
1

Novel Polynomial Basis with Fast Fourier
Transform and Its Application to Reed-Solomon

Erasure Codes
Sian-Jheng Lin, Member, IEEE, Tareq Y. Al-Naffouri, Member, IEEE, Yunghsiang S. Han, Fellow, IEEE,

and Wei-Ho Chung, Member, IEEE

Abstract—In this paper, we present a fast Fourier trans-
form (FFT) algorithm over extension binary fields, where the
polynomial is represented in a non-standard basis. The pro-
posed Fourier-like transform requires O(h lg(h)) field operations,
where h is the number of evaluation points. Based on the
proposed Fourier-like algorithm, we then develop the encod-
ing/decoding algorithms for (n = 2m, k) Reed-Solomon erasure
codes. The proposed encoding/erasure decoding algorithm re-
quires O(n lg(n)), in both additive and multiplicative complex-
ities. As the complexity leading factor is small, the proposed
algorithms are advantageous in practical applications. Finally,
the approaches to convert the basis between the monomial basis
and the new basis are proposed.

Index Terms—Fast Fourier transform, polynomial basis, finite
field, Reed-Solomon code.

I. INTRODUCTION

LET Fq , q = pm, denote an extension finite field of
dimension m over Fp. A polynomial a(x) ∈ Fq[x] of

degree less than h < q in the monomial basis is written by

a(x) = a0 + a1x+ a2x
2 + · · ·+ ah−1x

h−1,

with each ai ∈ Fq . Given a set of evaluation points E =
{ei}h−1

i=0 , ∀ei ∈ Fq , the multipoint polynomial evaluation is
the task of evaluating a(x) at E. A primitive algorithm
requires O(h2) field operations of Fq . However, the task
can be completed faster if we carefully choose the set of
evaluation points. Assume h is a divisor of q−1. The discrete
Fourier transform (DFT) is the algorithm of evaluating a(x)
at E = {ωi}h−1

i=0 , where ω is the h-th root of unity. We
refer to this class of DFTs as multiplicative DFT, as those

A preliminary version of this work has been presented at FOCS’14. This
work was supported in part by the CAS Pioneer Hundred Talents Program,
the National Science of Council (NSC) of Taiwan under Grants NSC 102-
2221-E-011-006-MY3, the Ministry of Science and Technology under Grant
MOST 105-2221-E-001-009-MY3, and the Academia Sinica Thematic Project
under Grant AS-104-TP-A05. Sian-Jheng Lin is with CAS Key Laboratory
of Electro-magnetic Space Information, the School of Information Science
and Technology, University of Science and Technology of China (USTC),
China.(e-mail: sjlin@ustc.edu.cn); Tareq Al-Naffouri is with the Computer,
Electrical, Mathematical Sciences and Engineering (CEMSE) Division at
King Abdullah University of Science and Technology (KAUST), Saudi
Arabia. (e-mail: tareq.alnaffouri@kaust.edu.sa); Yunghsiang S. Han is with the
Department of Electrical Engineering, National Taiwan University of Science
and Technology, Taiwan. (e-mail: yshan@mail.ntust.edu.tw); Wei-Ho Chung
is with the Research Center for Information Technology Innovation (CITI),
Academia Sinica, Taiwan. (e-mail: whc@iis.sincia.edu.tw) Copyright (c) 2014
IEEE. Personal use of this material is permitted. However, permission to use
this material for any other purposes must be obtained from the IEEE by
sending a request to pubs-permissions@ieee.org.

evaluation points form a multiplicative group. Fast Fourier
transforms (FFT) are the algorithms for performing DFT with
lower arithmetic complexities.

FFT over finite fields is a traditional algebra problem.
Specifically, a significant application of FFTs over finite fields
is the coding algorithms of algebraic codes such as Reed-
Solomon (RS) codes. As the codes are usually constructed
over extension binary fields F2m ,m ∈ N, FFTs over extension
binary fields naturally receive higher attentions than over other
fields. In 1971, Pollard [1] showed that if q − 1 is a smooth
number (the number that can be factored into small primes),
there exists an FFT algorithm with the complexity O(h lg(h)).
However, as 2m − 1 usually cannot be factorized into the
product of small primes, this approach is inapplicable for fileds
F2m . Currently, the asymptotically fastest approach is based
on Bluestein’s FFT [2] (or Rader’s FFT), and the convolution
in the algorithm is computed by Schönhage’s polynomial
multiplication [3]. This requires O(h lg(h) lg lg(h)) with huge
leading constant.

If the set of evaluation points E forms an additive group,
the transform is termed as additive DFT. Additive FFT over
fields was firstly invented by Wang and Zhu [4] in 1988. Later,
the faster approaches were proposed by [5] and [6]. Currently,
the asymptotically fastest approach is proposed by Gao and
Mateer [7]. They gave an O(h lg2(h)) approach for arbitrary
m, as well as an O(h lg(h) lg lg(h)) approach for m a power
of two.

The traditional definition of FFTs, as well as most poly-
nomial arithmetic, presumes that the input polynomials are
written in the monomial basis. An important property of the
monomial basis is the total order in degrees. In particular,
for a polynomial basis G(x) = {g0(x), g1(x), . . . , gn−1(x)}
ordered by degrees, deg(gi(x)) ≤ deg(gi+1(x)), we define
that G(x) is with full degree when deg(gi(x)) = i. This basis
possesses a property that, for a polynomial

b(x) =
n−1∑
i=0

bigi(x),

we have bi = 0 for i > deg(b(x)). Thus, the degree of b(x)
can be determined by using O(n).

In this paper, a full-degree basis is introduced for additive
DFTs. In the first part of this paper, an O(h lg(h)) additive
Fourier-like transform is proposed, where the basis to represent
the input polynomial is nonstandard. The existing works on

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

FFTs over extension binary fields are tabulated in Table II.
To show the applicability of the new basis, the second part of
this paper applies the new basis to the (n, k) RS erasure codes
over F2m , resulting in an O(n lg(k)) encoding algorithm, and
an O(n lg(n)) erasure decoding algorithm.

In the final part of this paper, the basis conversion algo-
rithms for the polynomials are proposed. For arbitrary m,
two approaches are devised. Both approaches use O(n lg2(n))
field operations. For m a power of two, a faster approach
requiring O(n lg(n) lg lg(n)) is presented. Further, we also
generalize the new basis to over Fpm . With the new basis,
the complexity of the proposed Fourier-like transform is
O(n · p logp(n)). By letting p a constant, the complexity can
be written as O(n log(n)). Also Notice that the new basis can
also be used to improve the complexities of RS error decoding
algorithms [8].

The rest of this paper is organized as follows. Section II
gives the definition of the new polynomial basis. In Section
III, a Fourier-like algorithm is proposed based on the new
basis. Section IV presents the fast approach to perform the
formal derivative in the new basis. Based on above results,
Section V presents the encoding and erasure decoding for
Reed-Solomon codes. The discussions are placed in Section
VI. SectionVII reviews some related literature. The basis
conversion algorithms are presented in Section VIII. Section
IX concludes this work. The generalization of the new basis
over Fpm is addressed in Appendix.

II. POLYNOMIAL BASIS

This section introduces a new polynomial basis. Section
II-A reviews the definition of subspace polynomials and the
polynomial basis is introduced in Section II-B.

A. Subspace polynomial

Let Fpm denote an binary extension field. Let

vm = (v0, v1, . . . , vm−1) (1)

denote a basis of Fpm , whereas all vi ∈ Fpm are linearly
independent over Fp. Let {ωi}p

m−1
i=0 denote the set of elements

of Fpm . Each ωi is defined as

ωi = i0v0 + i1v1 + · · ·+ im−1vm−1, (2)

where ij ∈ Fp, and

i = i0 + i1 · p+ i2 · p2 + · · ·+ im−1 · pm−1.

Let

Vk = Span(v0, v1, . . . , vk−1) = {
k−1∑
j=0

aj · vj |aj ∈ Fp} (3)

denote a k-dimensional subspace in Fpm , where k ≤ m. These
Vk form a strictly ascending chain as

{0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm = Fpm .

The subspace polynomial [5, 7] is defined as

Definition 1 (Subspace polynomial [5, 7]). Given a subspace
Vk of Fpm , the subspace polynomial is defined as

sVk

k (x) =
∏

w∈Vk

(x− w). (4)

Clearly, deg(sVk

k (x)) = pk.

The subspace polynomial depends on the chosen subspace
of the field. If not specified, throughout this paper, sk(x) =
sVk

k (x) denotes the subspace polynomial to the subspace Vk

defined in (3).
The properties of subspace polynomials are given as fol-

lows.

Lemma 1 ([5, 6]). The subspace polynomial can be written
as a recursive form:

s0(x) = x;

sj(x) =
∏
i∈Fp

sj−1(x− i · vj−1) j = 1, 2, . . . ,m. (5)

Lemma 2 ([6, 7, 9, 10]). sk(x) is an Fp-linearlized polyno-
mial for which
(1). sk(x) is a sparse polynomial with no more than k + 1
non-zero terms. That is,

sk(x) =
k∑

i=0

sk,ix
pi

, (6)

where sk,i ∈ Fpm for 0 ≤ i ≤ k.
(2).

sk(x+ y) = sk(x) + sk(y), ∀x, y ∈ Fpm . (7)

(3). Given a basis vj = (v0, v1, . . . , vj−1) of a subspace

Vj = Span(vj),

a subspace Wj−1 is defined as

Wj−1 = Span(wj−1),

where

wj−1 = (sV1
1 (v1), s

V1
1 (v2), . . . , s

V1
1 (vj−1)),

and
sV1
1 (x) = x(x− v0).

Then, the subspace polynomials for Vj and Wj−1 satisfy

s
Vj

j (x) = s
Wj−1

j−1 (sV1
1 (x)). (8)

B. Polynomial basis

In this subsection we only consider the case p = 2, and the
general case for arbitrary prime p is given in Appendix D.
Based on the subspace polynomials, a polynomial basis is
defined as

Xvm =
(
Xvm

0 (x), Xvm
1 (x), . . . , Xvm

2m−1(x)
)

in F2m [x]/(x2m−x). For simplicity, we continually use sj(x)
to indicate the subspace polynomials in F2m [x]/(x2m−x). Let

s̄j(x) =
sj(x)

sj(vj)
,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

where vj is defined in (1), and hence

s̄j(vj) = 1. (9)

Xvm
i (x) is defined as

Xvm
i (x) =

m−1∏
j=0

(s̄j(x))
ij , (10)

where i = i0+i1 ·2+i2 ·22+· · ·+im−1 ·2m−1, for ij ∈ {0, 1}.
Notice that (s̄j(x))

0 = 1. It can be seen that this basis is
full degree deg(Xi(x)) = i, and thus it can determine all
polynomials of F2m [x]/(x2m−x). If not specified, throughout
this paper,

X = (X0(x), X1(x), . . . , X2m−1(x))

denotes the polynomial basis with respective to the basis v
defined in (1). Note that Xi can be treated as the binary
representation of i with basis s̄j(x), j = 0, 1, . . . ,m− 1.

A polynomial in X is written by

D(x) =

2m−1∑
i=0

diXi(x),

with each di ∈ F2m . In this paper, the coefficients of D(x) is
denoted as a vector D = (d0, d1, . . . , d2m−1).

III. TRANSFORM IN THE NEW BASIS

Given a polynomial D(x) =
∑2k−1

i=0 diXi(x) of degree
deg(D(x)) < 2k = h in the basis X and β ∈ F2m , this
section presents a algorithm to compute {D(ω)|ω ∈ Vk + β}.

A. Recursive structure in polynomial basis

The polynomial D(x) can be formulated as a recursive
function. Let

D(x) = ∆0
0(x).

The recursive function is defined as

∆r
i (x) = ∆r

i+1(x)+s̄i(x)∆
r+2i

i+1 (x), for 0 ≤ i ≤ k−1; (11)

∆r
k(x) = dr, for 0 ≤ r ≤ 2k − 1. (12)

By induction, the coefficients of ∆r
i (x) are denoted as

∆r
i = {dj·2i+r|j = 0, . . . , 2k−i − 1)}. (13)

Lemma 3. From (11) and (12), we have D(x) = ∆0
0(x).

Proof. Assume

∆r
i (x) =

2k−i−1∑
j=0

dj·2i+rXj·2i(x), (14)

for 0 ≤ i ≤ k − 1 and 0 ≤ r ≤ 2i − 1. From (14), it
can be verified that D(x) = ∆0

0(x), and (13) is correct. In
the following, the validity of (14) is proved by mathematical
inductions with decreasing index. For the basis case, we
consider i = k in (14), that gives

∆r
k(x) =

0∑
j=0

dj·2k+rXj·2k(x) = drX0(x) = dr, (15)

and thus (12) holds.
Assume (14) is valid for i = ℓ + 1. When i = ℓ, (11) can

be written as

∆r
ℓ(x)

=∆r
ℓ+1(x) + s̄ℓ(x)∆

r+2ℓ

ℓ+1 (x)

=

2k−ℓ−1−1∑
j=0

dj·2ℓ+1+rXj·2ℓ+1(x)

+ s̄ℓ(x)

2k−ℓ−1−1∑
j=0

dj·2ℓ+1+2ℓ+rXj·2ℓ+1(x)

=

2k−ℓ−1−1∑
j=0

d(2j)·2ℓ+rX(2j)·2ℓ(x)

+ s̄ℓ(x)
2k−ℓ−1−1∑

j=0

d(2j+1)·2ℓ+rX(2j)·2ℓ(x)

=
2k−ℓ−1−1∑

j=0

d(2j)·2ℓ+rX(2j)·2ℓ(x)

+
2k−ℓ−1−1∑

j=0

d(2j+1)·2ℓ+rX(2j+1)·2ℓ(x)

=
2k−ℓ−1∑
j=0

dj·2ℓ+rXj·2ℓ(x),

(16)

and thus (14) is valid for i = ℓ. This completes the proof.

As mentioned previously, Xi can be treated as the binary
representation of i with basis s̄j(x), j = 0, 1, . . . ,m− 1. The
idea behind the recursion is that first combining the terms with
only difference in s̄1(x) and then combing the resultant terms
with only difference in s̄2(x), and so on. In the following, we
demonstrate this idea by an example. For example, if h = 8,
we have

D(x) =
7∑

i=0

diXi(x)

=d0 + d1s̄0(x) + d2s̄1(x) + d3s̄0(x)s̄1(x) + d4s̄2(x)

+ d5s̄0(x)s̄2(x) + d6s̄1(x)s̄2(x) + d7s̄0(x)s̄1(x)s̄2(x)

= (d0 + d4s̄2(x) + s̄1(x) (d2 + d6s̄2(x)))

+ s̄0(x) (d1 + d5s̄2(x) + s̄1(x) (d3 + d7s̄2(x)))

=
(
∆0

2(x) + s̄1(x)∆
2
2(x)

)
+ s̄0(x)

(
∆1

2(x) + s̄1(x)∆
3
2(x)

)
=∆0

1(x) + s̄0(x)∆
1
1(x) = ∆0

0(x).
(17)

∆m
i (x) possesses the following equality that will be utilized

in the algorithm:

Lemma 4. ∀a ∈ Vm = Fpm and ∀b ∈ Vi, 0 ≤ i ≤ k − 1,

∆m
i (a+ b) = ∆m

i (a). (18)

Proof. By definition, s̄i(b) = 0, ∀b ∈ Vi. From Lemma 2, we
have

s̄i(a+ b) = s̄i(a) + s̄i(b) = s̄i(a), ∀b ∈ Vi. (19)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

The proof is based on the mathematical induction on i. In the
base case i = k − 1, (11) can be written as

∆m
k−1(x) =∆m

k (x) + s̄k−1(x)∆
m+2k−1

k (x)

=dm + s̄k−1(x)dm+2k−1 .
(20)

From (19), we have

∆m
k−1(a+ b)

=dm + s̄k−1(a+ b)dm+2k−1

=dm + s̄k−1(a)dm+2k−1

=∆m
k−1(a), ∀b ∈ Vk−1.

(21)

Thus (18) holds for i = k − 1.
Assume (18) holds for i = j + 1. When i = j, we have

∆m
j (a+ b)

=∆m
j+1(a+ b) + s̄j(a+ b)∆m+2j

j+1 (a+ b)

=∆m
j+1(a) + s̄j(a)∆

m+2j

j+1 (a)

=∆m
j (a), ∀b ∈ Vj .

(22)

This completes the proof.

B. Proposed algorithm

The proposed FFT algorithm is similar to that for complex
fields. The algorithm is with a divide-and-conquer fashion.
Hence, we need to determine the recursive equation for each
iteration. Let

V k
j = Span(vj , vj+1, . . . , vk−1), 0 ≤ j ≤ k ≤ m−1. (23)

denote an (k − j)-dimensional subspace in F2m . These sub-
spaces form a strictly ascending chain as

{0} = V k
k ⊂ V k

k−1 ⊂ V k
k−2 ⊂ · · · ⊂ V k

0 .

Let

Ψβ(i, r) = {∆r
i (ω)|ω ∈ V k

i +β}, i = 0, . . . , k−1; (24)

Ψβ(k, r) = {dr}. (25)

The objective of algorithm is to compute the values in set
Ψβ(0, 0). In the following, we rearrange Ψβ(i, r) into two
parts: Ψβ(i + 1, r) and Ψβ(i + 1, r + 2i), by taking at most
2k−i additions and 2k−i−1 multiplications.

As
V k
i = V k

i+1 ∪ (V k
i+1 + vi),

(24) can be divided into two individual subsets

Ψ
(0)
β (i, r) = {∆r

i (ω)|ω ∈ V k
i+1 + β}, (26)

and
Ψ

(1)
β (i, r) = {∆r

i (ω + vi)|ω ∈ V k
i+1 + β}. (27)

To evaluate each element of Ψ
(0)
β (i, r), by recursive function

given in (11), we have

∆r
i (ω) = ∆r

i+1(ω) + s̄i(ω)∆
r+2i

i+1 (ω) ∀ω ∈ V k
i+1 + β. (28)

It can be seen that ∆r
i+1(ω) ∈ Ψβ(i+ 1, r), and ∆r+2i

i+1 (ω) ∈
Ψβ(i + 1, r + 2i), for ω ∈ V k

i+1 + β. The constant factor
s̄i(ω) can be precomputed and stored. Hence, for each element

Algorithm 1 Transform of the basis X

Input: FFTh(∆
r
i , β, i, r): ∆r

i is defined in (13), h = 2k

denotes the size of the transform, and β ∈ F2m

Output: Ψβ(i, r) = {∆r
i (ω)|ω ∈ V k

i + β}
1: if i = k then return dr
2: end if
3: Call Ψβ(i + 1, r) ← FFTh/2(∆

r
i+1, β, i + 1, r), where

∆r
i+1 ⊂ ∆r

i

4: Call Ψβ(i+1, r+2i)← FFTh/2(∆
r+2i

i+1 , β, i+1, r+2i),
where ∆r+2i

i+1 ⊂ ∆r
i

5: for j = 0, . . . , 2k−i−1 − 1 do
6:

∆r
i (ωj2i+1)

←∆r
i+1(ωj2i+1) + s̄i(ωj2i+1)∆r+2i

i+1 (ωj2i+1)

7: ∆r
i (ωj2i+1+2i)← ∆r

i (ωj2i+1) + ∆r+2i

i+1 (ωj2i+1)
8: end for
9: return

Ψβ(i, r) ={∆r
i (ωj2i)|i = 0, . . . , 2k−i−1 − 1}

∪ {∆r
i (ωj2i + vi)|i = 0, . . . , 2k−i−1 − 1}

of Ψ
(0)
β (i, r), the calculation requires a multiplication and an

addition.
To evaluate each element of Ψ(1)

β (i, r), we have

∆r
i (ω+vi) = ∆r

i+1(ω+vi)+ s̄i(ω+vi)∆
r+2i

i+1 (ω+vi), (29)

for ω ∈ V k
i+1 + β. By Lemma 4, we have

∆r
i+1(ω + vi) = ∆r

i+1(ω);

∆r+2i

i+1 (ω + vi) = ∆r+2i

i+1 (ω).

Furthermore, the factor can be rewritten as

s̄i(ω + vi) =
si(ω + vi)

si(vi)
=

si(ω) + si(vi)

si(vi)

=
si(ω)

si(vi)
+ 1 = s̄i(ω) + 1.

(30)

With above results, (29) can be rewritten as

∆r
i (ω + vi)

=∆r
i+1(ω) + (s̄i(ω) + 1)∆r+2i

i+1 (ω)

=∆r
i+1(ω) + s̄i(ω)∆

r+2i

i+1 (ω) + ∆r+2i

i+1 (ω)

=∆r
i (ω) + ∆r+2i

i+1 (ω).

(31)

It can be seen that ∆r
i (ω) ∈ Ψ

(0)
β (i, r), and ∆r+2i

i+1 (ω) ∈
Ψβ(i + 1, r + 2i), for ω ∈ V k

i+1 + β. Hence, it requires an
addition. Algorithm 1 depicts the steps of the algorithm. We
call the procedure by the following instruction

Ψβ(0, 0)← FFTh(∆
0
0, β, 0, 0),

where Ψβ(0, 0) is the desired output, and ∆0
0 is the set

including the coefficients of the input polynomial D(x).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

C. Complexity

We start to discuss the computational and space complexi-
ties of the proposed Fourier-like transform. For the computa-
tional complexity, let A(h) and M(h) respectively denote the
number of additions and multiplications used in the algorithm.
From (110) and (31), the recurrence relation is formulated as

A(h) = 2×A(h/2) + h; A(1) = 0;

M(h) = 2×M(h/2) + h/2; M(1) = 0.
(32)

The solution is given by

A(h) = h lg(h); M(h) =
h

2
lg(h).

Note that if ω+β = 0 in (110), the formula can be simplified
to

∆r
i (ω + β) = ∆r

i+1(ω + β), (33)

which does not involve any arithmetic operations. This case
occurs when the set of evaluation points is defined as Vk. In
this case, the number of saved operations is less than h in both
additions and multiplications, and thus the big-O complexity
is unchanged.

Assume the factor s̄i(ω) in (110) is pre-computed and
stored. We consider the number of factors to be stored. In
(110), the set of the factors is

{s̄i(ω)|ω ∈ V k
i+1 + β},

that has 2k−i−1 elements.
As shown in the algorithm, Ψβ(i, r) is divided into two

parts: Ψ(0)
β (i, r) and Ψ

(1)
β (i, r), where Ψ

(0)
β (i, r) involves the

constant factors but Ψ
(1)
β (i, r) does not. Let N(h), with

h = 2k−i, denote the number of constant factors used in the
computation of Ψβ(i, r). The recurrence relation is given by

N(h) = 2N(h/2) + h/2, N(1) = 0,

and the solution is N(h) = h− 1, which is linear complexity.

D. Inverse transform

In the inverse transform, the input is {D(ω)|ω ∈ Vk + β},
and the objective is to calculate the coefficients of D(x). The
inversion can be done by backtracking the transform. In the
inverse transform, Ψβ(i, r) is given, and the objective is to
compute Ψβ(i+ 1, r) and Ψβ(i+ 1, r + 2i).

For Ψβ(i+ 1, r + 2i), (31) is reformulated as

∆r+2i

i+1 (ω) = ∆r
i (ω) + ∆r

i (ω + vi), (34)

where ∆r
i (ω) ∈ Ψ

(0)
β (i, r), and ∆r

i (ω + vi) ∈ Ψ
(1)
β (i, r). This

takes an addition. For Ψβ(i+ 1, r), (110) is reformulated as

∆r
i+1(ω) = ∆r

i (ω) + s̄i(ω)∆
r+2i

i+1 (ω), (35)

where ∆r
i (ω) ∈ Ψ

(0)
β (i, r), and ∆r+2i

i+1 (ω) ∈ Ψβ(i+1, r+2i).
This takes an addition and a multiplication. Consequently, the
inverse algorithm has the same computational complexity with
the transform. The steps are shown in Algorithm 2.

Figure 1 depicts an example of the proposed trans-
form of length h = 8. Figure 1(a) shows the transform

Algorithm 2 Inverse transform of the basis X

Input: IFFTh(Ψβ(i, r), β, i, r): Ψβ(i, r) = {∆r
i (ω)|ω ∈

V k
i + β}, h = 2k denotes the size of the transform, and

β ∈ F2m

Output: ∆r
i defined in (13)

1: if i = k then return dr
2: end if
3: for j = 0, . . . , 2k−i−1 − 1 do
4: ∆r+2i

i+1 (ωj2i+1)← ∆r
i (ωj2i+1) + ∆r

i (ωj2i+1+2i)
5: ∆r

i+1(ωj2i+1) ← ∆r
i (ωj2i+1) +

s̄i(ωj2i+1)∆r+2i

i+1 (ωj2i+1)
6: end for
7: Call ∆r

i+1 ← IFFTh/2(Ψβ(i+ 1, r), β, i+ 1, r)

8: Call ∆r+2i

i+1 ← IFFTh/2(Ψβ(i+1, r+2i), β, i+1, r+2i)

9: return ∆r
i = ∆r

i+1 ∪∆r+2i

i+1

FFT(∆0
0, β, 0, 0). The dotted line arrow denotes that the

element should be multiplied with the factor s̄j(•) upon
adding together with other element. For simplicity, we use
the notations

∆r
i,j = ∆r

i (ωj + β), s̄ji = s̄i(ωj).

The two gray blocks indicate the calls FFT(∆0
1, β, 1, 0) and

FFT(∆1
1, β, 1, 1) in Algorithm 1. The inversion is shown in

Figure 1(b).

IV. FORMAL DERIVATIVE

In this section, the algorithm for the formal derivative in the
new basis is proposed. Section IV-A gives the closed form. By
directly following the formula, the formal derivative requires
O(h lg(h)) in both additive and multiplicative complexity.
Section IV-B presents an improved approach, that requires
O(h lg(h)) additions and O(h) multiplications.

A. The closed form

First we present a Lemma that will be used in the closed-
form.

Lemma 5. The formal derivative of sk(x) is a constant given
by

s′k(x) =
∏

w∈Vk\{0}

w. (36)

Proof. To begin with, we recall the definition of the formal
derivative. Let B(x) = b · xj denote a polynomial of F2m [x].
It is well known if j is even, then B′(x) = 0, or else B′(x) =
b · xj−1. From Lemma 2, the non-zero terms of sk(x) are
among the degrees of 1, 2, 4, . . . , 2k. Thus, s′k(x) is a constant,
which is the coefficient of sk(x) with degree 1. The value is∑

ℓ∈Vk

∏
w ̸=ℓ

w =
∏

w∈Vk\{0}

w.

This completes the proof.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

D0

D4

D2

D6

D1

D5

D3

D7

d0

d4

d2

d6

d1

d5

d3

d7

0

2s 0

1s

4

1s

0

0s

4

0s

2

0s

6

0s

0

0,0

0

0,4

0

0,2

0

1,0

1

1,0

0

0,6

0

0,1

0

0,5

0

0,3

0

0,7

0

1,4

0

1,2

0

1,6

1

1,4

1

1,2

1

1,6

0

2,0

2

2,0

0

2,4

2

2,4

1

2,0

1

2,4

3

2,0

3

2,4

0

3,0

4

3,0

2

3,0

6

3,0

1

3,0

5

3,0

3

3,0

7

3,0

0

2s

0

2s

0

2s

0

1s

4

1s

(a) The Fourier-like transform

d0

d4

d2

d6

d1

d5

d3

d7

D0

D4

D2

D6

D1

D5

D3

D7

0

2s
0

1s

4

1s

0

0s

4

0s

2

0s

6

0s

0

0,0

0

0,4

0

0,2

0

0,6

0

0,1

0

0,5

0

0,3

0

0,7

1

1,0

1

1,4

1

1,2

1

1,6

0

1,0

0

1,4

0

1,2

0

1,6

0

1s

4

1s

2

2,0

2

2,4

0

2,0

0

2,4

3

2,0

3

2,4

1

2,0

1

2,4

0

2s

0

2s

0

2s

0

3,0

4

3,0

2

3,0

6

3,0

1

3,0

5

3,0

3

3,0

7

3,0

(b) The inverse Fourier-like transform

Fig. 1. Data flow diagram of proposed Fourier-like transform and its inversion
of length h = 8.

Since s′k(x) is a constant, we define s̄′k = s′k(x)/sk(vk).
From Lemma 5, the formal derivative of Xi(x) becomes

X ′
i(x) =

m−1∑
ℓ=0

iℓs̄
′
ℓ(x)

∏
j ̸=ℓ

(s̄j(x))
ij

=
m−1∑
ℓ=0

iℓs̄
′
ℓ(x)Xi−2ℓ(x)

=
∑
ℓ∈Ii

s̄′ℓXi−2ℓ(x),

(37)

where
Ii = {j|j ∈ {0, 1, . . . ,m− 1}, ij = 1}

includes the non-zero indices of the binary representation of i.
For example, if i = 13 = 20+22+23, we have I13 = {0, 2, 3},
and

X ′
13(x)

=s̄′0s̄2(x)s̄3(x) + s̄′2s̄0(x)s̄3(x) + s̄′3s̄0(x)s̄2(x)

=s̄′0X12(x) + s̄′2X9(x) + s̄′3X5(x).

(38)

From (37), the formal derivative of D(x) is given by

D′(x) =

h−1∑
i=0

diX
′
i(x) =

h−1∑
i=0

di
∑
ℓ∈Ii

s̄′ℓXi−2ℓ(x). (39)

In (39), for a specified Xj it can come from Xi−2ℓ when
i − 2ℓ = j and ℓ does not belong to Ij . Recall that 2k = h,
i.e. log h = k. Hence, (39) can be further rearranged as

D′(x) =

h−1∑
j=0

Xj(x)
∑
ℓ∈Ic

j

s̄′ℓ · dj+2ℓ , (40)

where Icj is the complement of Ij defined as

Icj = Zk \ Ij .

From (40), each coefficient of D′(x) requires at most k−1
additions and k multiplications, whereas the set of constants
{s̄′ℓ}

k−1
ℓ=0 can be precomputed and stored. Since h = 2k, this

requires O(h lg(h)) operations, in both additive complexity
and multiplicative complexity.

B. Algorithm with lower multiplicative complexity

This subsection presents an improved approach on per-
forming formal derivative in O(h lg(h)) additions and O(h)
multiplications. Let

B =

Bi =
∏
j∈Ii

s̄′j


h−1

i=0

, (41)

and
ddi = di ·Bi, i = 0, 1, . . . h− 1. (42)

By plugging di = ddiB
−1
i to (40), we have

D′(x) =

h−1∑
j=0

Xj(x)
∑
ℓ∈Ic

j

ddj+2ℓ s̄
′
ℓ

Bj+2ℓ
. (43)

As
Bj+2ℓ =

∏
m∈I

j+2ℓ

s̄′m = s̄′ℓ
∏
m∈Ij

s̄′m = s̄′ℓBj ,

(43) can be rewritten as

D′(x) =

h−1∑
j=0

Xj(x)
∑
ℓ∈Ic

j

ddj+2ℓ s̄
′
ℓ

s̄′ℓBj

=
h−1∑
j=0

Xj(x)
∑
ℓ∈Ic

j

ddj+2ℓ

Bj

=
h−1∑
j=0

Xj(x)

∑
ℓ∈Ic

j
ddj+2ℓ

Bj

=
h−1∑
j=0

Xj(x)
dsj
Bj

,

=
h−1∑
j=0

Xj(x)d
′
j ,

(44)

where

dsj =
∑
ℓ∈Ic

j

ddj+2ℓ j = 0, 1, . . . , h− 1, (45)

d′j = dsj/Bj i = 0, 1, . . . , h− 1. (46)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Based on the above formulas, the approach consists of three
steps. Assume the set B was precomputed and stored. The
first step is to compute {ddi }

h−1
i=0 defined in (42). The second

step is to compute {dsj}
h−1
j=0 defined in (45), and the final step

is to compute the result {d′j}
h−1
j=0 defined in (46). For the com-

plexity, the first and the third steps require h multiplications.
In the second step, it takes around 1

2h lg(h) additions.
Next an example is given to demonstrate how to obtain

D′(x). If h = 8 and the set B includes 8 elements defined as

B0 = 1; B1 = s̄′0;B2 = s̄′1; B3 = s̄′0s̄
′
1;

B4 = s̄′2; B5 = s̄′0s̄
′
2;B6 = s̄′1s̄

′
2; B7 = s̄′0s̄

′
1s̄

′
2.

(47)

In the first step, each ddi is computed by

ddi = diBi, i = 0, 1, . . . , 7.

In the second step,

ds0 = dd1 + dd2 + dd4 ; ds1 = dd3 + dd5 ;

ds2 = dd3 + dd6 ; ds3 = dd7 ;

ds4 = dd5 + dd6 ; ds5 = dd7 ;

ds6 = dd7 ; ds7 = 0.

(48)

In the final step, D′
8(x) is computed by

D′
8(x) =X0(x)

ds0
B0

+X1(x)
ds1
B1

+X2(x)
ds2
B2

+X3(x)
ds3
B3

+X4(x)
ds4
B4

+X5(x)
ds5
B5

+X6(x)
ds6
B6

.

Figure 2(b) shows the improved version for h = 8 in graphical
diagrams.

V. REED-SOLOMON ERASURE CODES

In this section, we propose the encoding and erasure de-
coding algorithms for (n = 2m, k) single extended Reed-
Solomon (RS) codes over binary extension fields. There exist
two major viewpoints for the Reed-Solomon codes, termed
as polynomial evaluation approach and generator polynomial
approach. In this paper, we follow the polynomial evaluation
approach, which treats the codeword symbols as the evaluation
values of a polynomial f(x) ∈ F2m [x] of degree k ≤ 2m− 1.
The codeword is defined as

f = (f(ω0), f(ω1), . . . , f(ω2m−1)),

where ωi ∈ F2m defined in (2). The message is denoted as

m = (m0,m1, . . . ,mk−1)

for each mi ∈ F2m . In the systematic construction, we require

f(ωi) = mi, i = 0, 1, . . . , k − 1. (49)

In decoding, when any k out of n = 2m symbols are received,
one can uniquely reconstruct f(x) via polynomial interpola-
tion, and thus the erasures can be computed accordingly.

In the following, the algorithms for encoding and erasure
decoding are proposed. The proposed encoding algorithm is
designed only when k is a power of two and n = 2m. If
the given k is not a power of two, there are two methods to
perform the encoding procedure. In the first method, the code

d0

d1

d2

d3

d4

d5

d6

d7

𝑑0
′

𝑑1
′

𝑑2
′

𝑑3
′

𝑑4
′

𝑑5
′

𝑑6
′

𝑑7
′

𝑠2
′ (𝑥)

𝑠1
′(𝑥)

𝑠0
′ (𝑥)

(a) Direct approach.

d0

d1

d2

d3

d4

d5

d6

d7

𝐵0

𝐵4

𝐵2

𝐵3

𝐵1

𝐵5

𝐵6

𝐵7

𝐵6
−1

𝐵1
−1

𝐵2
−1

𝐵3
−1

𝐵4
−1

𝐵5
−1

𝐵0
−1

𝐵7
−1

𝑑0
′

𝑑1
′

𝑑2
′

𝑑3
′

𝑑4
′

𝑑5
′

𝑑6
′

𝑑7
′

(b) Improved approach.

Fig. 2. Data flow diagram of formal derivative of length h = 8.

can be obtained by using shortening technique. Precisely, some
zeros are appended to the message vector such that the size is
a power of two. Let

m̄ = (m0,m1, . . . ,mk−1,mk, . . . ,mk′−1),

with mk = · · · = mk′−1 = 0 and k′ = 2⌈log2(k)⌉. Then m̄
is coded by (n, k′) RS encoding algorithm. After obtaining
the codeword, the zero symbols {mi}k

′−1
i=k are removed. In

decoding, the received codeword is decoded by (n, k′) RS
erasure decoding algorithms by appending the removed zero
symbols to the received codeword.

In the second method, the erasure decoding algorithm can
be applied to compute the parities of a codeword. Precisely,
we create a ”received codeword” by filling the message part
with message symbols, and the parity part are marked with
erasures. Then the erasure decoding algorithm is applied on
this ”received codeword” to get the values of the erasures that
are the parity symbols.

A. Encoding algorithm

Given β ∈ F2m and D(x) ∈ F2m [x]/(x2m − x) with
deg(D(x)) < h, the notation FFTβ

h(•) denotes that the
proposed transform with shifting β is applied to the input
vector • of size h. Precisely, the transform

D̄ ← FFTβ
h(D)

returns a vector

D̄ = (D(ω0 + β), D(ω1 + β), . . . , D(ωh−1 + β)).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

Algorithm 3 Reed-Solomon encoding algorithm
Input: a k-element message vector m
Output: an n-element systematic codeword f

1: m̄← IFFT0
k(m)

2: for i← 1, . . . , (n/k − 1) do
3: m̄i ← FFTi·k

k (m̄)
4: end forreturn f ← (m, m̄1, m̄2, . . . , m̄n/k−1)

In contrast, the inverse transform is denoted as

D ← IFFTβ
h(D̄).

Algorithm 3 illustrates the pseudocode of the encoding algo-
rithm. Line 1 computes the coefficients of

m̄(x) =
k−1∑
i=0

m̄iXi(x). (50)

It is clear that deg(m̄(x)) ≤ k − 1 and

m̄(ωi) = mi, i = 0, 1, . . . , k − 1. (51)

Thus, we conclude that m̄(x) = f(x), and the parity-check
symbols can be computed by applying the transforms on m̄
(see Lines 2-4). The parity-check symbols are obtained in
blocks with size k and there are n/k − 1 blocks.1 In Line
5, those vectors are assembled to get the codeword vector f .

For the computational complexity, the proposed encoding
algorithm requires a k-element IFFT and (n/k−1) times of k-
element FFT. Thus, the encoding algorithm has the complexity

O((n/k)k lg (k)) = O(n lg (k)).

B. Erasure decoding algorithm

The decoding algorithm is based on our previous work [11],
that requires the polynomial evaluations and it’s derivatives.
The code considered in [11] is based on Fermat number
transforms (FNT) over F2m+1. In this paper, the FNT [11]
is replaced with the proposed transform. However, since
the transform is in a different basis, the formula should be
reformulated to fit the format.

Assume the received codeword f̄ has n − k erasures. The
error locator polynomial is defined as

Π(x) =
∏
ω∈R

(x+ ω),

where
R = {ri}n−k−1

i=0

denotes the set of evaluation points for erasures.
Let

f̂(x) = f(x)Π(x)

of degree deg(f̂(x)) = deg(f(x)) + deg(Π(x)) ≤ n− 1. The
formal derivative of f̂(x) is

f̂ ′(x) = f ′(x)Π(x) + f(x)Π′(x). (52)

1Since k and n are both powers of 2, n is divisible by k.

By substituting x = ω ∈ R into (52), we have

f̂ ′(ω) = f(ω)Π′(ω)

⇒f(ω) =
f̂ ′(ω)

Π′(ω)
, ∀ω ∈ R.

(53)

Based on the above formulas, the decoding procedure consists
of three major stages: First, compute the coefficients of f̂(x);
second, compute the formal derivative of f̂(x); and third,
compute the erasures through (53). The details are given in
Algorithm 4.

Line 1 computes two sets Π̄ and Π′, where

Π̄ = {Π(ω)|ω ∈ F2m\R} (54)

and
Π′ = {Π′(ω)|ω ∈ R}. (55)

Notice that this step does not use the codeword symbols.
Thus, if we have many codewords with the same locations
of erasures, Π̄ and Π′ can be computed once and used in
each codeword. Line 2 computes the evaluations of f̂(x) at
F2m , in which the factor Π(r) is taken from Π̄. Line 3 applies
IFFT on Φ to obtain Φ̄ = (ϕ̄0, ϕ̄1, . . . , ϕ̄n−1), which forms a
polynomial

Φ̄(x) =

n−1∑
i=0

ϕ̄iXi(x),

such that Φ̄(ωj) = f̂(ωj), for 0 ≤ j ≤ n − 1. Thus, we
conclude Φ̄(x) = f̂(x). In Line 4, the formal derivative of
Φ̄(x) can be computed by the method in Section IV, resulting
in Φ̄′ = (ϕ̄′

0, ϕ̄
′
1, . . . , ϕ̄

′
n−1) forming a polynomial

Φ̄′(x) =
n−1∑
i=0

ϕ̄′
iXi(x).

Line 5 applies FFT on Φ̄′ to obtain Φd, which is a vector
consists of {f̂ ′(r)|r ∈ F2m}. In Line 6, Φd

j is an element of
Φd, and Π′(j) ∈ R.

The complexity of this algorithm is dominated by Steps
1, 3, 4 and 5, whereas Step 2 only takes k multiplications
and Step 6 only takes n− k divisions. By the proposed FFT
and IFFT algorithms, Step 3 and Step 5 can be performed in
O(n lg (n)) field operations. By Section IV, Step 4 requires
O(n lg(n)) field additions and O(n) field multiplications. In
Step 1, we employ the algorithm shown in Appendix, which
requiresO(n lg(n)) additions in modulo (2m−1). In summary,
this algorithm has the complexity of O(n lg (n)).

VI. DISCUSSIONS AND COMPARISONS

A. Complexities of polynomial operations

By using the proposed Fourier-like transforms, the fast
polynomial multiplications in the proposed basis can be de-
rived. Table I tabulates the complexities of some polynomial
operations in the monomial basis and the proposed basis over
binary extension fields. In particular, the polynomial addition
is simple by adding the coefficients of two polynomials, so
the complexity is O(h) in both basis. The formal derivative
in proposed basis requires O(h lg(h)) field operations. In

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

Algorithm 4 Reed-Solomon erasure decoding algorithm
Input: Received codeword f̄ , and the positions of erasures

R = {ri}n−k−1
i=0

Output: The erasures {f(j)|j ∈ R}
1: Compute

Π̄← {Π(ω)|ω ∈ F2m\R} (56)

Π′ ← {Π′(ω)|ω ∈ R} (57)

2: Compute Φ← (f̂(ω0), f̂(ω1), . . . , f̂(ωn−1)) by

f̂(r) =

{
0 ∀r ∈ R

f(r)Π(r) otherwise
(58)

3: Compute
Φ̄← IFFT0

n(Φ) (59)

4: Compute the formal derivative of Φ̄, denoted as Φ̄′

5: Compute
Φd ← FFT0

n(Φ̄
′) (60)

6: Compute the erasures via

f(j) =
Φd

j

Π′(j)
, ∀j ∈ R

TABLE I
COMPLEXITIES OF OPERATIONS IN POLYNOMIAL BASIS OVER F2m

Operations monomial basis proposed basis
Addition O(h) O(h)
Multiplication O(h lg(h) lg lg(h)) O(h lg(h))
Formal derivative O(h) O(h lg(h))

contrast, the formal derivative in monomial basis only requires
O(h).

Next we consider the polynomial multiplication. For then
monomial basis, the asymptotically fastest algorithm was
proposed by Schönhage [3], in 1977. The algorithm takes
O(h lg(h) lg lg(h)) field operations. For the proposed basis,
the fast approach is based on the Fourier-like transform. Let
a(x) =

∑h−1
i=0 ai · Xi(x) and b(x) =

∑h−1
i=0 bi · Xi(x). Its

product c(x) = a(x) · b(x) can be computed as

c = IFFTβ(FFTβ(a)⊗ FFTβ(b)),

where ⊗ performs pairwise multiplication on two vectors. a (b)
is the vector of coefficients of a(x) (b(x)) by appending zeros
on high degrees such that its length is up to 2j , where 2j

is the smallest integer that is larger than or equal to 2h − 1.
This requires one 2j-point IFFT, two 2j-point FFTs and 2j

multiplications, and thus the complexity is O(2j lg(2j)) =
O(h lg(h)).

B. Discussions about RS algorithms

Traditionally, the polynomials for RS codes are represented
in the monomial basis. However, Algorithm 4 uses the new
basis to represent f̂(x). Assume the basis of f̂(x) is settled
as the monomial basis. In this case, Lines 3, 4, 5 shall be
replaced with the arithmetic algorithms for the monomial
basis. Particularly, the formal derivative in Line 4 takes O(n).

For Line 3 and Line 5, we shall choose the finite field
FFT in the monomial basis, that takes O(n lg(n) lg lg(n))
field operations. Thus, the complexity of this algorithm is
O(n lg(n) lg lg(n)). The same result is concluded in Algo-
rithm 3. If m̄(x) in (50) is represented in the monomial basis,
the encoding algorithm shall take O(n lg(n) lg lg(n)).

As the proposed algorithm employs a portion of the algo-
rithm proposed by Didier [12], we briefly introduce Didier’s
approach as follows. In 2009, Didier [12] proposed an erasure
decoding algorithm for Reed-Solomon codes based on fast
Walsh-Hadamard transforms. The algorithm [12] consists of
two major parts: the first part is to compute the polynomial
evaluations of the error locator polynomial (see Appendix).
The second part is decomposing the Lagrange polynomial
into several logical convolutions, which are then respectively
computed with fast Walsh-Hadamard transforms. The first part
requires O(n lg(n)), and the second part requires O(n lg2(n)),
so the overall complexity is O(n lg2(n)). For the proposed
algorithm, the first part of algorithm given in [12] is employed.
Furthermore, we design another decoding structure based on
the proposed basis. The proposed transform only requires
O(n lg(n)), so that the proposed approach can reduce the
complexity from O(n lg2(n)) to O(n lg(n)).

To demonstrate the real performance, the proposed algo-
rithm was implemented in C and was run on a PC with Intel
core i7-950 CPU. While n = 216, k/n = 1/2, the program
took about 1.12 seconds to generate a codeword, and 3.06
seconds to decode an erased codeword on average. On the
other hand, we also ran the program written by the author
in [12] on the same platform. In our simulation, the program
implemented the algorithm given in [12] took about 52.91
seconds in both encoding and erasure decoding under the
same parameter setting. Thus, the proposed erasure decoding
is around 17 times faster than that given in[12] for n = 216.

VII. LITERATURE REVIEW

In [13], the codewords of RS codes are treated as a sequence
of evaluations of polynomials interpreted by the messages.
From this viewpoint, the encoding process can be treated as
an oversampling process through discrete Fourier transform
over finite fields. Some studies [14–16] indicated that, if an
O(n lg(n)) finite field FFT is available, the error-correction
decoding can be reduced to O(n lg2(n)). An n-point radix-2
FFT butterfly diagram requires n lg(n) additions and 1

2n lg(n)
multiplications. This FFT butterfly diagram can be directly
applied on Fermat prime fields F2m+1,m ∈ {1, 2, 4, 8, 16}.
In this case, the transform, referred to as Fermat number
transform (FNT), also requires n lg(n) field additions and
1
2n lg(n) field multiplications. By employing FNTs, a number
of fast approaches [14, 17, 18] had been presented to reduce
the complexity of encoding and decoding of RS codes. Some
FNT-based RS erasure decoding algorithms had been proposed
[11, 19, 20] in O(n lg(n)) field operations. Thus far, no ex-
isting algorithm for (n, k) RS codes has decoding complexity
achieving lower than Ω(n lg(n)) operations, in a context of a
fixed coding rate k/n. However, the major drawback of FNT
is that the number of possible values of each symbol is 2m+1,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

that cannot be losslessly stored in m-bit binary digit. Thus, the
FNT-based codes are impractical in applications.

In real applications, RS codes are usually constructed over
extension binary fields. This arises the attentions of FFTs
over extension binary fields. Table II tabulates the arithmetic
complexities of FFT algorithms over extension binary fields.
Table II shows that no FFT algorithm has achieved O(n lg(n))
in both additive and multiplicative complexities. This implies
that when the polynomials in RS codes are in monomial basis,
the complexity will fail to reach O(n lg(n)).

There exist faster approaches for some non-MDS codes.
Such codes, termed as fountain codes [21], require a little more
than k codeword symbols to recover the original message. Two
remarkable classes of fountain codes are LT code [22] and
Raptor code [23]. Due to the low complexity, fountain codes
have significant merits in many applications. However, MDS
codes have some irreplaceable properties, so that RS codes are
still used nowadays.

VIII. BASIS CONVERSION

This section gives two approaches to convert the represen-
tation of a polynomial from the monomial basis m(x) =
{1, x, . . . , x2m−1} to X. Specifically, the input is defined as
D(x) =

∑n−1
i=0 aix

i, where the size of input is a power of two
n ∈ {2j}mj=1. The conversion algorithm outputs {āi}n−1

i=0 such
that D(x) =

∑n−1
i=0 āiXi(x). In particular, the first approach is

for arbitrary m with O(n lg2(n)) field operations. The second
approach is only for m a power of two, and its complexity
is O(n lg(n) lg lg(n)). The ideas of both algorithms are based
on [7]. In particular, the FFTs in [7] are algebraically similar
to the approach by combining the proposed transforms with
the basis conversion algorithms in this section.

A. First approach (For arbitrary m)

Given D(x) =
∑n−1

i=0 dix
i, we want to find out

{(di,0, di,1)}n/2−1
i=0 such that

D(x) =

n/2−1∑
i=0

(di,0 + di,1
x

v0
)(s1(x))

i. (61)

Notably, x/v0 = s0(x)/s0(v0) and s1(x) = x2 + v0x. Then
(61) can be rewritten as

D(x) =

n/2−1∑
i=0

di,0(s1(x))
i +

x

v0

n/2−1∑
i=0

di,1(s1(x))
i

= D0(s1(x)) +
x

v0
·D1(s1(x)),

(62)

where

Dj(x) =

n/2−1∑
i=0

di,jx
j j = 0, 1. (63)

Lemma 6. Let vm = (v0, v1, . . . , vm−1) and

wm−1 = (w1, w2, . . . , wm−1)

= (sV1
1 (v1), s

V1
1 (v2), . . . , s

V1
1 (vm−1)),

(64)

where sV1
1 (x) = x(x− v0). Let

Wj = Span(w1, w2, . . . , wj−1) j = 1, 2, . . . ,m− 1.

A polynomial basis with respective to wm−1 is denoted as

Xwm−1 =
(
X

wm−1

0 (x), X
wm−1

1 (x), . . . , X
wm−1

2m−1−1(x)
)
,

where

X
wm−1

i (x) =
m−2∏
j=0

(
s̄
Wj

j (x)
)ij

(65)

and

s̄
Wj

j (x) =
s
Wj

j (x)

s
Wj

j (wj+1)
. (66)

Then X2i(x) = X
wm−1

i (s1(x)), for i = 0, 1, . . . , 2m−1 − 1.

Proof. For simplicity, the subspace polynomial s
Vj

j (x) with
respective to Vj = Span(v0, . . . , vj−1) is denoted as sj(x).
From (8), we have

s
Wj

j (wj+1) = s
Wj

j (s1(vj+1)) = sj+1(vj+1),

and thus (66) can be written as

s̄
Wj

j (x) =
s
Wj

j (x)

s
Wj

j (wj+1)
=

s
Wj

j (x)

sj+1(vj+1)
. (67)

By substituting s1(x) into (67), we have

s̄
Wj

j (s1(x)) =
s
Wj

j (s1(x))

sj+1(vj+1)

=
sj+1(x)

sj+1(vj+1)
(By (8))

=s̄j+1(x).

(68)

By substituting s1(x) into (65), we have

X
wm−1

i (s1(x)) =

m−2∏
j=0

(
s̄
Wj

j (s1(x))
)ij

=

m−2∏
j=0

(s̄j+1(x))
ij (By (68))

=XJ(x),

(69)

where

J = i0 · 2 + i1 · 22 + i2 · 23 + · · ·+ im−2 · 2m−1.

Thus,

J = 2(i0 + i1 · 2 + · · ·+ im−2 · 2m−2) = 2i,

and (69) becomes X2i(x) = X
wm−1

i (s1(x)). This completes
the proof.

Assume Dj(x), j = 0, 1, in the basis X is denoted as

Dj(x) =

n/2−1∑
i=0

d̄i,jX
w
i (x) j = 0, 1, (70)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

TABLE II
COMPLEXITIES OF n-POINT FFTS OVER F2m

Algorithm Restriction Add. comp. Multi. comp.
Schönhage [3] O(n lg(n) lg lg(n)) O(n lg(n))

Gao and Mateer [7] m is a power of two O(n lg(n) lg lg(n)) O(n lg(n))

Cantor [5] m is a power of two O(n lglg(3)(n)) O(n lg(n))

Gao and Mateer [7] O(n lg2(n)) O(n lg(n))
Wang and Zhu [4] O(n lg2(n)) O(n lg2(n))Gathen and Gerhard [6]

Pollard [1] m is even O(n3/2) O(n3/2)

Wang and Yan [24] O(n2/ lglg(8/3)(n)) O(n lglg(3/2)(n))
Sarwate [25] O(n2) O(n lg(n))

Naive approach O(n2) O(n2)

where w is defined in Lemma 6. Then (62) can be rewritten
as

D(x)

=

n/2−1∑
i=0

d̄i,0X
w
i (s1(x)) +

x

v0

n/2−1∑
i=0

d̄i,1X
W
i (s1(x))

=

n/2−1∑
i=0

d̄i,0X2i(x) +
x

v0

n/2−1∑
i=0

d̄i,1X2i(x) (By Lemma 6)

=

n/2−1∑
i=0

d̄i,0X2i(x) +

n/2−1∑
i=0

d̄i,1X2i+1(x)

=
n−1∑
i=0

āiXi(x).

(71)
Thus, the coefficients in (70) are the desired results. To convert
Dj(x) from the monomial basis (63) to X in (70), the same
approach (61) can be applied recursively to each Dj(x). The
method to calculate (61) is addressed as follows.

1) Computation of (61): To solve (61), the Taylor ex-
pansion in Appendix B can be applied. In order to reduce
multiplications while applying Taylor expansions, we need to
twist polynomial D(x). By substituting x = v0 · y into (61),
we have

D(v0 · y) =
n/2−1∑
i=0

(di,0 + di,1 · y)(s1(v0 · y))i

=

n/2−1∑
i=0

(di,0 + di,1 · y)(v20(y + y2))i

=

n/2−1∑
i=0

(di,0v
2i
0 + di,1v

2i
0 · y)(y + y2)i

= D0(v
2
0(y + y2)) + y ·D1(v

2
0(y + y2)),

(72)

where

Dj(v
2
0x) =

n/2−1∑
i=0

di,j(v
2
0x)

i

=

n/2−1∑
i=0

d′i,jx
i, i = 0, 1.

(73)

From (72), Taylor expansions can be applied to the twisted
polynomial D(v0 · y) =

∑n−1
i=0 (div

i
0)y

i, an the result forms

Algorithm 5 First approach of basis conversion algorithm
Input: B2(D, γ, n, v), where D is the coefficients of D(γ ·

x) =
∑n−1

i=0 dix
i, n is a power of two, and v is the basis

Output: (d̄0, d̄1, . . . , d̄n−1), such that D(x) =∑n−1
j=0 d̄jXj(x)

1: if n = 1 then return d0
2: end if
3: Compute D(v0 · x)←

∑n−1
i=0 di · (v0/γ)i · xi

4: Call Taylor expansion (Appendix B) to find out
{(d′i,0, d′i,1)}

n/2−1
i=0 such that

D(v0 · x)←
n/2−1∑
i=0

(d′i,0 + d′i,1 · y)(x+ x2)i

5: Obtain D0(v
2
0x) and D1(v

2
0x) as in (73)

6: Compute w as in (64)
7: Call

U0 ← B2(D0, v
2
0 , n/2, v̄)

U1 ← B2(D1, v
2
0 , n/2, v̄),

to obtain

Ui = (u0,i, u1,i, . . . , un/2−1,i), ∀i = 0, 1

return (u0,0, u0,1, u1,0, u1,1, . . . , un/2−1,0, un/2−1,1)

two polynomials D0(v
2
0x) and D1(v

2
0x). The detailed steps

are summarized in Algorithm 5.
2) Complexity: Based on Appendix B and the above dis-

cussions, computing (61) requires O(n lg(n)) additions and
O(n) multiplications. This leads the recurrence relation

A(n) = 2·A(n/2)+O(n lg(n)), M(n) = 2·M(n/2)+O(n).

Thus A(h) = O(n lg2(n)) and M(h) = O(n lg(n)).

B. Second approach (For m a power of two)

This approach is based on Canter basis [5]. Thus, upon de-
scribing the algorithm, the definition as well as the properties
of the Cantor basis is addressed below.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

Definition 2 (Cantor basis [5]). For m a power of 2, the
Cantor basis C = (c0, c1, . . . , cm−1), where each ci ∈ F2m ,
is constructed by following

c0 = 1;

c2i − ci = ci−1 i = 1, 2, . . . ,m− 1.
(74)

Let sCi (x) denote the subspace polynomial in the Cantor
basis C. sCi (x) possesses the following properties.

Lemma 7 ([5]). (i). Let s(x) = x2−x. Then sCi (x) possesses
a recursive form given by

sC0 (x) = x;

sCi (x) = s(sCi−1(x)) i = 1, 2, . . . ,m.
(75)

(ii). For i a power of 2 and i ≤ m,

sCi (x) = x2i + x. (76)

The polynomial basis over the Cantor basis is denoted as

XC =
(
XC

0 (x), X
C
1 (x), . . . , X

C
2m−1(x)

)
,

where

XC
i (x) =

m−1∏
j=0

(
sCj (x)

sCj (cj)

)ij

=
m−1∏
j=0

(
sCj (x)

)ij
. (77)

Given D(x) =
∑n−1

i=0 aix
i, the objective of the basis conver-

sion is to determine {āi} such that D(x) =
∑n−1

i=0 āiX
C
i (x).

Let ℓ = 2⌈lg lg(n)⌉−1, and L = 2ℓ. Given D(x) in the
monomial basis, we compute {Di(x)}k−1

i=0 such that

D(x) =

k−1∑
i=0

Di(x)(s
C
ℓ (x))

i, (78)

where k = n/L, and each

Di(x) =
L−1∑
j=0

ai,jx
j i = 0, 1, . . . , k − 1. (79)

From (76), sCℓ (x) = xL+x, and hence (78) can be written as

D(x) =
k−1∑
i=0

Di(x)(x
L + x)i, (80)

that can be computed with the Taylor expansion in Ap-
pendix B.

Assume Di(x) in the basis XC is denoted as

Di(x) =
L−1∑
j=0

āi,jX
C
j (x) i = 0, 1, . . . , k − 1. (81)

Then (78) can be written as

D(x) =
k−1∑
i=0

L−1∑
j=0

āi,jX
C
j (x)(s

C
ℓ (x))

i

=
L−1∑
j=0

XC
j (x)

k−1∑
i=0

āi,j(s
C
ℓ (x))

i

=
L−1∑
j=0

XC
j (x)Ej(s

C
ℓ (x)),

(82)

Algorithm 6 Second approach of basis conversion algorithm

Input: B3(D,n), where D(x) =
∑n−1

i=0 dix
i, and n is a

power of two
Output: (d̄0, d̄1, . . . , d̄n−1) such that D(x) =∑n−1

j=0 d̄jXj(x)
1: if n = 1 then return d0
2: end if
3: Let ℓ = 2⌈lg lg(n)⌉−1, and L = 2ℓ

4: Call Taylor expansion (Appendix B) to find {Di(x)}k−1
i=0

such that (80) holds
5: for i = 0, . . . , k − 1 do
6: Call D̄i ← B3(Di, L)
7: end for
8: Obtain Ej(x), j = 0, 1, . . . , L− 1, as in (82)
9: for j = 0, . . . , L− 1 do

10: Call Ēj ← B3(Ej , k)
11: end forreturn {Ēj}L−1

j=0 , where the order of elements is
as in (85)

where each

Ej(x) =
k−1∑
i=0

āi,jx
i j = 0, 1, . . . , L− 1. (83)

Assume Ej(x) in the basis XC is denoted as

Ej(x) =
k−1∑
i=0

ēi,jX
C
i (x) j = 0, 1, . . . , L− 1. (84)

Then (82) can be written as

D(x) =
L−1∑
j=0

XC
j (x)

k−1∑
i=0

ēi,jX
C
i (s

C
ℓ (x))

=

L−1∑
j=0

XC
j (x)

k−1∑
i=0

ēi,jX
C
i·L(x)

=

L−1∑
j=0

k−1∑
i=0

ēi,jX
C
i·L+j(x),

(85)

that is the desired result.
In this approach, we have to convert the basis of Di(x) (see

(79) and (81)) and Ej(x) (see (83) and (84)). Both conversions
can be finished by applying the approach recursively.

1) Complexity: Since the approach only takes additions, the
number of multiplications is zero (M(n) = 0). The recurrence
relation is formulated as

A(n) =
n

L
·A(L) + L ·A(

n

L
) +O(n lg(

n

L
)). (86)

Since it is not straightforward to see the close form of A(n),
the details are addressed in Appendix C, thereby the result
A(n) = O(n lg(n) lg lg(n)).

C. Inverse algorithm

The inverse algorithm is the approach converting the basis of
the given polynomial D(x) from X to the monomial basis. It is
straightforward to devise the inverse algorithm by backtracking

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

the steps of the proposed basis conversion approaches. In
the following, the inverse algorithms for the two approaches
are described. In general, the inverse algorithm has the same
complexity with the corresponding conversion approach, and
thus we do not take much space to describe those inverse
algorithms.

For the inversion of the second approach, we want to
solve (61) in each iteration, where the set of coefficients
{(di,0, di,1)}n/2−1

i=0 is known, and the objective is to calculate
D(x) =

∑n−1
i=0 dix

i. (61) can be converted to a form of Taylor
expansion with O(n) multiplications. Then the inverse Taylor
expansion, that is presented in Appendix B, is employed.

For the inversion of the third approach, we want to
solve (78) in each iteration, where {Di(x)}k−1

i=0 is known,
and the objective is to compute D(x). With the inverse
algorithm of Taylor expansion, (78) can be solved with
O(n lg(n/L)) operations. The complexity of this approach
takes O(n lg(n) lg lg(n)), the same as the conversion algo-
rithm.

IX. CONCLUSIONS

In this paper, we proposed an additive FFT over extension
binary fields (as well as fields of constant characteristic p),
where the input polynomial is represented in a new basis.
Based on the proposed FFTs, the encoding/erasure decoding
algorithms for Reed-Solomon codes are proposed. The encod-
ing is in O(n lg(k)) field operations, and the erasure decoding
is in O(n lg(n)) field operations. The basis conversion ap-
proaches are also proposed. In particular, for arbitrary m, the
conversion algorithms require O(n lg2(n)) field operations.
For m a power of two, the complexity is O(n lg(n) lg lg(n)).

APPENDIX A
EVALUATING ERROR-LOCATOR POLYNOMIALS WITH FAST

WALSH-HADAMARD TRANSFORMS

In [12], Didier presented an efficient algorithm to compute
(54) and (55). The method is presented here for the purpose
of completeness. The formal derivative of Π(x) is given by

Π′(x) =
∑
j∈R

∏
y∈R,y ̸=j

(x+ y).

By substituting x = j ∈ R into Π′(x), we have

Π′(j) =
∏

y∈R,y ̸=j

(j + y) =
∏

y∈F2m ,y ̸=j

(j + y)Ry , (87)

where {Ry|y ∈ F2m} is defined as

Ry =

{
1 if y ∈ R;
0 otherwise. (88)

Let Log(x) denote the discrete logarithm function of F∗
2m ,

where F∗
2m contains all nonzero elements in F2m . Precisely,

for each i ∈ F∗
2m , we have Log(i) = j iff i = αj , where α is

a primitive element of F∗
2m . Then (87) can be reformulated as

Log(Π′(j)) =
⊎

y∈F2m ,y ̸=j

RyLog(j + y), ∀j ∈ R.

Note that the symbol
⊎

means the summation with normal
additions, rather than the additions in extension binary fields.
By letting Log(0) = 0, the above equation can be rewritten as

Log(Π′(j)) =
⊎

y∈F2m

RyLog(j + y), ∀j ∈ R. (89)

Then we consider the construction of Π. In the same way,
the elements of Π can be formulated as

Log(Π(j)) =
⊎

y∈F2m

RyLog(j + y), ∀j ∈ F2m \R. (90)

From (89) and (90), we have⊎
y∈F2m

RyLog(j + y) =

{
Log(Π′(j)) if j ∈ R;
Log(Π(j)) otherwise. (91)

In (91), + is the addition in F2m and it can be treated
as exclusive-or operation. Hence, (91) is namely the logical
convolution [26][27] that can be efficiently computed with fast
Walsh-Hadamard transforms [28]. The steps of the algorithm
are elaborated as follows.

Let FWT(•) denote the h-point fast Walsh-Hadamard trans-
form (FWHT). An h-point FWHT requires h lg(h) additions.
Define

R̃ = (R0, R1, . . . , R2m−1),

L̃ = (0,Log(ω1),Log(ω2), . . . ,Log(ω2m−1)).

(91) is computed by

Rw = FWT(FWT(R̃)× FWT(L̃)), (92)

where × denotes pairwise integer multiplication. Notably,
FWT(L̃) can be precomputed and stored, and thus (92) can
be computed with performing two fast Walsh transforms of
length 2r. We remark that all the above computation can be
performed over modulo 2m − 1. Also note that Rw is the
logarithm of the desired values, and thus the exponent for
each element is computed. In summary, the algorithm requires
O(n lg(n)) modulus additions, O(n) modulus multiplications,
and O(n) exponentiations for n = 2m.

APPENDIX B
TAYLOR EXPANSION

Given D(x) =
∑n−1

i=0 aix
i ∈ F2m [x] and an integer t > 1,

[7] introduced an algorithm to find {ā0,i, ā1,i}m−1
i=0 such that

D(x) =

m−1∑
i=0

(ā0,i + ā1,ix)(x+ xt)i,

where m = ⌈n/t⌉. Firstly, D(x) is divided with (x+ xt)k to
obtain

D(x) = D0(x) + (x+ xt)kD1(x), (93)

with k = 2⌈lg(n/t)⌉−1. Then the polynomial division is
recursively applied to D0(x) and D1(x), until k = 0. Clearly,
the result is the desired output.

To perform the division, the following identity over F2m is
utilized:

(x+ xt)k = xk + xtk.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

Thus, the division in (93) requires only O(n) additions.
Hence, the Taylor expansion takes a total of O(n lg(n/t)) field
additions.

The inverse approach is straightforward by backtracking
the original algorithm. In (93), we have D0(x) and D1(x),
and the objective is to calculate D(x), that requires O(n)
additions. Thus the inverse of Taylor expansion also requires
O(n lg(n/t)) field additions.

APPENDIX C
COMPLEXITY OF THE SECOND APPROACH OF THE BASIS

CONVERSION

In this appendix, the close form of A(n) in (86) is derived,
for n = 2N . The complexity analysis consists of two parts.
The first part discusses the case for N a power of two. In the
second part, the case for arbitrary N is considered. recall that
L = 2ℓ, where ℓ = 2⌈lg lg(n)⌉−1. Hence, for N a power of
two, we have L = n/L =

√
n. (86) can then be formulated

as
A(n) = 2

√
n ·A(

√
n) +O(n lg(n)).

By induction, it can be seen that A(n) = O(n lg(n) lg lg(n)).
The case for arbitrary N is considered below. Since L = 2ℓ,

where ℓ = 2⌈lg lg(n)⌉−1 is a power of two, we know A(L) =
O(L lg(L) lg lg(L)), and L ≥ n/L. That can be substituted
into (86) to obtain

A(n) = O(n lg(L) lg lg(L)) + L ·A(
n

L
) +O(n lg(

n

L
))

⇒A(n) = L ·A(
n

L
) +O(n lg(L) lg lg(L)).

(94)
To prove the complexity, assume the big-O term in (94) is
smaller than

O(n lg(L) lg lg(L)) ≤ c0n lg(L) lg lg(L),

with a constant c0. Further, assume A(n) ≤ c1 ·
n lg(n) lg lg(n), for c1 a constant and c1 ≥ c0. Then (94)
gives

L ·A(
n

L
) +O(n lg(L) lg lg(L))

≤c1 · n lg(
n

L
) lg lg(

n

L
) + c0 · n lg(L) lg lg(L)

≤c1 · n lg(
n

L
) lg lg(L) + c0 · n lg(L) lg lg(L)

=c1 · n lg(n) lg lg(L)− c1 · n lg(L) lg lg(L)

+ c0 · n lg(L) lg lg(L)

≤c1 · n lg(n) lg lg(L) (As c1 ≥ c0)
≤A(n),

(95)

and this proofs the assumption.

APPENDIX D
POLYNOMIAL BASIS OVER A FINITE FIELD OF

CHARACTERISTIC p

In this appendix, we extend the basis to finite fields of char-
acteristic p. The algorithm is similar to the approach shown
in Section III. The polynomial basis is for Fpr [x]/(xpr − x),
such that additive FFT in this basis leads to O(n · p logp(n))

field operations. By fixing p a constant, the complexity can
be written as O(n log(n)). The basis is based on the subspace
polynomial over a finite field of characteristic p.

Let v = (v0, v1, . . . , vm−1) denote a basis of Fpm . The
proposed basis X = (X0(x), X1(x), . . . , Xpm−1(x)) is re-
spectively defined as

Xi(x) =
k−1∏
j=0

(sj(x))
ij , (96)

where i is a base-p integer expressed as

i = i0+ i1 · p+ · · ·+ im−1 · pm−1, 0 ≤ ij ≤ p− 1. (97)

Notice that (s(x))0 = 1, and deg(Xi(x)) = i.
For any D(x) ∈ Fpm [x]/(xpm − x), it can be represented

in the basis X given by

D(x) =

pm−1∑
i=0

aiXi(x).

In the following, we propose an O(h · p logp(h)) algorithm to
compute {D(a + β)|a ∈ Vk}, where deg(D(x)) < h = pk,
and β ∈ Fpm .

Given a polynomial D(x) =
∑2k−1

i=0 diXi(x) of degree
deg(D(x)) < 2k = h in the basis X and β ∈ F2m , this
section presents a algorithm to compute {D(ω)|ω ∈ Vk + β}.

A. Recursive structure in polynomial basis
The polynomial D(x) can be formulated as a recursive

function. Let
D(x) = ∆0

0(x).

The recursive function is defined as

∆r
i (x) =

p−1∑
j=0

(si(x))
j∆r+pij

i+1 (x), for 0 ≤ i ≤ k − 1; (98)

∆r
k(x) = dr, for 0 ≤ r ≤ 2k − 1. (99)

By induction, the coefficients of ∆r
i (x) are denoted as

∆r
i = {dj·pi+r|j = 0, . . . , pk−i − 1)}. (100)

∆m
i (x) possesses the following equality that will be utilized

in the algorithm:

Lemma 8. ∀a ∈ Vm = Fpm and ∀b ∈ Vi, 0 ≤ i ≤ k − 1,

∆r
i (a+ b) = ∆r

i (a). (101)

Proof. By definition, s̄i(b) = 0, ∀b ∈ Vi. From Lemma 2, we
have

si(a+ b) = si(a) + si(b) = si(a), ∀b ∈ Vi. (102)

The proof is based on the mathematical induction on i. In the
base case i = k − 1, (98) can be written as

∆r
k−1(x)

=

p−1∑
j=0

(sk−1(x))
j∆r+p(k−1)j

k (x)

=

p−1∑
j=0

(sk−1(x))
jdr+p(k−1)j .

(103)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15

From (102), we have

∆r
k−1(a+ b)

=

p−1∑
j=0

(sk−1(a+ b))jdr+p(k−1)j

=

p−1∑
j=0

(sk−1(a))
jdr+p(k−1)j

=∆r
k−1(a), ∀b ∈ Vk−1.

(104)

Thus (101) holds for i = k − 1. Assume (101) holds for
i = ℓ+ 1. When i = ℓ, we have

∆r
ℓ(a+ b)

=

p−1∑
j=0

(sℓ(a+ b))j∆r+pℓj

ℓ+1 (a+ b)

=

p−1∑
j=0

(sℓ(a))
j∆r+pℓj

ℓ+1 (a)

=∆r
ℓ(a), ∀b ∈ Vℓ.

(105)

This completes the proof.

B. Proposed algorithm

Let

V k
j = Span(vj , vj+1, . . . , vk−1), 0 ≤ j ≤ k ≤ m− 1,

(106)
denote an (k − j)-dimensional subspace in Fpm . Let

Ψβ(i, r) = {∆r
i (ω)|ω ∈ V k

i + β}, i = 0, . . . , k − 1;
(107)

Ψβ(k, r) = {dr}. (108)

The objective of algorithm is to find out Ψβ(0, 0). In the
following, we rearrange Ψβ(i, r) into p parts Ψβ(i+1, r+pij),
for j = 0, 1, . . . , p− 1.

As
V k
i = V k

i+1 ∪ (V k
i+1 + vi),

(107) can be divided into p individual subsets

Ψ
(j)
β (i, r) = {∆r

i (ω+j·vi)|ω ∈ V k
i+1+β} j = 0, 1, . . . , p−1.

(109)
To evaluate each element of Ψ(j)

β (i, r), from (98), we have

∆r
i (ω + j · vi)

=

p−1∑
j=0

(si(ω + j · vi))j∆r+pij

i+1 (ω + j · vi)

=

p−1∑
j=0

(si(ω + j · vi))j∆r+pij

i+1 (ω) ∀ω ∈ V k
i+1 + β.

(110)
It can be seen that ∆r+pij

i+1 (ω) ∈ Ψβ(i + 1, r + pij), for
j = 0, 1, . . . , p− 1. Hence, for each element of Ψ(0)

β (i, r), the
calculation requires p− 1 multiplications and p− 1 additions.

Let A(h) and M(h) respectively denote the number of addi-
tions and multiplications used in the algorithm. The recurrence
relation is formulated as

A(h) = p×A(h/p) +O(hp);
M(h) = p×M(h/p) +O(hp).

(111)

The solution is given by

A(h) = M(h) = O(hp logp(h)).

REFERENCES

[1] J. M. Pollard, “The fast fourier transform in a finite field,”
Mathematics of computation, vol. 25, no. 114, pp. 365–
374, April 1971.

[2] L. I. Bluestein, “A linear filtering approach to the compu-
tation of discrete fourier transform,” IEEE Trans. Audio
Electroacoust., vol. 18, no. 4, pp. 451–455, Dec 1970.

[3] A. Schönhage, “Schnelle multiplikation von polynomen
über körpern der charakteristik 2,” Acta Informatica,
vol. 7, no. 4, pp. 395–398, 1977. [Online]. Available:
http://dx.doi.org/10.1007/BF00289470

[4] Y. Wang and X. Zhu, “A fast algorithm for the fourier
transform over finite fields and its VLSI implementation,”
IEEE J. Sel. Areas Commun., vol. 6, no. 3, pp. 572–577,
Apr 1988.

[5] D. G. Cantor, “On arithmetical algorithms over finite
fields,” Journal of Combinatorial Theory, Series A,
vol. 50, no. 2, pp. 285–300, 1989.

[6] J. von zur Gathen and J. Gerhard, “Arithmetic and
factorization of polynomial over F2,” in Proceedings
of the 1996 International Symposium on Symbolic and
Algebraic Computation, Zurich, Switzerland, 1996, pp.
1–9.

[7] S. Gao and T. Mateer, “Additive fast fourier transforms
over finite fields,” IEEE Trans. Inf. Theory, vol. 56,
no. 12, pp. 6265–6272, Dec 2010.

[8] S.-J. Lin, T. Y. Al-Naffouri, and Y. S. Han, “Fft algorithm
for binary extension finite fields and its application to
reed-solomon codes,” IEEE Trans. Inf. Theory, submitted
manuscript under review.

[9] O. Ore, “On a special class of polynomials,” Trans. Amer.
Math. Soc., vol. 35, no. 11, pp. 559–584, Nov 1933.

[10] ——, “Contributions to the theory of finite fields,” Trans.
Amer. Math. Soc., vol. 36, no. 2, pp. 243–274, Apr 1934.

[11] S. J. Lin and W. H. Chung, “An efficient (n, k) in-
formation dispersal algorithm based on fermat number
transforms,” IEEE Trans. Inf. Forensics Security, vol. 8,
no. 8, pp. 1371–1383, 2013.

[12] F. Didier, “Efficient erasure decoding of reed-solomon
codes,” CoRR, vol. abs/0901.1886, 2009.

[13] I. S. Reed and G. Solomon, “Polynomial codes over
certain finite fields,” Journal of the Society for Industrial
and Applied Mathematics, vol. 8, no. 2, pp. 300–304,
1960.

[14] J. Justesen, “On the complexity of decoding Reed-
Solomon codes (corresp.),” IEEE Trans. Inf. Theory,
vol. 22, no. 2, pp. 237–238, Mar 1976.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

16

[15] R. Blahut, “A recursive berlekamp-massey algorithm,”
in Theory and practice of error control codes. Boston:
Addison-Wesley, 1983, ch. 11.7, pp. 336–340.

[16] F. MacWilliams and N. Sloane, “Generalized bch codes,”
in The Theory of Error-correcting Codes. Oxford:
North-Holland Publishing Company, 1977, ch. 12, pp.
332–369.

[17] I. S. Reed, T. K. Truong, and L. R. Welch, “The fast
decoding of reed-solomon codes using number theoretic
transforms,” in The Deep Space Network 42-35, Jet
Propulsion Laboratory, Pasadena, CA, July 1976, pp. 64–
78.

[18] I. S. Reed, R. Scholtz, T.-K. Truong, and L. Welch, “The
fast decoding of reed-solomon codes using fermat theo-
retic transforms and continued fractions,” IEEE Trans.
Inf. Theory, vol. 24, no. 1, pp. 100–106, Jan 1978.

[19] A. Sora and J. Lacan, “FNT-based reed-solomon erasure
codes,” in Proceedings of the 7th IEEE Conference on
Consumer Communications and Networking Conference,
Las Vegas, Nevada, USA, 2010, pp. 466–470.

[20] S. J. Lin and W. H. Chung, “An efficient (n, k) informa-
tion dispersal algorithm for high code rate system over
fermat fields,” IEEE Commun. Lett., vol. 16, no. 12, pp.
2036–2039, December 2012.

[21] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege,
“A digital fountain approach to reliable distribution of
bulk data,” SIGCOMM Comput. Commun. Rev., vol. 28,
no. 4, pp. 56–67, Oct. 1998.

[22] M. Luby, “LT codes,” in The 43rd Annual IEEE Sym-
posium on Foundations of Computer Science, 2002, pp.
271–280.

[23] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory,
vol. 52, no. 6, pp. 2551–2567, June 2006.

[24] X. Wu, Y. Wang, and Z. Yan, “On algorithms and
complexities of cyclotomic fast fourier transforms over
arbitrary finite fields,” IEEE Trans. Signal Process.,
vol. 60, no. 3, pp. 1149–1158, March 2012.

[25] D. Sarwate, “Semi-fast fourier transforms over GF(2m).”
IEEE Trans. Comput., vol. C-27, no. 3, pp. 283–285,
March 1978.

[26] J. E. Gibbs and F. Pichler, “Comments on transformation
of ”fourier” power spectra into ”walsh” power spectra,”
IEEE Trans. Audio Electroacoust., vol. EMC-13, no. 3,
pp. 51–54, Aug 1971.

[27] G. Robinson, “Logical convolution and discrete walsh
and fourier power spectra,” IEEE Trans. Audio Electroa-
coust., vol. 20, no. 4, pp. 271–280, Oct 1972.

[28] B. Fino and V. Algazi, “Unified matrix treatment of the
fast walsh-hadamard transform,” IEEE Trans. Comput.,
vol. C-25, no. 11, pp. 1142–1146, Nov 1976.

Sian-Jheng Lin (M’16) received the B.Sc., M.Sc.,
and Ph.D. degrees in computer science from Na-
tional Chiao Tung University, Hsinchu, Taiwan, in
2004, 2006, and 2010, respectively. From 2010 to
2014, he was a postdoc with the Research Center
for Information Technology Innovation, Academia
Sinica. From 2014 to 2016, He was a postdoc with
the Electrial Engineering Department at King Abdul-
lah University of Science and Technology (KAUST),
Thuwal, Saudi Arabia. He was a part-time lecturer at
Yuanpei University from 2007 to 2008, and at Hsuan

Chuang University From 2008 to 2010. He is currently a project researcher
with the School of Information Science and Technology at University of
Science and Technology of China (USTC), Hefei, China. In recent years,
his research focus on the algorithms of MDS codes and its applications to
storage systems.

Tareq Al-Naffouri (M’10) received the B.S. degrees
in mathematics and electrical engineering (with first
honors) from King Fahd University of Petroleum and
Minerals, Dhahran, Saudi Arabia, the M.S. degree in
electrical engineering from the Georgia Institute of
Technology, Atlanta, in 1998, and the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, in 2004.

He was a visiting scholar at California Institute of
Technology, Pasadena, CA, from January to August
2005 and during summer 2006. He was a Fulbright

scholar at the University of Southern California from February to September
2008. He has held internship positions at NEC Research Labs, Tokyo, Japan, in
1998, Adaptive Systems Lab, University of California at Los Angeles in 1999,
National Semiconductor, Santa Clara, CA, in 2001 and 2002, and Beceem
Communications Santa Clara, CA, in 2004. He is currently an Associate at
the Electrical Engineering Department, King Abdullah University of Science
and Technology (KAUST). His research interests lie in the areas of sparse,
adaptive, and statistical signal processing and their applications and in network
information theory. He has over 150 publications in journal and conference
proceedings, 9 standard contributions, 10 issued patents, and 6 pending.

Dr. Al-Naffouri is the recipient of the IEEE Education Society Chapter
Achievement Award in 2008 and Al-Marai Award for innovative research in
communication in 2009. Dr. Al-Naffouri has also been serving as an Associate
Editor of Transactions on Signal Processing since August 2013.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

17

Yunghsiang S. Han (S’90-M’93-SM’08-F’11) was
born in Taipei, Taiwan, 1962. He received B.Sc.
and M.Sc. degrees in electrical engineering from
the National Tsing Hua University, Hsinchu, Taiwan,
in 1984 and 1986, respectively, and a Ph.D. degree
from the School of Computer and Information Sci-
ence, Syracuse University, Syracuse, NY, in 1993.
He was from 1986 to 1988 a lecturer at Ming-Hsin
Engineering College, Hsinchu, Taiwan. He was a
teaching assistant from 1989 to 1992, and a research
associate in the School of Computer and Information

Science, Syracuse University from 1992 to 1993. He was, from 1993 to 1997,
an Associate Professor in the Department of Electronic Engineering at Hua
Fan College of Humanities and Technology, Taipei Hsien, Taiwan. He was
with the Department of Computer Science and Information Engineering at
National Chi Nan University, Nantou, Taiwan from 1997 to 2004. He was
promoted to Professor in 1998. He was a visiting scholar in the Department
of Electrical Engineering at University of Hawaii at Manoa, HI from June
to October 2001, the SUPRIA visiting research scholar in the Department of
Electrical Engineering and Computer Science and CASE center at Syracuse
University, NY from September 2002 to January 2004 and July 2012 to June
2013, and the visiting scholar in the Department of Electrical and Computer
Engineering at University of Texas at Austin, TX from August 2008 to June
2009. He was with the Graduate Institute of Communication Engineering at
National Taipei University, Taipei, Taiwan from August 2004 to July 2010.
From August 2010, he is with the Department of Electrical Engineering at
National Taiwan University of Science and Technology as Chair Professor.
He is also a Chair Professor at National Taipei University from February
2015. His research interests are in error-control coding, wireless networks,
and security.

Dr. Han was a winner of the 1994 Syracuse University Doctoral Prize and
a Fellow of IEEE. One of his papers won the prestigious 2013 ACM CCS
Test-of-Time Award in cybersecurity.

Wei-Ho Chung received the B.Sc. and M.Sc. de-
grees in Electrical Engineering from the National
Taiwan University, Taipei, Taiwan, in 2000 and
2002, respectively, and the Ph.D. degree in Electrical
Engineering from the University of California, Los
Angeles, in 2009. From 2002 to 2005, he was a
system engineer at ChungHwa Telecommunications
Company, where he worked on data networks. In
2008, he worked on CDMA systems at Qualcomm,
Inc., San Diego, CA. His research interests include
communications, signal processing, and networks.

Dr. Chung received the Taiwan Merit Scholarship from 2005 to 2009 and
the Best Paper Award in IEEE WCNC 2012, and has published over 40
journal articles and over 50 conference papers. Since January 2010, Dr. Chung
has been an assistant research fellow, and promoted to the rank of associate
research fellow in January 2014 in Academia Sinica. He leads the Wireless
Communications Lab in the Research Center for Information Technology
Innovation, Academia Sinica, Taiwan.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2016.2608892

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

