leopard/LeopardFF16.h

94 lines
3.2 KiB
C++

/*
Copyright (c) 2017 Christopher A. Taylor. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Leopard-RS nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "LeopardCommon.h"
#ifdef LEO_HAS_FF16
/*
16-bit Finite Field Math
This finite field contains 65536 elements and so each element is one byte.
This library is designed for data that is a multiple of 64 bytes in size.
Algorithms are described in LeopardCommon.h
*/
namespace leopard { namespace ff16 {
//------------------------------------------------------------------------------
// Datatypes and Constants
// Finite field element type
typedef uint16_t ffe_t;
// Number of bits per element
static const unsigned kBits = 16;
// Finite field order: Number of elements in the field
static const unsigned kOrder = 65536;
// Modulus for field operations
static const ffe_t kModulus = 65535;
// LFSR Polynomial that generates the field elements
static const unsigned kPolynomial = 0x1002D;
//------------------------------------------------------------------------------
// API
// Returns false if the self-test fails
bool Initialize();
void ReedSolomonEncode(
uint64_t buffer_bytes,
unsigned original_count,
unsigned recovery_count,
unsigned m, // = NextPow2(recovery_count) * 2 = work_count
const void* const * const data,
void** work); // Size of GetEncodeWorkCount()
void ReedSolomonDecode(
uint64_t buffer_bytes,
unsigned original_count,
unsigned recovery_count,
unsigned m, // = NextPow2(recovery_count)
unsigned n, // = NextPow2(m + original_count) = work_count
const void* const * const original, // original_count entries
const void* const * const recovery, // recovery_count entries
void** work); // n entries
}} // namespace leopard::ff16
#endif // LEO_HAS_FF16