// Decimation in time: Unroll 2 layers at a time
unsigned dist4 = n, dist = n >> 2;
for (; dist != 0; dist4 = dist, dist >>= 2, mip_level -=2)
{
// For each set of dist*4 elements:
#pragma omp parallel for
for (int r = 0; r < (int)n_truncated; r += dist4)
{
if (!error_bits.IsNeeded(mip_level, r))
continue;
const unsigned i_end = r + dist;
const ffe_t log_m01 = skewLUT[i_end];
const ffe_t log_m02 = skewLUT[i_end + dist];
const ffe_t log_m23 = skewLUT[i_end + dist * 2];
// For each set of dist elements:
#pragma omp parallel for
for (int i = r; i < (int)i_end; ++i)
{
FFT_DIT4(
bytes,
work + i,
dist,
log_m01,
log_m23,
log_m02);
}
}
}
// If there is one layer left:
if (dist4 == 2)
{
#pragma omp parallel for
for (int r = 0; r < (int)n_truncated; r += 2)
{
if (!error_bits.IsNeeded(mip_level, r))
continue;
const ffe_t log_m = skewLUT[r + 1];
if (log_m == kModulus)
xor_mem(work[r + 1], work[r], bytes);
else
{
FFT_DIT2(
work[r],
work[r + 1],
log_m,
bytes);
}
}
}
}
#endif // LEO_ERROR_BITFIELD_OPT
//------------------------------------------------------------------------------
// Reed-Solomon Decode
void ReedSolomonDecode(
uint64_t buffer_bytes,
unsigned original_count,
unsigned recovery_count,
unsigned m, // NextPow2(recovery_count)
unsigned n, // NextPow2(m + original_count) = work_count
const void* const * const original, // original_count entries
const void* const * const recovery, // recovery_count entries
void** work) // n entries
{
// Fill in error locations
#ifdef LEO_ERROR_BITFIELD_OPT
ErrorBitfield error_bits;
#endif // LEO_ERROR_BITFIELD_OPT
ffe_t error_locations[kOrder] = {};
for (unsigned i = 0; i < recovery_count; ++i)
if (!recovery[i])
error_locations[i] = 1;
for (unsigned i = recovery_count; i < m; ++i)
error_locations[i] = 1;
for (unsigned i = 0; i < original_count; ++i)
{
if (!original[i])
{
error_locations[i + m] = 1;
#ifdef LEO_ERROR_BITFIELD_OPT
error_bits.Set(i + m);
#endif // LEO_ERROR_BITFIELD_OPT
}
}
#ifdef LEO_ERROR_BITFIELD_OPT
error_bits.Prepare();
#endif // LEO_ERROR_BITFIELD_OPT
// Evaluate error locator polynomial
FWHT(error_locations, kOrder, m + original_count);
#pragma omp parallel for
for (int i = 0; i < (int)kOrder; ++i)
error_locations[i] = ((unsigned)error_locations[i] * (unsigned)LogWalsh[i]) % kModulus;
FWHT(error_locations, kOrder, kOrder);
// work <- recovery data
#pragma omp parallel for
for (int i = 0; i < (int)recovery_count; ++i)
{
if (recovery[i])
mul_mem(work[i], recovery[i], error_locations[i], buffer_bytes);
else
memset(work[i], 0, buffer_bytes);
}
#pragma omp parallel for
for (int i = recovery_count; i < (int)m; ++i)
memset(work[i], 0, buffer_bytes);
// work <- original data
#pragma omp parallel for
for (int i = 0; i < (int)original_count; ++i)
{
if (original[i])
mul_mem(work[m + i], original[i], error_locations[m + i], buffer_bytes);
else
memset(work[m + i], 0, buffer_bytes);
}
#pragma omp parallel for
for (int i = m + original_count; i < (int)n; ++i)
memset(work[i], 0, buffer_bytes);
// work <- IFFT(work, n, 0)
IFFT_DIT_Decoder(
buffer_bytes,
m + original_count,
work,
n,
FFTSkew - 1);
// work <- FormalDerivative(work, n)
for (unsigned i = 1; i < n; ++i)
{
const unsigned width = ((i ^ (i - 1)) + 1) >> 1;
if (width < 8)
{
VectorXOR(
buffer_bytes,
width,
work + i - width,
work + i);
}
else
{
VectorXOR_Threads(
buffer_bytes,
width,
work + i - width,
work + i);
}
}
// work <- FFT(work, n, 0) truncated to m + original_count
const unsigned output_count = m + original_count;
#ifdef LEO_ERROR_BITFIELD_OPT
FFT_DIT_ErrorBits(buffer_bytes, work, output_count, n, FFTSkew - 1, error_bits);
#else
FFT_DIT(buffer_bytes, work, output_count, n, FFTSkew - 1);
#endif
// Reveal erasures
for (unsigned i = 0; i < original_count; ++i)
if (!original[i])
mul_mem(work[i], work[i + m], kModulus - error_locations[i + m], buffer_bytes);
}
//------------------------------------------------------------------------------
// API
static bool IsInitialized = false;
bool Initialize()
{
if (IsInitialized)
return true;
InitializeLogarithmTables();
InitializeMultiplyTables();
FFTInitialize();
IsInitialized = true;
return true;
}
}} // namespace leopard::ff16
#endif // LEO_HAS_FF16