
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

An Efficient (n, k) Information Dispersal Algorithm
based on Fermat Number Transforms

Sian-Jheng Lin and Wei-Ho Chung*

Abstract—The (n, k) information dispersal algorithm (IDA) is
a coding technique converting a digital source file into n small
digital files (shadows), and the receipt of any k out of the n
shadows can losslessly reconstruct the source file. This paper
presents an encoding and two decoding algorithms of (n, k) IDA
via the fast Fermat number transform (FNT). The proposed en-
coding algorithm requires O(n log k) arithmetic operations, and
the two decoding algorithms have complexities O(n log k) and
O(k log2 k) for a reasonably large file. As compared with existing
work, the proposed algorithms generate significant improvement
in the throughput in the low code rate k/n ≤ 1/2 settings.

Index Terms—Erasure codes, fast Fourier transforms, Galois
fields, information dispersal algorithm (IDA), Reed-Solomon
codes.

I. INTRODUCTION

Information dispersal algorithm (IDA) was first introduced
by Rabin [1], [2] in 1989. The (n, k) IDA transforms a digital
source file into n smaller files (shadows), and the receipt of
any k out of the n shadows can reconstruct the source file.
By such coding technology, the robustness and fault-tolerance
of important files can be improved in communication and
storage systems. The idea of IDA is similar to the polynomial
secret sharing [35], [36], [37]. However, IDA does not consider
the security issue in the design of coding system. In a well-
designed IDA, the length of each shadow is (asymptotically)
equal to one k-th of the length of source file. Precisely,
the length of each shadow achieves the theoretical lower
bound [3], under the condition of maximal entropy in the
source file. The IDA had been applied to many applications,
e.g., distributed data storage [4], RAID codes [5], peer-to-
peer techniques [6], multicast [7], and secret sharing [33]. A
remarkable coding technique, namely the fountain code [34],
is the alternative technique to disperse the source file in the
network environment.

Conceptually, the (n, k) IDA can be treated as the (n, k)
erasure code. When the receiver acquires k shadows, the
scenario is equivalent to erasing the corresponding n−k non-
received symbols in an n-symbol codeword. Thus, the optimal
erasure codes, such as Maximum Distance Separable (MDS)
codes [15], [17], [18] or Reed-Solomon(RS) codes [19], [20],

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
Sian-Jheng Lin and Wei-Ho Chung are with the Research Center for Infor-
mation Technology Innovation, Academia Sinica, Taipei City, Taiwan (e-mail:
sjlin@citi.sinica.edu.tw; whc@citi.sinica.edu.tw). This work was supported by
National Science Council of Taiwan, under grant number NSC101-2221-E-
001-002, NSC101-2221-E-001-008, NSC101-2622-E-001-001-CC3, and 32T-
1010721-1C.

[22], can serve as the applicable coding systems for the (n, k)
IDA. The standard implementation of (n, k) RS erasure codes
require O(nk) operations in encoding and O(k2) operations
in decoding via ordinary matrix multiplications.

The computational complexity is a challenge in IDA. The
fast IDA can improve the throughput of the real-time systems
by demanding large amount of encoding and decoding opera-
tions. Various IDAs have been reported in previous literature.
In many cases, the erasure codes (or IDAs) can be formulated
as the matrix-product forms, so the encoding and decoding
complexities depend on the overhead of computing the matrix
products. The conventional approaches of (n, k) IDA, such as
[1], do not utilize the fast techniques on encoding and decod-
ing processes. Therefore, the conventional encoding algorithm
requires O(nk) operations and the conventional decoding
algorithm requires O(k2) operations. To further reduce the
computational overhead, the fast Fourier transforms (FFT)
over finite field with characteristic two [8], [9], [10], [11] or
the fast Fermat number transforms (FNT) are employed in the
coding algorithms. For example, Preparata [12] presented the
realization of the coding schemes using FFT over finite fields,
and the computational complexities are O(n log n) in encoding
and O(k(n − k + log k)) in decoding. Dianat and Marvasti
[13] presented the systematic and nonsystematic codes of
puncturing RS codes based on FFT over finite fields. Soro
and Lacan [14] proposed a Reed-Solomon erasure coding
algorithm with complexity O(n log n) in both encoding and
decoding. Lacan and Fimes [15] investigated a systematic
MDS erasure coding algorithm based on Vandermonde ma-
trices. For the case k/n ≥ 1/2, Lin and Chung [38] present a
(n, k) IDA with complexities O(n log(n−k)) in encoding and
decoding. For the finite field GF (2r) with characteristic two,
Didier [16] presented an decoding algorithm for RS erasure
codes O(2r log2 2r) via fast Walsh transforms. In Section VII,
we compare the proposed IDA with those existing methods.

There exist works for erasure codes. G. L. Feng et al.
[17], [18] proposed (n, k) MDS codes based on exclusive-
OR (XOR) operations. Truong et al. [19] proposed a fast RS
decoding algorithm for correcting both errors and erasures.
By FFT over finite field with characteristic two [10], [11],
the FFT version of RS decoding algorithm had been proposed
[20]. Lin et al. [21] proposed a fast algorithm for computing
the syndromes of RS codes. Note that there exist several non-
optimal erasure codes, such as [34] and [23], [24]. In gen-
eral, those non-optimal erasure codes require lower computa-
tional complexities than optimal erasure codes. However, non-
optimal erasure codes cannot guarantee successful decoding
from arbitrary k out of the n codeword symbols, as opposed

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2013.2270892

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

to the guaranteed successful decoding in the optimal erasure
codes.

By our survey on the (n, k) erasure coding algorithms over
Fermat field, the best records of encoding algorithm take
O(n log n) operations [12], [13], [14] and the decoding al-
gorithms take O(n log n) [14] or O(k log2 k) [15] operations.
In this paper, we propose a fast (n, k) IDA based on erasure
Reed-Solomon coding systems over Fermat fields. Given k
source symbols, the proposed encoding algorithm requires
complexity O(n log k), which is lower than the existing work
O(n log n). In decoding, we present two algorithms. Given
k shadow symbols, the main procedure of first decoding
algorithm requires complexity O(n log k), which is lower
than the existing work O(n log n) [12], [13], [14]. The main
procedure of second decoding algorithm requires complexity
O(k log2 k) with smaller leading constant than the fast polyno-
mial interpolation algorithm [15], [25]. By the computational
complexities of the two proposed decoding algorithms, the
first decoding algorithm is applicable for n ≤ k log2 k, and
otherwise the second decoding algorithm is to be adopted. The
criteria of choosing one of the two decoding algorithms are
discussed in Section VIII-B. It is noted that the [38] presents
the IDA for the high code rates k/n ≥ 1/2. In contrast, the
proposed IDA is suitable for the low code rates k/n ≤ 1/2,
and the detailed comparisons between [38] and the proposed
method are detailed in Section VII. The potential applications
of the low-rate codes are in the communication systems.
For example, the [39] indicates that the low-rate codes are
applicable to code-division multiple-access (CDMA) systems.

The rest of the paper is organized as follows. Section II
introduces the definition of coding system, and the concept of
the proposed algorithms. Sections III, IV, and V respectively
present the proposed encoding and two decoding algorithms
under the settings where k is a power of two, and n is
the multiple of k. Section VI analyses the complexities of
the three proposed algorithms. In Section VII, we compare
the proposed IDA with existing work in theoretical and ex-
perimental aspects. Certain related important issues on the
proposed algorithm are discussed in Section VIII, including the
generalization of the parameters (n, k), the decision criteria of
choosing the suitable decoding algorithm, the partial FFT on
second decoding algorithm, the strategy of storing the shadow
elements in binary data format, and the generalized IDA over
Proth field. Finally, Section IX concludes this work.

II. SYSTEM DESCRIPTION

The coding system is a modified version of the systematic
Reed-Solomon codes over Fermat field GF (2r + 1). Thus
far the known Fermat primes are for r = {1, 2, 4, 8, 16}.
Throughout this paper, the arithmetic operation is conducted
over Fermat field unless otherwise specified. The coding
system follows the polynomial evaluation approach of (n, k)
Reed-Solomon codes [22]. The source file is denoted as a
(2r + 1)-ary integer sequence F . This F is divided into
a certain number of non-overlapping sub-vectors of length
k each. The encoding process is then individually operated
on each k-element sub-vector a = (a0, a1 . . . ak−1), where

Table of Notations
For any polynomial defined in this paper, the vector formulation of the
polynomial is denoted by the coefficients of the function. For example,
the vector formulation of a polynomial f(x) =

∑k−1
i=0 fix

i is denoted
as f = (f0, f1 . . . fk−1).

Big-O f(x) = O(g(x)) iff there exist two positive constants c
and x0 such that f(x) ≤ c× g(x) for x ≥ x0.

GF (2r + 1) Finite field of size 2r + 1, and r = {1, 2, 4, 8, 16}.
F A sequence of data symbols over Fermat field.
n Number of generated shadows.
k Threshold number of shadows to reconstruct the F .
Ii Evaluation point of a codeword symbol.
Fi A sequence of symbols consisting of codeword symbols

corresponding to the evaluation point Ii. The length of Fi

is denoted as |Fi|.
a A k-element vector a = (a0, a1 . . . ak−1) which is the

input of the encoding algorithm.
b An n-element vector b = (b0, b1 . . . bn−1) which is the

output of the encoding algorithm.
FNTk(·) k-point Fermat number transform.
IFNTk(·) k-point inverse Fermat number transform.
Ak(x) A k-element vector Ak(x) = (1, x, x2 . . . xk−1).
⊗ Y0 ⊗ Y1 denotes the pair-wise product of vectors Y0 and

Y1.
∗ Y0 ∗ Y1 denotes convolution of vectors Y0 and Y1.
β, β̂ Two sets containing the auxiliary data generated from the

initialization of Algorithm 2.
γ, γ̂j γ is a set and γ̂j is a vector. γ and γ̂j contains the auxiliary

data generated from the initialization of Algorithm 3.

each ai indicates a message symbol in the ready-to-process
sub-vector. Let the f(x) =

∑k−1
i=0 fix

i denote the coding
polynomial, which is chosen to satisfy the k equalities below:

ai = f(Ii), ∀i = 0 . . . k − 1. (1)

The n-symbol codeword is the evaluation of f(x) at n
distinct evaluation points I = {Ii}n−1

i=0 . Let the vector b =
(b0, b1 . . . bn−1) represent the codeword, and

bi = f(Ii),∀i = 0 . . . n− 1. (2)

The Ii is namely the evaluation point of bi. By definition, the
codeword b can be divided into two parts, where the message
part is located in

bi = ai = f(Ii),∀i = 0 . . . k − 1, (3)

and the parity part is located in

bj = f(Ij),∀j = k . . . n− 1. (4)

To decode the message symbols, the decoding side should
receive arbitrary k codeword symbols at least. To facilitate
the description of algorithms, this paper adopts two types
of notations to identify those received symbols. In the first
decoding algorithm (Section IV), the received codeword is
expressed as an n-element vector b̂ = (b̂0, b̂1 . . . b̂n−1), where
b̂j = bj expresses the received symbol, or else b̂j = 0 for the
erasures. In the second decoding algorithm (Section V), the k
pairs of the received symbols are identified as {(Ĩj , b̃j)}k−1

j=0 ,
where the b̃j denotes the received codeword symbol at the
evaluation point Ĩj .

By following the second notation, the coding polynomial
can be reconstructed via

f(x) =
k−1∑

i=0

b̃i

k−1∏

j=0,j 6=i

x− Ĩj

Ĩi − Ĩj

. (5)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2013.2270892

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

Thus, the message symbols can be retrieved through {ai =
f(Ii)}k−1

i=0 .
Based on the above coding system, the encoding pro-

cess individually converts each sub-vector of F into a n-
symbol codeword. Let the sequence Fi denote the f(Ii) in
those codewords. The n generated shadows are defined as
{(Ii, Fi)}n−1

i=0 . To reduce the computational complexity, the
key technique, namely Fermat number transform (FNT), is
introduced in Section II-A. Then the basic principles of the
proposed algorithms are briefly described in Section II-B,
under conditions k being the power of two, and n being
multiple of k. Based on the basic principles, the details of the
three proposed algorithms are separately addressed in Sections
III, IV and V. By the truncation technique in Section VIII-A,
the proposed algorithms can serve for all feasible values of n
and k.

A. Fermat number transforms

Fermat number transform (FNT) is defined as the discrete
Fourier transform over the Fermat field GF (2r + 1), and r ∈
{1, 2, 4, 8, 16}. Given a k-element vector y = (y0, y1 . . . yk−1)
with k ≤ 2r and k belonging to a power of two, the FNT of
y is expressed as the function Y = FNTk(y), where the Y =
(Y0, Y1 . . . Yk−1) is a k-element vector. The inverse transform
(IFNT) is expressed as the function y = IFNTk(Y). The
relationship between Y and y is defined as

Yi =
k−1∑

j=0

yjw
ij
k ; yi =

1
k

k−1∑

j=0

Yjw
−ij
k , (6)

where the wk denotes the primitive kth root of unity over
Fermat field. The wk can be found via wk = α2r/k, where
α denotes the primitive element of Fermat field. Let Y (x) =∑k−1

j=0 Yjx
j and y(x) =

∑k−1
j=0 yjx

j , the (6) can be treated as
the polynomial evaluations given by

Yi = y(wi
k); yi =

1
k

Y (w−i
k). (7)

By applying radix-2 fast Fourier transform (FFT) over Fermat
field, the k-point FNT takes k log2 k additions and 0.5k log2 k
multiplications, so that the computational cost is significantly
lower than the ordinary approach with complexity O(k2).

The shift theorem is utilized in the design of the pro-
posed algorithms. Suppose the k-element vector Ỹ =
(y(∆w0

k), y(∆w1
k) . . . y(∆wk−1

k)) is the desired objective to
be calculated, where the ∆ denotes an element in the finite
field. Each term of Ỹ can be formulated as

y(∆wi
k) =

k−1∑

j=0

(yj∆j)wij
k . (8)

Let
Ak(∆) = (1, ∆, ∆2 . . . ∆k−1) (9)

denote a vector containing the twisted coefficients. Then we
have Ỹ = FNTk(Ak(∆) ⊗ y), and the computation of Ỹ
requires a k-point FNT and k − 1 multiplications.

As the FNT is a linear transform, the addition operation +
possesses the equality:

FNT (Y0) + FNT (Y1) = FNT (Y0 + Y1). (10)

This equality will be utilized in the design of the second
decoding algorithm (Section IV-B).

An important application of FNT is for the fast polynomial
multiplication Y0(x) × Y1(x) =

∑k−1
i=0 y0,ix

i ×∑k−1
i=0 y1,ix

i,
or equivalently the convolution Y0 ∗ Y1. By FNT, the fast
convolution requires three times of 2k-point FNTs:

Y0 ∗ Y1 = IFNT2k(FNT2k(Y0)⊗ FNT2k(Y1)), (11)

where the operation ⊗ denotes the pair-wise product of two
vectors.

B. Basic principles of proposed algorithms

This subsection describes the basic principles of the pro-
posed coding algorithms, under the conditions that k is a
power of two and n is multiple of k. Note that the proposed
algorithms employ k-point FNTs, as opposed to the n-point
FNTs used in previous work [12], [13], [14]. In decoding,
as each received part of codeword (taken from the shadows)
has the common evaluation points, the decoding process for
each codeword involves a repetitive part of computations.
This common part can be completed in one round, and the
generated temporal data are used in the decoding of each
codeword taken from the received shadows. This part is named
as the initialization of the decoding algorithm. This subsection
presents the design rationale of the algorithms, and the details
are explained in the corresponding sections.

1) Encoding algorithm: By the definition of coding system,
the encoding process consists of two coding phases. The first
phase is to compute the coefficients of coding polynomial
f(x), and the second phase is to compute the codeword
symbols f(Ii). To apply the k-point FNT in encoding pro-
cess, the codeword b is treated as n/k individual sub-vectors
b = (b̂0b̂1 . . . b̂n/k−1), and the length of each b̂j is k. The first
sub-vector b̂0 = a is the message vector, and the remaining
n/k− 1 parity sub-vectors {b̂i}n/k−1

i=1 are the objectives to be
calculated. In the first phase, we choose the evaluation points
of those message symbols such that the message symbols are
exactly the input of a k-point IFNT. Thus, the coefficients
of f(x) can be efficiently computed via a k-point IFNT. In
the second phase, each sub-vector b̂i is computed via the k-
point FNT on the coefficients of f(x). By such computational
structure, we can obtain the evaluation points for those parity
sub-vectors {b̂i}n/k−1

i=1 . The details are explained in Section
III.

2) First decoding algorithm: Section IV-A firstly explains a
tentative version of the proposed decoding algorithm. The key
polynomial is defined as g(x) = f(x)L̄(x), where the f(x) is
the coding polynomial, and the L̄(x) is defined in (17). By the
structure of L̄(x), the formal derivative of g(x) can be used to
compute the erasures. The algorithm involves a n-point IFNT
to compute the coefficients of g(x). Then the coefficients of
g′(x) can be easily obtained within Θ(n) operations. A k-point

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2013.2270892

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

FNT is then applied to compute the erasures. However, the n-
point IFNT requires O(n log n) operations, which is the bot-
tleneck of the tentative algorithm. Section IV-B then presents
the proposed algorithm. To further reduce the complexity, the
n-symbol received codeword is divided into n/k individual
sub-vectors with k symbols each, and each sub-vector takes
a k-point IFNT. We proved that the above modified version
generates the same result as the tentative algorithm does. As
a result, the computational overhead is reduced to O(n log k).

3) Second decoding algorithm: The second decoding al-
gorithm is modified from the fast polynomial interpolation
[25]. The fast polynomial interpolation follows a divide-and-
conquer strategy, and the FNT is utilized in the computations
to reduce the complexity. The proposed decoding algorithm is
motivated from two observations. Firstly, since the evaluation
points of received symbols of all codewords are identical,
the calculations requiring only the evaluation points can be
completed in one round without repetitive calculations in
later iterations. Secondly, based on the characteristics of the
decoding system, several algorithm steps are modified to
reduce the computational cost.

III. ENCODING ALGORITHM

As described in Section II-B1, the encoding process consists
of two coding phases. To efficiently compute the coefficients
of f(x) in the first phase, each evaluation point of message
symbol ai is defined as wi

k, so that ai = f(wi
k), ∀i =

0 . . . k − 1. By (7), the equality a = FNTk(f) holds, so the
coefficients f(x) can be computed via the inverse transform
f = IFNTk(a).

The second phase utilizes the shift theorem of FNT. The
codeword is divided into n/k individual sub-vectors b =
(b̂0, b̂1 . . . b̂n/k−1), and each sub-vector is defined as b̂j =
(b̃j [0], b̃j [1] . . . b̃j [k − 1]). For i = 0 . . . k − 1, the evaluation
point of b̃j [i] is defined as ∆jw

i
k with the shift amount ∆j , so

b̃j [i] = f(∆jw
i
k), ∀i = 0 . . . k − 1. By the shift theorem (8),

the above equality can be rewritten as

b̃j [i] = f(∆jw
i
k) =

k−1∑

l=0

(fi∆l
j)w

il
k . (12)

Thus, the computation b̂j requires a k-point FNT and k − 1
multiplications:

b̂j = FNTk(Ak(∆j)⊗ f). (13)

It is noted that for ∆j = 1, the transform generates the
message symbols:

b̂j = FNTk(Ak(1)⊗ f) = FNTk(f) = a.

The {∆j}n/k−1
i=1 can be chosen as n/k − 1 distinct elements

among {αi|1 ≤ i < 2r/k}. To facilitate the description of
the algorithm, each element is defined as ∆j = αj , ∀j =
1 . . . n/k − 1. The above definition gives a systematic defi-
nition of evaluation points of n codeword symbols. For each
evaluation point Il of codeword symbol bl, the value l is can
be factorized as l = i + kj, where i = l(mod k) and j = l/k.

The range of i and j are 0 ≤ i ≤ k−1, and 0 ≤ j ≤ n/k−1.
By above definition, the evaluation point is set as

Il = Ii+kj = αj+i×2r/k = αjwi
k,∀l = 0 . . . n− 1. (14)

The encoding algorithm is provided below.
Algorithm 1: The encoder.
Input: k message symbols a = (a0, a1 . . . ak−1).
Output: n− k parity symbols.
Main procedure:

1) Compute the vector f = IFNTk(a).
2) For j = 1 . . . n/k − 1, compute the vector b̂j =

FNTk(Ak(αj)⊗f). Each b̂j contains k parity symbols,
so there are (n/k− 1)k = n− k symbols in the output.

IV. FIRST DECODING ALGORITHM

This section explains the first decoding algorithm in the
following two sub-sections. The first sub-section gives the for-
mulas of the tentative algorithm within complexity O(n log n).
In the second sub-section, a modified version is presented
to improve the complexity to O(n log k). In this section,
the received codeword is expressed as an n-element vector
b̂ = (b̂0, b̂1 . . . b̂n−1). Let l̂ denote the set of locations of
k received codeword symbols. Then the received codeword
symbols are expressed as

b̂j =

{
bj if j ∈ l̂;
0 otherwise.

(15)

By the above definition, the polynomial L(x) is defined as

L(x) =
∏

j∈l̂

(x− Ij). (16)

The algorithm of computing the coefficients of L(x) is placed
in Appendix A.

A. The tentative algorithm

Two polynomials are respectively defined as

L̄(x) = (x2r − 1)/L(x), (17)

g(x) = f(x)L̄(x) =
2r−1∑

i=0

gix
i, (18)

where the f(x) is the coding polynomial (1). As the roots of
(x2r − 1) are all the non-zero elements of GF (2r + 1), the
roots of L̄(x) are the complement of the roots of L(x) over the
{αi}2r−1

i=0 , i.e., L̄(Ij) = 0, ∀j /∈ l̃. Suppose the coefficients of
g(x) had been computed. Then the formal derivative of g(x),
expressed as g′(x) =

∑2r−1
i=1 igix

i−1, can be computed within
2r multiplications. By product rule, the g′(x) possesses the
equality

g′(x) = f ′(x)L̄(x) + f(x)L̄′(x). (19)

For any j /∈ l̃, the equality L̄(Ij) = 0 gives the following
formula:

g′(Ij) = f(Ij)L̄′(Ij),∀j /∈ l̃. (20)

Thus, the erasures can be computed via

f(Ij) = g′(Ij)L̄′(Ij)−1, ∀j /∈ l̃. (21)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2013.2270892

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

The above formula can be further refined. A polynomial
h(x) =

∑k−1
i=0 hix

i is defined as

h(x) = xg′(x) mod(xk − 1). (22)

As the roots of (xk− 1) are {wi
k}k−1

i=0 , the h(x) possesses the
equality:

h(x) = xg′(x), ∀x ∈ {wi
k}k−1

i=0 .

By the definition (14), the evaluation points of message
symbols are the {wi

k}k−1
i=0 . Thus, the term g′(Ij) in (21) can

be replaced with h(Ij)I−1
j , resulting in

f(Ij) = h(Ij)(IjL̄
′(Ij))−1, ∀j /∈ l̃ and 0 ≤ j ≤ k − 1. (23)

As the degree of h(x) is smaller than g′(x), the evaluation
h(Ij) in (23) takes fewer arithmetic operations than the g′(Ij)
in (21). In the following, the algorithms of computing g(x)
and {h(wj

k)}k−1
j=0 are presented respectively.

1) Algorithm of computing the coefficients of g(x): To
compute the coefficients of g(x), we examine the values
{g(αj)}2r−1

j=0 given by

g(αj) = f(αj)L̄(αj) =

{
b̂jL̄(Ij), if j ∈ l̂;
0, otherwise.

(24)

Those values are formed as a 2r-point vector

G = (g(α0), g(α1) . . . g(α2r−1)). (25)

The computation of G requires the values L̄(Ij) defined as a
set

β = {L̄(Ij)|j ∈ l̂}, (26)

As the elements in the β require only the evaluation points,
the (26) can be calculated in the algorithm initialization. Then,
the coefficients of g(x) are computed via

g = IFNT2r (G). (27)

2) Algorithm of computing the (23): The terms
{h(wj

k)}k−1
j=0 in (23) can be computed via

H = FNTk(h), (28)

and the required values h(Ij) are in the vector H . Notably, if
the computational step follows the (21), the terms {g′(Ij)}k−1

j=0

can be computed via a 2r-point FNT FNT2r (g′), which
requires more operations than the (28).

The (23) also requires the terms (IjL̄
′(Ij))−1, whose eval-

uations require only the evaluation points, so those values can
be calculated in initialization. Those terms are defined as a set

β̂ = {(IjL̄
′(Ij))−1|j /∈ l̂ and 0 ≤ j ≤ k − 1}. (29)

3) Steps of tentative algorithm: In summary, a tentative
method is presented to calculate the erasures. In the algorithm
initialization, the sets β and β̂ respectively defined in (26) and
(29) are computed. Another algorithm of computing β and β̂
is introduced in Appendix B-A. In the main procedure, the
first step calculates the vector G through (24). The second
step calculates the vector g via (27) via a 2r-point FNT. The
third step calculates the coefficients of h(x) defined in (22).
The final step calculates the erased message symbols through
(23).

B. The proposed algorithm

It can be shown that the complexity of the above tentative
algorithm is dominated by a 2r-point IFNT to compute the
(27). To reduce the computational complexity further, a new
formula of h(x) is presented below.

Given the vector G defined in (25), all elements
of G are classified as 2r/k individual sub-vectors
[G0, G1 . . . G2r/k−1], where each k-element sub-vector
Gj = (g(αj), g(αjw1

k) . . . g(αjwk−1
k)). For each Gj , we

define the corresponding polynomial gj(x) =
∑k−1

i=0 g
[j]
i xi to

satisfy the equalities:

gj(αjwi
k) = g(αjwi

k),∀i = 0 . . . k − 1. (30)

By the following formulas, the coefficients of gj(x) can be
efficiently computed from the Gj . By shift theorem of FNT,
the gj(αjwi

k) can be formulated as

gj(αjwi
k) =

k−1∑
t=0

g
[j]
t (αjwi

k)t =
k−1∑
t=0

(αjtg
[j]
t)wit

k . (31)

By (6), the inversion of above formula is

αjtg
[j]
t =

1
k

k−1∑
t=0

gj(αjwi
k)w−it

k . (32)

As the {gj(αjwi
k)}k−1

i=0 are the terms of Gj , the IFNTk(Gj)
outputs the values {αjtg

[j]
t }k−1

t=0 . Then each value is divided
by αjt to obtain the coefficients of gj(x), expressed as

g[j] = Ak(α−j)⊗ IFNTk(Gj), (33)

where Ak(α−j) is a vector defined in (9). In the follow-
ing, we derive the formula of h(x) as in those functions
{gj(x)}2r/k−1

j=0 .
The formula of expressing the g(x) as in {gj(x)}2r/k−1

j=0 is
given by

g(x) =
k

2r

2r/k−1∑

j=0

Tj(x)gj(x), and Tj(x) =
x2r − 1

w−j
2r/kxk − 1

.

(34)
The validity of (34) is proved in Appendix B-B. The formal
derivative of (34) is formulated as

g′(x) =
k

2r

2r/k−1∑

j=0

(T ′j(x)gj(x) + Tj(x)g′j(x)), (35)

where the derivative of Tj(x) is

T ′j(x) =
wj

2r/kxk−1[(2r − k)x2r − wj
2r/k2rx2r−k + k]

(xk − wj
2r/k)2

.

(36)
We plug (35) into (22) to obtain the objective formula

h(x) = xg′0(x) +
2r − k

2
g0(x) +

2r/k−1∑

j=1

kgj(x)
w−j

2r/k − 1
. (37)

Thus, the h(x) can be calculated from {gj(x)}2r/k−1
j=0 .

The (37) can be refined further. Firstly, the term (2r−k)/2×
g0(x) can be discarded, due to g0(w

j
k) = g(wj

k) = 0, ∀j /∈

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2013.2270892

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

l̂ by (30)(24). Secondly, the term
∑2r/k−1

j=1
kgj(x)

w−j
2r/k

−1
can be

simplified as
∑n/k−1

j=1
kgj(x)

w−j
2r/k

−1
due to gj(x) = 0 for j ≥ n/k.

To explain this property, by the definition of evaluation point
(14), each erasure position is expressed as l = i + kj for
0 ≤ j ≤ n/k−1. Thus, there do not exist erasures in j ≥ n/k,
so the set l̃ does not contain the erasures in j ≥ n/k. For
j ≥ n/k, the definition (24) gives g(αi+kj) = 0, so the Gj

is a zero vector. The polynomial gj(x), which is computed
via IFNTk(Gj), is also zero. By the above observations, the
modified polynomial is

h̃(x) = xg′0(x) +
n/k−1∑

j=1

kgj(x)
w−j

2r/k − 1
. (38)

The decoding algorithm is summarized below:
Algorithm 2: The first decoder.
Input: A codeword b̂ with n− k erasures.
Output: The erased message symbols aj , ∀j /∈ l̂ and j =
0 . . . k − 1.
Initialization: Compute the sets β andβ̂ respectively defined
in (26) and (29).
Main procedure:

1) Compute the vector G defined in (24), where the term
L̄(Ij) is taken from the set β. Then divide the G into
2r/k sub-vectors G = (G0, G1 . . . G2r/k−1), and each
Gj contains k elements.

2) For each Gj , compute the corresponding polynomial
gj(x) defined in (33).

3) Compute the h̃(x) defined in (38).
4) Compute the (28), where the vector h uses the coeffi-

cients of h̃(x). Specifically, compute H = FNTk(h̃).
5) Compute the erasures through (23), where the values

h(wj
k) are taken from the vector H , and the terms

(wj
kL̄′(wj

k))−1 are taken from the set β̂.

V. SECOND DECODING ALGORITHM

For the scenario n >> k, the complexity of first decod-
ing algorithm O(n log k) may be higher than the ordinary
approach O(k2). This section introduces another decoding
algorithm within complexity O(k log2 k). The first subsec-
tion reviews the fast polynomial interpolation [25], and the
second subsection explains our modified version to reduce
its leading constant. In this section, the k received codeword
symbols with the corresponding evaluation points are denoted
as {(Ij , bj)|j ∈ l̃}.

A. Fast polynomial interpolation algorithm

The decoding formula (5) can be reformulated as

f(x) =
∑k−1

i=0 b̃i

∏k−1
j=0,j 6=i(x−Ĩj)∏k−1
j=0,j 6=i(Ĩi−Ĩj)

⇒ f(x) =
∑k−1

i=0 b̃i

∏k−1
j=0 (x−Ĩj)

(x−Ĩi)
∏k−1

j=0,j 6=i(Ĩi−Ĩj)

⇒ f(x) =
∏k−1

j=0 (x− Ĩj)
∑k−1

i=0
b̃i

(x−Ĩi)
∏k−1

j=0,j 6=i(Ĩi−Ĩj)

⇒ f(x)
L(x) =

∑k−1
i=0

b̃i

(x−Ĩi)L′(Ĩi)
,

(39)

where the polynomials L(x) and its derivative are respectively
defined as

L(x) =
k−1∏

j=0

(x− Ĩj);

L′(x) =
k−1∑

i=0

k−1∏

j=0,j 6=i

(x− Ĩj).

Let
{f [0]

i (x) = b̃i/L′(Ĩi)}k−1
i=0 (40)

denote a set of k constant polynomials. Then the (39) can be
rewritten as

f(x)
L(x)

=
k−1∑

i=0

f
[0]
i (x)

x− Ĩi

. (41)

The right-hand side is the summation of k partial fractions.
The fast polynomial interpolation is a method to sum all those
partial fractions together. The result is a fraction whose de-
nominator is the L(x), and the numerator is the standard form
of polynomial f(x). The algorithm steps [25] are addressed
below:

1) Calculate the coefficients of L(x) and L′(x).
2) Construct the set

γ = {1/L′(Ĩi)}k−1
i=0 . (42)

3) Construct k constant polynomials defined as (40).
4) Compute the summation (41) to obtain a fraction whose

numerator polynomial is the f(x).
In step 1, the coefficients of L(x) can be calculated within
O(k log2 k) as introduced in Appendix A. Then the coeffi-
cients of L′(x) can be directly obtained within k multipli-
cations. In Step 2, the fast polynomial evaluation algorithm
requires O(k log2 k) operations. The details can be referred
to the Chapter 1-4 of [25] for more information. In Step
3, each value 1/L′(Ĩi) is taken from the set γ, so the
construction of set (40) requires k multiplications. In the final
step, the numerator f(x) is computed by a divide-and-conquer
strategy. It is noted that the temporary data generated in step
1 can be reused in this step. This step consists of log2 k
stages. Initially, the process constructs k individual fractions
{f [0]

i (x)/L
[0]
i (x)}k−1

i=0 , where L
[0]
i (x) = (x− Ĩi).

In the first stage, the process pairwise sums those k partial
fractions to obtain k/2 partial fractions:

f
[0]
2i (x)

L
[0]
2i (x)

+
f
[0]
2i+1(x)

L
[0]
2i+1(x)

=
f
[0]
2i (x)L

[0]
2i+1(x)+f

[0]
2i+1(x)L

[0]
2i (x)

L
[0]
2i (x)L

[0]
2i+1(x)

= f
[1]
i (x)

L
[1]
i (x)

, ∀i = 0 . . . k/2− 1.

(43)

Note that the denominator can be taken from the temporary
data (64) which have been generated in step 1. The denomi-
nator and the computed numerator are respectively labeled as
L

[1]
i (x) and f

[1]
i (x). In the jth stage (1 ≤ j ≤ log2 k), the

process follows such recursive strategy to compute

f
[j]
i (x)

L
[j]
i (x)

=
f

[j−1]
2i (x)

L
[j−1]
2i (x)

+
f

[j−1]
2i+1 (x)

L
[j−1]
2i+1 (x)

∀i = 0 . . . k/2j − 1. (44)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2013.2270892

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

The numerator is formulated as

f
[j]
i (x) = f

[j−1]
2i (x)L[j−1]

2i+1 (x) + f
[j−1]
2i+1 (x)L[j−1]

2i (x). (45)

It is noted that the denominator has been computed in
step 1 (see (65)), and we do not need to compute it
again. In the final stage, the process generates the fraction
f

[log2 k]
0 (x)/L

[log2 k]
0 (x), and the numerator is the coefficients

of f(x).
The computation (45) requires two polynomial multiplica-

tions and a polynomial addition. By applying fast polynomial
multiplication, the computation (45) can be done via six times
of 2j-point FNT:

f
[j]
i = IFNT2j ((FNT2j (f [j−1]

2i)⊗ FNT2j (L[j−1]
2i+1))+

IFNT2j (FNT2j (f [j−1]
2i+1)⊗ FNT2j (L[j−1]

2i)).
(46)

This step (46) requires O(2j log 2j) operations. Totally, the
fast polynomial interpolation takes O(k log2 k) operations.
When the coefficients of f

[log2 k]
0 have been obtained, the

message is calculated via

a = FNTk(f [log2 k]
0). (47)

B. The proposed algorithm

In the following, we list the observations which are used for
the construction of the proposed algorithm. Then the decoding
algorithm is presented.

1) Reduce the number of FNTs in the computation of f
[j]
i :

In (46), the computation of f
[j]
i requires six times of 2j-point

FNT. To facilitate the expression, we define

F̂
[j−1]
i = FNT2j (f [j−1]

i). (48)

By the linearity of FNT (10), the (46) can be rewritten as

f
[j]
i = IFNT2j (F [j]

i), (49)

where the F
[j]
i is a 2j-point vector defined as

F
[j]
i = F̂

[j−1]
2i ⊗ FNT2j (L[j−1]

2i+1)+
F̂

[j−1]
2i+1 ⊗ FNT2j (L[j−1]

2i).
(50)

By (49)(50), the computation f
[j]
i only requires five times of

2j-point FNT.
2) Reduce the size of FNT: The size of FNT used in

(49)(50) can be reduced. In the (j − 1)th stage, the process
computes f

[j−1]
i = IFNT2j−1(F [j−1]

i) by (49). Then in the
next stage, the (50) requires the set {F̂ [j−1]

i }k/2j−1−1
i=0 as the

input. By the above observation, the (48) is rewritten as

F̂
[j−1]
i = FNT2j (f [j−1]

i)
= FNT2j (IFNT2j−1(F [j−1]

i)).
(51)

Notably, the FNT2j (IFNT2j−1(F [j−1]
i)) represents a 2j-

point vector containing the 2j−1-point vector F
[j−1]
i at the

even positions. As the F
[j−1]
i has been obtained in the previous

stage, the objective is to compute the other elements, denoted
as a 2j−1-point vector F̂

[j−1]
i,1 . The F̂

[j−1]
i,1 can be calculated

via
F̂

[j−1]
i,1 = FNT2j−1(A2j−1(w2j)⊗ f

[j−1]
i), (52)

where A2j−1(w2j) is a vector defined in (9). Equivalently, we
can plug f

[j−1]
i = IFNT2j−1(F [j−1]

i) into (52) to obtain

F̂
[j−1]
i,1 = FNT2j−1(A2j−1(w2j)⊗ IFNT2j−1(F [j−1]

i)).
(53)

The objective F̂
[j−1]
i is expressed as

F̂
[j−1]
i = Merge(F [j−1]

i , F̂
[j−1]
i,1), (54)

which merges two vectors with placing the elements of F
[j−1]
i

and F̂
[j−1]
i,1 in even and odd positions, respectively.

3) Remove the redundant computations in the final stage:
In the final stage of the above algorithm, the process computes
F

[log2 k]
0 by (50) and the f

[log2 k]
0 = IFNTk(F [log2 k]

0) by (49).
Then the process computes the (47), which can be rewritten
as

a = FNTk(f [log2 k]
0) = FNTk(IFNTk(F [log2 k]

0)) = F
[log2 k]
0 .

(55)
Thus, the message is a = F

[log2 k]
0 , and the (49) in the final

stage and the (47) are redundant in the decoding system.
4) The calculations requiring only the evaluation points:

There exists two sets of auxiliary data computed in algorithm
initialization. The first set is the γ defined in (42). The second
set is defined as

γ̂j = {FNT2j (L[j−1]
i)|i = 0. . .k/2j − 1}, ∀j = 1 . . . log2 k.

(56)
This set is used in the (50). Based on those modifications, the
second decoding algorithm is presented below.
Algorithm 3: The second decoder.
Input: k received codeword symbols {(Ĩi, b̃i)|i = 0 . . . k−1}.
Output: The message vector a.
Initialization: Compute the sets γ and {γ̂j |j = 1 . . . log2 k}
as respectively defined in (42)(56).
Main procedure:

1) For i = 0 . . . k − 1, compute the F
[0]
i through

F
[0]
i = FNT1(f

[0]
i) = b̃i/L′(Ĩi),∀i = 0 . . . k−1. (57)

It is noted that the term L′(Ĩi) is taken from the γ. Let
j = 1.

2) For i = 0 . . . k/2j−1 − 1, compute the vector F̂
[j−1]
i

through (54)(53).
3) For i = 0 . . . k/2j − 1, compute the vector F

[j]
i

through (50), where the terms FNT2j (L[j−1]
2i+1) and

FNT2j (L[j−1]
2i) are taken from γ̂j .

4) If j = log2 k, output a = F
[log2 k]
0 ; else j = j + 1 and

then goto step two.
We briefly compare the computational cost of the proposed

version (50) with the original version (46). In the jth stage,
the original version totally requires 3k/2j−1 times of 2j-point
FNT, and the proposed version requires 2k/2j−1 times of
2j−1-point FNT. Since the cost of a 2j-point FNT is roughly
equivalent to two 2j−1-point FNTs, the modified version
(48) requires about 1/3 amount of computational cost of the
original formula (46).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2013.2270892

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

TABLE I: Complexities of the proposed algorithms.

Operation counts of main procedure ComplexityAdditions Multiplications
Encoder n log2 k 0.5n log2 k O(n log k)

First decoder (n+k) log2 k 0.5(n+k) log2 k Init.:O(k log2 k)
Main:O(n log k)

Second decoder k log2
2 k 0.5k log2

2 k Init.:O(k log2 k)
Main:O(k log2 k)

VI. COMPLEXITY ANALYSIS

By the radix-2 FFT over Fermat field, the k-point FNT takes
φ+(k) = k log2 k additions and φ×(k) = 0.5k log2 k multipli-
cations. This section discusses the computational complexities
of proposed algorithms, and the analysis results are listed in
Table I.

A. The encoder (Algorithm 1)

In Algorithm 1, step 1 requires a k-point FNT, and step
2 requires n/k − 1 times of k-point FNT. Thus, Algorithm 1
overall requires n/k times of k-point FNT, which takes n/k×
φ+(k) = n log2 k additions and n/k × φ×(k) = 0.5n log2 k
multiplications.

B. The first decoder(Algorithm 2)

In the main procedure of Algorithm 2, step 1 requires
k multiplications, and step 2 requires n/k times of k-point
FNTs. Step 3 takes O(n) additions and multiplications. Step 4
requires a k-point FNT, and step 5 takes O(k) multiplications.
The complexity is dominated by the n/k +1 times of k-point
FNTs, which totally takes (n/k+1)×φ+(k) = (n+k) log2 k
additions and (n/k + 1) × φ×(k) = 0.5(n + k) log2 k multi-
plications.

The initialization of Algorithm 2 constructs the two sets
β and β̂, which require the polynomial coefficients of L(x)
with complexity O(k log2 k) via Appendix A. Since the cost
of initialization is dominated by the computation of L(x), the
initialization requires complexity O(k log2 k).

C. The second decoder(Algorithm 3)

In the main procedure of Algorithm 3, step 1 requires k
multiplications. Steps 2-4 are formulated as a loop with log2 k
iterations. For j = 1 . . . log2 k, step 2 requires 2(k/2j−1)
times of 2j−1-point FNTs with complexity 2(k/2j−1) ×
O(2j−1 log 2j−1) = O(2k log 2j−1), and step 3 requires O(k)
multiplications and additions. Thus, the whole complexity is
dominated by step 2, which requires

∑log2 k
j=1

2k
2j−1 φ+(2j−1) ≈

k log2
2 k additions, and

∑log2 k
j=1

2k
2j−1 φ×(2j−1) ≈ 0.5k log2

2 k
multiplications.

The initialization of Algorithm 3 constructs the sets γ and
{γ̂j}log2 k

j=1 . The γ requires the formal derivative of L(x), and
the construction of γ̂j requires the temporary data (65) of com-
puting L(x). Since the cost of initialization is dominated by
the computation of L(x), the initialization requires complexity
O(k log2 k).

VII. COMPARISONS

This section compares the proposed algorithms with ex-
isting work. The time complexity of the proposed decoding
algorithm can be treated as min{O(n log k),O(k log2 k)}
by selecting a better algorithm among Algorithms 2 and 3.
Table II lists the computational complexities of the compared
methods with the leading constants. The complexities of those
methods are dominated by the cost of computing FNTs, or the
cost of matrix multiplications. The leading constant represents
the overhead of the dominated part in the method. The coding
system of [1] can be treated as Cauchy RS code, and the
codes [12], [13], [14], [15], [16] and ours are isomorphic under
Vandermonde RS codes. Those codes have the property that
the n is no larger than the size of used finite field. Thus, to
conduct a fair comparison, we consider that the codes [12],
[13], [14], [15] and ours are over the Fermat field GF (2r +1),
and the [16], [1] are over GF (2r).

It is noted that the RS code possess the condition that n(or
n − 1) must be no larger than the size of utilized field size.
Thus, under a specific n, the minimal field size of those RS-
like codes are asymptotically equivalent. For the systematic
codes, such as [13], [14], [15], [16] and ours, we consider the
situation that all received symbols are in the parity part, so the
decoder cannot directly retrieve the message from the received
symbols. In the following, the dominant parts of the methods
are briefly explained. Notably, an n-point FNT takes n log2 n
additions and 0.5n log2 n multiplications, so the n-point FNT
requires 1.5n log2 n operations.

The conventional method of IDA is introduced by Rabin
[1], which employs matrix multiplications in encoding and
decoding. The encoding algorithm requires about 2nk oper-
ations to multiply the k message symbols with an n × k
Cauchy matrix, and the decoder takes about 2k2 operations
to multiply the k codeword symbols with the k × k inverse
matrix. The [12], [13], [14], [15] are FNT-based algorithms.
For encoding, the [12] and non-systematic cases of [13], [14]
employ a n-point FNT on the message symbols, resulting
in n codeword symbols. For decoding, the [12], [13], [14],
[15] respectively introduce three kinds of decoding methods.
The [12] firstly computes the n− k un-received symbols with
matrix multiplications, and then an n-point IFNT is applied
on the n codeword symbols to obtain the decoded data. The
[13] employs a n-point IFNT and a recursion formula within
2(n − k)k operations. The [14] uses fast convolutions to
calculate the coefficients of the Lagrange polynomial within
eight times of n-point FNT.

The [13], [14], [15] also introduce the systematic coding
algorithms. The encoding of [13] is similar to conventional
RS encoding by polynomial division. The information poly-
nomial is divided by the generator polynomial, resulting
in the parity polynomial containing n − k parity symbols.
The polynomial division requires 2(n − k)k operations. For
decoding, the systematic case of [13] is similar to the non-
systematic version [13], but then applies an n-point FNT
on the generated intermediate data. The systematic approach
of [14] takes eight times of n-point FNT to compute the
coefficients of Lagrange polynomial, and then the FNT co-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2013.2270892

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

TABLE II: Comparisons with previous work.

Systematic(Yes/No) Complexities of encoding algorithm Complexities of decoding algorithm

Rabin[1] N 2nk = O(nk) 2k2 = O(k2)
Preparata[12] N 1.5n log2 n = O(n log n) 2n(n− k) + 1.5n log2 n = O(n(n− k + log n))

Dianat and Marvasti[13] N 1.5n log2 n = O(n log n) 1.5n log2 n + 2(n− k)k = O(n log n + k(n− k))
Y 2(n− k)k = O(k(n− k)) 3n log2 n + 2(n− k)k = O(n log n + k(n− k))

Soro and Lacan[14] N 1.5n log2 n = O(n log n) 8× 1.5n log2 n = O(n log n)
Y 9× 1.5n log2 n = O(n log n) 9× 1.5n log2 n = O(n log n)

Lacan and Fimes[15] Y 1.5k log2 k + ε(max{k, n− k})
= O(k log2 k + (n− k) log2(n− k))

1.5k log2 k + ι(k) = O(k log2 k)

Didier[16] Y (3 log2 n + 1)× n log2 n = O(n log2 n) (3 log2 n + 1)× n log2 n = O(n log2 n)

TABLE III: Comparisons with Lin and Chung [38].

Lin and Chung [38] The proposed algorithm
Range of par. k ≥ n/2 k ≤ n/2
Enc. comp. O(n log(n− k)) O(n log k)

Dec. comp. O(n log(n− k)) O(n log k) O(k log2 k)
Dec. formula Forney algorithm New formulation Fast Lagrange

interpolation

efficients are computed through an n-point FNT. The [15]
transforms the message symbols with a k-point IFNT and the
fast polynomial evaluation, and the decoding algorithm uses
fast polynomial interpolation and a k-point FNT. By the [32],
the ε(t) = O(t log2 t) denotes the complexity of polynomial
evaluation, and ι(t) = O(t log2 t) denotes the complexity of
polynomial interpolation.

The [16] introduces the encoding and decoding systematic
erasure RS codes over GF (2r). Rather than most algorithms
using fast Fourier transforms, the [16] introduces a coding
algorithm via fast Walsh transforms. An n-point Walsh trans-
form takes n log2 n additions but no multiplications. However,
the [16] requires r times of n-point Walsh transform in both
encoding and decoding, so the complexities are O(n log2 n).

As shown in Table II, the best cases of the compared
encoding algorithms require O(n log n) operations [12], [13],
[14], where the non-systematic cases [12], [13], [14] require a
n-point FNT, and the systematic case [14] requires nine times
of n-point FNT. The Algorithm 1 takes about n/k times of
k-point FNT operations. For k << n, the proposed encod-
ing algorithm requires fewer operations than the compared
methods. For decoding, the best performance of the compared
decoding algorithms takes O(n log n) [14] or O(k log2 k)
operations [15]. The [14] requires nine times of n-point FNT
for systematic case. By comparing Algorithm 2 with [14], the
Algorithm 2 has smaller big-O complexity (O(n log k) vs.
O(n log n)) and smaller leading constant (1.5 vs.13.5). The
systematic codes of [15] requires about O(k log2 k) operations
by fast polynomial interpolation. As shown in Section V-B, the
Algorithm 2 has smaller leading constant than the ordinary fast
polynomial interpolation, so we expect that Algorithm 2 also
has smaller leading constant than [15].

The [38] presents a (n, k) IDA for k ≥ n/2 over Fermat
field. For a reasonably large file, both encoding and decoding
algorithms require O(n log(n− k)) in processing k symbols.
The major distinction of the [38] and the proposed algorithm
is that the [38] is applicable to high code rate k ≥ n/2 and
the current proposed algorithm is applicable to low code rate

k ≤ n/2. The detailed comparisons are listed in Table III. In
encoding, the [38] requires n/(n− k) times of (n− k)-point
FNT (for n − k being the power of two), and Algorithm 1
requires n/k times of k-point FNT (for k being the power
of two). In decoding, the [38] follows the Forney algorithm,
which computes the error values of BCH codes at known error
locations. In contrast, to the best of our knowledge, Algorithm
2 does not follow any existing decoding formulation, and
Algorithm 3 is based on the framework of fast Lagrange
interpolation. As shown in Table III, the complexities of three
decoding algorithms are different. It is noted that we cannot
alternate the use of the [38] and the proposed algorithm.
Precisely, the codeword generated by the encoding of [38]
cannot be directly decoded by Algorithms 2 and 3, and vice
versa.

To verify the above complexity analysis, Figure 1 shows
the simulations of [12], [14], [16] and ours for n = 214

and k = 23, 24 . . . 213. We implement the algorithms of
the ordinary method (Matrix multiplications), Preparata [12],
and ours by C programs. The simulation also tests the code
implemented by Didier [16]. For [14], this simulation tests
the systematic FNT case implemented by Soro and Lacan in
the experiment. Those codes are executed on Intel i7-950 3.06
GHz, Windows 7 with GCC compiler. Figure 1 shows the time
spent of those algorithms. The main procedure of each code
is repeated in ITER times. The data throughput is defined as
Encoding throughput = ITER×Size of n codeword sym-
bols/Encoding time,
Decoding throughput = ITER×Size of k data sym-
bols/Decoding time,
where ITER = 104 in most cases (a few cases adopt smaller
values to shorten the execution time). For decoding, the time
of the initialization is ignored, because the main procedure
dominates the time complexity when the file size is reasonably
large. It is noted that the real simulations are controlled by
several factors, such as optimization techniques of compilers,
memory management techniques, task management system,
and hardware properties. Therefore, the simulations may be
slightly different from the analyses.

For encoding, the [12] performs about 20 (MB/s) for any k.
When k is large, the throughput of [12] and proposed encoder
are very close, and for the extreme case k = 8, the throughput
of proposed encoder is about twice of [12]. It is noted that the
[12] is non-systematic, and the proposed code is systematic, so
the two algorithms are distinct in aspects of systematic or non-
systematic codes. For [14], the throughput of [14] is about 60%

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2013.2270892

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

�
�
��

�
�
�
�
�
�	

�

�

�
�

�

��

��

��

��

��

��

�

�� �� ��� �	��� �	�
�

��
�
�������������
���������������
��
�������
����
��

(a)

�
�
��

�
�
�
�
�
�	

�

�

�
�

�

�

��

��
��
��

�

�� �� ��� ����� �����

	
��

���
��������
��
�������������
�����
�����
��
���������

�������������

(b)

Fig. 1: The simulations for n = 214 and k = 23, 24 . . . 213.
(a). Encoding case. (b). Decoding case.

of proposed encoder on average. In particular, the ordinary
algorithm provides better throughput when k ≤ 16 due to its
simple architecture, but the degradation is very fast due to the
quadratic complexity. As shown in Figure 1(a), the encoding
algorithm has significant improvement in k ∈ [32, 512]. For
decoding, the [14] provides about 68% throughput of the first
decoder on average. In particular, the intersection point of two
proposed decoders is between k = 1024 and 2048. When
k ≤ 128, the matrix multiplication method performs better due
to its simple computational architecture. As shown in Figure
1(b), the encoding algorithm has significant improvement in
k ∈ [200, 1000].

VIII. DISCUSSIONS

A. The relaxation of the constraints on parameters

The proposed algorithm requires that k is the power of two,
and n is the multiple of k. Suppose the given parameters

(n′, k′) do not precisely satisfy the above two conditions. We
find two integers l and m such that

2l−1 < k′ ≤ 2l; (m− 1)2l < n′ − k′ ≤ m2l. (58)

The new parameters (n = (m + 1)2l, k = 2l) is adopted in
the coding algorithm. In (n, k) encoding (Algorithm 1), the k
input symbols are the k′ message symbols with concatenating
k−k′ zeros. The encoder then generates n−k parity symbols.
The n′-symbol codeword is the concatenation of k′ message
symbols with the n′ − k′ parity symbols, which are a portion
of the generated n − k parity symbols. In (n, k) decoding,
the decoder side receives k′ symbols, and the k − k′ zeros
are placed at the corresponding locations in the message part.
Thus, the received codeword contains k known values, so
Algorithm 2 and Algorithm 3 can be applied successfully.
By such substitution method, the (n′, k′) algorithm requires
the same computational cost as the (n, k) algorithm does. In
the following, we prove the (n′, k′) encoder and the (n′, k′)
first decoder require complexity O(n′ log k′), and the (n′, k′)
second decoder requires complexity O(k′ log2 k′).

By (58), the upper bounds of n and k can be termed as
n′and k′ given by

k < 2k′; n < n′ + 3k′. (59)

By the above inequalities, the big-O O(n log k) can be rewrit-
ten as

O(n log k) = O((n′ + 3k′) log(2k′)) = O(n′ log k′).

Furthermore, the big-O O(k log2 k) can also be rewritten as

O(k log2 k) = O(2k′ log2(2k′)) = O(k′ log2 k′).

Thus, the substitution strategy does not increase the big-O
bounds for arbitrary (n′, k′).

B. The criterion of selecting the two decoding algorithms

Given the (n, k), this subsection discusses the criterion of
choosing Algorithms 2 or 3 as the decoding algorithm. The
decision criterion is at the point that the complexities of both
algorithms are asymptotically identical. The formulation is

1.5(n + k) log2 k = 1.5k log2
2 k

⇒ n = k log2 k − k
⇒ n ≈ k log2 k.

(60)

Therefore, Algorithm 3 is chosen for n ≥ k log2 k; or else
Algorithm 2 is suggested. For n = 16384 as an example,
the(60) gives the intersection point k = 1546. Figure (1)
verifies this value, as the intersection point of Algorithms 2
and 3 is between k = 1024 and 2048.

C. The partial FFT on Algorithm 2

As defined in (24), the vector G contains n − k erasures
(zeros). Then the G is divided into 2r/k sub-vectors Gj for
j = 0 . . . 2r/k − 1 in the first step of Algorithm 2. Thus,
we can consider those sub-vectors as sparse, and the partial
FFTs [26], [27], [28] can be applied on the second step of
Algorithm 2 to improve the performance. The partial FFT is

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2013.2270892

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

a technique of pruning the unnecessary computation nodes in
FFT butterfly. In Algorithm 2, the unnecessary computations
are caused by the erasures in the input Gj . Since the FNT
in second step (33) dominates the complexity of Algorithm
2, the performance can be improved by utilizing the partial
FFT. However, the performance of partial FFT depends on the
positions of erasures. In general, when the positions of erasures
are centralized in several sub-vectors Gj , the partial FFT
performs much better than conventional FFT. In contrast, when
the erasures are uniformly distributed among those vectors Gj ,
the improvement is smaller. This observation gives a potential
direction to further improve the decoding performance.

D. The strategy of storing the shadow elements in binary data
format

In (2r + 1)-ary numeral system, the length of each shadow
Fi is one-kth length of the file F . One difficulty in the (2r+1)-
ary numeral system is that the 2r + 1 possible values are
unable to be coded in a r-bit unit. Soro and Lacan [14]
introduce a solution by recording the positions of the extra
symbol in the shadow header. In the following, we introduce
another method based on the truncated binary encoding. Given
a shadow symbol bi whose value is between 0 and 2r, for the
value in the range 0 ≤ bi ≤ 2r−2, the symbol bi is encoded as
a r-bit binary digit. For the overflowing cases bi ∈ {2r−1, 2r},
the bi is encoded as a r + 1-bit binary digit concatenating r
ones with an extra bit 0 or 1, respectively corresponding to
bi = N − 1 or N . In the extraction procedure, the extractor
sequentially takes r-bit digit from the shadow Fi as the value
bi. When the r bits are all ones, one extra bit is taken to
identify bi = N − 1 or N . Due to the extra bits stored in the
shadow, the length of each shadow Fi is slightly larger than
one-kth length of the file F . For bi uniformly distributed, the
probability of generating the extra bit is 2/(2r + 1), which is
relatively small as compared to the reasonably large 2r. For
example, the probability of r = 16 is 2/65537 ≈ 3.05×10−5.

E. The proposed (n, k)IDA over GF (t× 2r + 1)
Since the known largest Fermat field is GF (216 + 1), the

proposed (n, k) IDA has the constraints n ≤ 216. For the rare
application requiring n > 216, a larger field is needed. The
Proth prime is defined as t2r +1 for odd t, positive integer r,
and 2r > t. It is noted that the Fermat prime is a specific case
of Proth prime for t = 1. To resolve the limit n ≤ 216 caused
by the Fermat field [29], the algorithm can be applied over
Proth field GF (t2r +1). There are many known Proth primes,
and in practice, the Proth field GF (3×230 +1) is suitable for
64-bit CPU processors. The implementation of addition over
GF (3×230+1) is straightforward, and the multiplication over
GF (3 × 230 + 1) can be done by an unsigned multiplication
and a modulo operation on a 64-bit CPU. When the coding
algorithms are applied over Proth field, there are several issues
should be considered.

1) The range of (k, n) and the implementation of FFT
over Proth field: The implementation of 2r-point FFT needs
the primitive 2r-th root of unity over Proth field. Given the
primitive element α of GF (t×2r +1), the primitive 2r-th root

of unity can be calculated via w2r = αt. As the range of k
depends on the size of FFT, we have k ≤ 2r. For the range of
n, the range depends on the size of field, so n ≤ t × 2r.
Therefore, for t = 3 and r = 30, the range of (k, n) is
k ≤ 230 ≈ 1.07× 109 and n ≤ 3× 230 ≈ 3.22× 109.

2) The strategy of storing the shadow elements in bi-
nary data format: The coding algorithms need a function
to convert a sequence from two-ary to (t2r + 1)-ary nu-
meral representation, and vice versa. The conversion can
be implemented by truncated binary encoding, which can
be treated as the Huffman coding for uniform probability
distribution. The set of input symbols of the Huffman coding
are drawn from GF (t2r + 1), and the probability of each
symbol is set to 1/(t2r + 1). Thus, the constructed Huffman
tree forms a complete binary tree with t2r + 1 leaves. More
precisely, the Huffman tree contains t2r + 1 − b leaves at
depth blog2(t2r + 1)c, and 2b leaves at depth dlog2(t2r + 1)e,
where b = (t−2blog2 tc)2r +1. The conversion from (t2r +1)-
ary to two-ary numeral representation is as the conventional
Huffman encoding. The variable-length code table is con-
structed via traversing the Huffman tree for all leaves. Thus,
the variable-length code table contains t2r +1 slots, and each
slot takes dlog2(t2r + 1)e bits of memory. By the constructed
code table, we scan and encode the base-t2r + 1 sequence
using the legal codewords. Similarly, the conversion from two-
ary to (t2r +1)-ary numeral representation is equivalent to the
conventional Huffman decoding. We traverse the Huffman tree
node by node according to each bit read from the input binary
sequence. When a leaf is reached, the corresponding symbol
is generated. By construction, to reach a leaf needs traversing
blog2(t2r + 1)c or dlog2(t2r + 1)e nodes in Huffman tree.

IX. CONCLUSIONS

This paper proposes the coding algorithms for (n, k) IDA.
The code system is under (n, k) systematic Reed-Solomon
codes over Fermat field. By assigning the evaluation points to
specific values, the k-point FNT is applied to improve the per-
formance. The proposed encoding algorithm takes O(n log k)
operations to code k message symbols. In decoding, if n ≤
k log2 k, the first decoder with O(n log k) is chosen; or else the
second decoder with O(k log2 k) is suggested. Both decoders
contain two parts, the initialization and the main procedure.
For the reasonably large source file, the complexity in the
initialization is insignificant, so we focus on the investigation
of the complexity in the main procedure. By our survey of
(n, k) erasure codes, the proposed encoding algorithm takes
O(n log k), as opposed to the O(n log n) in existing work; the
proposed decoding algorithm takes O(n log k) or O(k log2 k),
as opposed to the O(n log n) or O(k log2 k) in existing work.

APPENDIX A
ALGORITHM OF COMPUTING THE COEFFICIENTS OF L(x)

Given the evaluation points of k received symbols {Ĩi|Ĩi ∈
I, i = 0 . . . k − 1}, a polynomial can be expressed as

L(x) =
k−1∏

i=0

(x− Ĩi) =
k∑

i=0

Lix
i, (61)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2013.2270892

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

where Lk = 1. The formal derivative of L(x) is defined as

L′(x) =
k−1∑

i=0

k−1∏

j=0,j 6=i

(x− Ĩj) =
k∑

i=1

iLix
i−1. (62)

The L(x) is similar to the error locator polynomial used in
BCH code decoding, except, in the algorithm design, the L(x)
records the evaluation points of received symbols, rather than
erasures (or errors) in the error locator polynomial.

The computation of L(x) follows the divide-and-conquer
strategy. Initially, each term (x − Ĩi) in (62) is denoted as a
polynomial given by

L
[0]
i (x) = x− Ĩi, ∀i = 0 . . . k − 1. (63)

Then those polynomials are pairwise multiplied, resulting in
k/2 polynomials

L
[1]
i (x) = L

[0]
2i (x)L[0]

2i+1(x),∀i = 0 . . . k/2− 1. (64)

Then the process recursively computes L
[2]
i (x) =

L
[1]
2i (x)L[1]

2i+1(x), ∀i = 0 . . . k/4 − 1. By following such
steps, the process recursively computes the results from the
previous results in each stage. The recursive function is
expressed as

L
[j]
i (x) = L

[j]
2i (x)L[j]

2i+1(x)∀j = 1 . . . log2 k, i = 0 . . . k/2j−1.
(65)

For j = log2 k, the resultant L
[log2 k]
i (x) is the polynomial

L(x). The convolution expression of (65) is expressed as

L
[j]
i = L

[j−1]
2i ∗ L

[j−1]
2i+1 ,∀j = 1 . . . log2k, i = 0 . . . k/2j − 1.

(66)
By the fast convolution, the overall complexity of the recursive
structure requires O(k log2 k) operations. It is noted that the
[16] introduces another efficient algorithm to calculate the
coefficients of L(x) with complexity O(n log n).

APPENDIX B
SUPPLEMENT OF FIRST DECODING ALGORITHM

A. Another algorithm of computing β and β̂

For the β defined in (26), another derivation by L’Hopital’s
rule is given by

L̄(Ij) = lim
x→Ij

x2r − 1
L(x)

= lim
x→Ij

(x2r − 1)′

L′(x)
=

2r

IjL′(Ij)
. (67)

The (26) can be reformulated as

β = {2r(IjL
′(Ij))−1|j ∈ l̃}. (68)

For the β̂ defined in (29), the derivative of L̄(x) is given by

L̄′(x) =
2rx2r−1L(x)− (x2r − 1)L′(x)

L2(x)
. (69)

The (69) is substituted into (29) to obtain

β̂ = {2−rL(Ij)|j /∈ l̃ and 0 ≤ j ≤ k − 1}. (70)

Thus, the β and β̂ can be constructed via the polynomial L(x).

B. The validity of (34)

To test the validity (34), the x = αpwi
k is substituted into

Tj(x). For the casej 6= p, the evaluation is given by

Tj(αpwi
k) =

(αpwi
k)2

r − 1
w−j

2r/k(αpwi
k)k − 1

=
0

α(p−j)k − 1
= 0. (71)

For the case j = p, both numerator and denominator of Tj(x)
approach zeros, so the evaluation employs L’Hopital’s rule:

Tp(αpwi
k) = limx→αpwi

k

(x2r−1)′

(w−p
2r/k

xk−1)′

= limx→αpwi
k

2rx2r−1

kw−p
2r/k

xk−1 = 2r

k .
(72)

Based on the above results, the (34) is rewritten as

g(αpwi
k) = k

2r

∑2r/k−1
j=0 Tj(αpwi

k)gj(αpwi
k)

= k
2r Tp(αpwi

k)gp(αpwi
k)

= gp(αpwi
k).

(73)

The equality gp(αpwi
k) = g(αpwi

k) responds to the definition
(30), so the validity of the formulation (34) is verified.

REFERENCES

[1] M. O. Rabin, ”Efficient dispersal of information for security, load
balancing, and fault tolerance,” Journal of the ACM, vol. 36, no. 2, pp.
335-348, 1989.

[2] M. O. Rabin, ”The information dispersal algorithm and its applications,”
Springer-Verlag New York, pp. 406-419, 1990.

[3] P. Béguin and A. Cresti, ”General information dispersal algorithms,”
Theoretical Computer Science, vol. 209, no. 1-2, pp. 87-105, Dec. 1998.

[4] D. Ellard and J. Megquier, ”DISP: Practical, efficient, secure and fault-
tolerant distributed data storage,” ACM tran. Storage, vol. 1, no. 1, pp.
71-94, Feb. 2005.

[5] G. L. Feng, R. H. Deng, F. Bao, and J. C. Shen, ”New Efficient MDS
Array Codes for RAID Part II: Rabin-Like Codes for Tolerating Multiple
(greater than or equal to 4) Disk Failures,” IEEE tran. Computers, vol.
54, n. 12, pp. 1473-1483, Dec. 2005.

[6] S. A. Theotokis and D. Spinellis, ”A survey of peer-to-peer content
distribution technologies,” ACM Computing Surveys, vol. 36, no. 4, pp.
335-371, Dec. 2004.

[7] J. M. Park, E. K. P. Chong, and H. J. Siegel, ”Efficient multicast stream
authentication using erasure codes,” ACM tran. Information and System
Security, vol. 6, no. 2, pp. 258-285, May 2003.

[8] W. C. Siu and A. G. Constantinides, ”On the computation of discrete
Fourier transform using Fermat number transform,” IEE Proceedings F
Communications, Radar and Signal Processing , vol. 131, no. 1, 1984.

[9] Y. Wang and X. Zhu, ”A fast algorithm for the Fourier transform over
finite fields and its VLSI implementation,” IEEE tran. selected areas in
communications, vol. 6, no. 3, pp. 572-577, Apr. 1988.

[10] T. K. Truong, P. D. Chen, L. J. Wang, Y. Chang, and I. S. Reed, ”Fast,
prime factor, discrete Fourier transform algorithms over GF (2m) for
8 ≤ m ≤ 10,” Information Sciences, vol. 176, no. 1, pp. 1-26, Jan.
2006.

[11] T. K. Truong , P. D. Chen , L. J. Wang , Y. Chang, and I. S. Reed,
“Erratum: Erratum to ”Fast, prime factor, discrete Fourier transform
algorithms over GF (2m) for 8 ≤ m ≤ 10 [Informat. Sci. 176(1) (2006)
1-26],” Information Sciences, vol.177, no.3, pp.967-968, Feb. 2007.

[12] F.P. Preparata, ”Holographic dispersal and recovery of information,”
IEEE tran. Information theory, vol. 35, no. 5, Sep. 1989.

[13] R.Dianat and F.Marvasti, ”FFT-based fast Reed-Solomon codes with
arbitrary block lengths and rates,” IEE Proceedings Communications, vol.
152, no. 2, pp. 151-156, Apr. 2005.

[14] A. Soro and J. Lacan, ”FNT-based Reed-Solomon erasure codes,” 7th
Annual IEEE Consumer Communications and Networking Conference,
2010.

[15] J. Lacan and J. Fimes, ”Systematic MDS erasure codes based on
Vandermonde matrices,” IEEE Communications Letters, vol. 8, no. 9,
pp. 570-572, Sept. 2004.

[16] F. Didier, ”Efficient erasure decoding of Reed-Solomon codes,” Com-
puting Research Repository - CORR, vol. abs/0901.1886, 2009.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2013.2270892

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

[17] G. L. Feng, R. H. Deng, F. Bao, and J. C. Shen, ”New Efficient MDS
Array Codes for RAID Part I: Reed-Solomon-Like Codes for Tolerating
Three Disk Failures,” IEEE tran. Computers, vol. 54, no. 9, pp. 1071-
1080, 2005.

[18] G. L. Feng, R. H. Deng, F. Bao, and J. C. Shen, ”New Efficient MDS
Array Codes for RAID Part II: Rabin-Like Codes for Tolerating Multiple
(greater than or equal to 4) Disk Failures,” IEEE tran. Computers, vol.
54, no. 12, pp. 1473-1483, 2005.

[19] T. K. Truong, J. H. Jeng, and T. C. Cheng, ”A new decoding algorithm
for correcting both erasures and errors of Reed-Solomon codes,” IEEE
tran. Communications, vol. 51, no. 3, pp. 381-388, Mar. 2003.

[20] T. K. Truong, P. D. Chen, L. J. Wang, and T. C. Cheng, ”Fast transform
for decoding both errors and erasures of Reed-Solomon codes over
GF (2m) for 8 ≤ m ≤ 10,” IEEE tran. Communications, vol. 54, no. 2,
pp. 181-186, Feb. 2006.

[21] T. C. Lin, T. K. Truong, and P. D. Chen, ”A Fast Algorithm for the
Syndrome Calculation in Algebraic Decoding of Reed-Solomon Codes,”
IEEE tran. Communications, vol. 55, no. 12, pp. 2240-2244, Dec. 2007.

[22] I. S. Reed and G. Solomon, ”Polynomial codes over certain finite field,”
Siam Journal on Applied Mathematics, vol. 8, no. 2, pp. 300-304, 1960.

[23] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
”Efficient erasure correcting codes,” IEEE tran. Information Theory, vol.
47, no. 2, pp. 569-584, Feb. 2001.

[24] N. Alon and M. Luby, ”A linear time erasure-resilient code with nearly
optimal recovery,” IEEE tran. Information Theory, vol. 42, no. 6, pp.
1732, Aug. 2002.

[25] D. Bini and V. Y. Pan, ”Polynomial and matrix computations fundamen-
tal algorithms vol. 1,” Birkhäuser Boston, 1994.

[26] J. Markel, ”FFT pruning,” IEEE tran. Audio and Electroacoustics, vol.
19, no. 4, pp. 305-311, Dec. 1971.

[27] D. Skinner, ”Pruning the decimation in-time FFT algorithm,” IEEE tran.
Acoustics, Speech and Signal Processing, vol. 24, no.2, pp. 193-194, Apr.
1976.

[28] H. V. Sorensen and C.S. Burrus, ”Efficient computation of the DFT with
only a subset of input or output points,” IEEE tran. Signal Processing,
vol. 41, no. 3, pp. 1184-1200, Mar. 1993.

[29] I. S. Reed, T.K. Truong, and L.R. Welch, ”The fast decoding of Reed-
Solomon codes using number theoretic transforms,” in the Deep Space
Network Progress Report 42-35, Jet Propulsion Laboratory, Pasadena,
CA, July 1976, pp. 64-78.

[30] S. Lin, D.J. Costello, ”Binary field arithmetic,” in Error control coding,
2th ed. Englewood Cliffs, NJ: Pearson: Prentice-Hall, 2004, ch. 2, pp.
25-65.

[31] T.C. Lin, T.K. Truong, H.C. Chang, and H.P. Lee, ”A Future Simplifi-
cation of Procedure for Decoding Nonsystematic Reed-Solomon Codes
Using the Berlekamp-Massey Algorithm,” IEEE trans. Communications,
vol. 59, no. 6, pp. 1555-1562, Jun. 2011.

[32] I. Gohberg and V. Olshevsky, ”Fast algorithms with preprocessing for
matrix-vector multiplication problems,” Journal of Complexity, vol. 10,
no. 4, pp. 411-427, Dec. 1994.

[33] Krawczyk, H., ”Secret Sharing Made Short” Advances in
Cryptology−CRYPTO 93 Proceedings, Lecture Notes in Computer
Science Vol. 773, Springer-Verlag, D. R. Stinson, ed, 1993, pp. 136-146.

[34] M. Mitzenmacher, ”Digital fountains: a survey and look forward,” IEEE
2004 Information Theory Workshop, Oct. 2004, pp. 271-276.

[35] A. Shamir, ”How to Share a Secret”, Communications of the ACM, vol.
22, no. 11, pp. 612-613, 1979.

[36] W.W. Chan, T.F. Wong and J.M. Shea, ”Secret-Sharing LDPC Codes
for the BPSK-Constrained Gaussian Wiretap Channel”, IEEE trans.
Information Forensics and Security, vol. 6, no. 3, pp. 551-564, 2011.

[37] W. Luh and D. Kundur, ”Distributed Secret Sharing for Discrete Mem-
oryless Networks,” IEEE trans. Information Forensics and Security, vol.
3, no. 3, pp. 1-7, 2008.

[38] S. J. Lin and W. H. Chung, ”An Efficient (n, k) Information Dispersal
Algorithm for High Code Rate System over Fermat Fields,” IEEE
Communications Letters, vol. 16, no. 12, pp. 2036-2039, 2012.

[39] Li Ping, W. K. Leung and K. Y. Wu, ”Low rate turbo-Hadamard
codes,”IEEE Transactions on Information Theory, vol. 49, no. 12, pp.
3213-3224, 2003.

Sian-Jheng Lin was born in Taichung, Taiwan, in
1981. He received the B.S., M.S., and Ph.D. degrees
in computer science from National Chiao Tung
University, in 2004, 2006, and 2010, respectively.
He was a part-time lecturer at Yuanpei University
from 2007 to 2008, and at Hsuan Chuang University
From 2008 to 2010. He is currently a postdoctoral
fellow with the Research Center for Information
Technology Innovation, Academia Sinica. His recent
research interests include erasure coding algorithms,
data hiding and modulations.

Wei-Ho Chung (M’ 11) received the B.Sc. and
M.Sc. degrees in Electrical Engineering from the
National Taiwan University, Taipei, Taiwan, in 2000
and 2002, respectively, and the Ph.D. degree in Elec-
trical Engineering from the University of California,
Los Angeles, in 2009. From 2002 to 2005, he was a
system engineer at ChungHwa Telecommunications
Company, where he worked on data networks. In
2008, he was a research intern working on CDMA
systems at Qualcomm, Inc., San Diego, CA. His
research interests include communications, signal

processing, and networks. Dr. Chung received the Taiwan Merit Scholarship
from 2005 to 2009 and the Best Paper Award in IEEE WCNC 2012, and has
published over 30 refereed journal articles and over 40 refereed conference
papers. Since January 2010, Dr. Chung has been a tenure-track assistant
research fellow and leads the Wireless Communications Lab in Research
Center for Information Technology Innovation, Academia Sinica, Taiwan.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2013.2270892

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

