/* Copyright 2014, Kenneth MacKay. Licensed under the BSD 2-clause license. */ #include "uECC.h" #include "uECC_types.h" #define uECC_VLI_API static #define CONCATX(a, ...) a ## __VA_ARGS__ #define CONCAT(a, ...) CONCATX(a, __VA_ARGS__) #define STRX(a) #a #define STR(a) STRX(a) #define EVAL(...) EVAL1(EVAL1(EVAL1(EVAL1(__VA_ARGS__)))) #define EVAL1(...) EVAL2(EVAL2(EVAL2(EVAL2(__VA_ARGS__)))) #define EVAL2(...) EVAL3(EVAL3(EVAL3(EVAL3(__VA_ARGS__)))) #define EVAL3(...) EVAL4(EVAL4(EVAL4(EVAL4(__VA_ARGS__)))) #define EVAL4(...) __VA_ARGS__ #define DEC_1 0 #define DEC_2 1 #define DEC_3 2 #define DEC_4 3 #define DEC_5 4 #define DEC_6 5 #define DEC_7 6 #define DEC_8 7 #define DEC_9 8 #define DEC_10 9 #define DEC_11 10 #define DEC_12 11 #define DEC_13 12 #define DEC_14 13 #define DEC_15 14 #define DEC_16 15 #define DEC_17 16 #define DEC_18 17 #define DEC_19 18 #define DEC_20 19 #define DEC_21 20 #define DEC_22 21 #define DEC_23 22 #define DEC_24 23 #define DEC_25 24 #define DEC_26 25 #define DEC_27 26 #define DEC_28 27 #define DEC_29 28 #define DEC_30 29 #define DEC_31 30 #define DEC_32 31 #define DEC(N) CONCAT(DEC_, N) #define SECOND_ARG(_, val, ...) val #define SOME_CHECK_0 ~, 0 #define GET_SECOND_ARG(...) SECOND_ARG(__VA_ARGS__, SOME,) #define SOME_OR_0(N) GET_SECOND_ARG(CONCAT(SOME_CHECK_, N)) #define EMPTY(...) #define DEFER(...) __VA_ARGS__ EMPTY() #define REPEAT_NAME_0() REPEAT_0 #define REPEAT_NAME_SOME() REPEAT_SOME #define REPEAT_0(...) #define REPEAT_SOME(N, stuff) DEFER(CONCAT(REPEAT_NAME_, SOME_OR_0(DEC(N))))()(DEC(N), stuff) stuff #define REPEAT(N, stuff) EVAL(REPEAT_SOME(N, stuff)) #define REPEATM_NAME_0() REPEATM_0 #define REPEATM_NAME_SOME() REPEATM_SOME #define REPEATM_0(...) #define REPEATM_SOME(N, macro) macro(N) \ DEFER(CONCAT(REPEATM_NAME_, SOME_OR_0(DEC(N))))()(DEC(N), macro) #define REPEATM(N, macro) EVAL(REPEATM_SOME(N, macro)) #define uECC_MAX_WORDS 8 #define BITS_TO_WORDS(num_bits) ((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8)) #define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8) struct uECC_Curve_t { wordcount_t num_words; wordcount_t num_bytes; bitcount_t num_n_bits; uECC_word_t p[uECC_MAX_WORDS]; uECC_word_t n[uECC_MAX_WORDS]; uECC_word_t G[uECC_MAX_WORDS * 2]; uECC_word_t b[uECC_MAX_WORDS]; void (*double_jacobian)(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * Z1, uECC_Curve curve); void (*x_side)(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve); void (*mmod_fast)(uECC_word_t *result, uECC_word_t *product); }; static cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, const uECC_word_t *right, wordcount_t num_words); #if (uECC_PLATFORM == uECC_arm || uECC_PLATFORM == uECC_arm_thumb || \ uECC_PLATFORM == uECC_arm_thumb2) #include "uECC_asm_arm.inc" #endif int uECC_curve_private_key_size(uECC_Curve curve) { return BITS_TO_BYTES(curve->num_n_bits); } int uECC_curve_public_key_size(uECC_Curve curve) { return 2 * curve->num_bytes; } #if !asm_clear uECC_VLI_API void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words) { wordcount_t i; for (i = 0; i < num_words; ++i) { vli[i] = 0; } } #endif /* !asm_clear */ /* Constant-time comparison to zero - secure way to compare long integers */ /* Returns 1 if vli == 0, 0 otherwise. */ uECC_VLI_API uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words) { uECC_word_t bits = 0; wordcount_t i; for (i = 0; i < num_words; ++i) { bits |= vli[i]; } return (bits == 0); } /* Returns nonzero if bit 'bit' of vli is set. */ uECC_VLI_API uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit) { return (vli[bit >> uECC_WORD_BITS_SHIFT] & ((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK))); } /* Counts the number of words in vli. */ static wordcount_t vli_numDigits(const uECC_word_t *vli, const wordcount_t max_words) { wordcount_t i; /* Search from the end until we find a non-zero digit. We do it in reverse because we expect that most digits will be nonzero. */ for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) { } return (i + 1); } /* Counts the number of bits required to represent vli. */ uECC_VLI_API bitcount_t uECC_vli_numBits(const uECC_word_t *vli, const wordcount_t max_words) { uECC_word_t i; uECC_word_t digit; wordcount_t num_digits = vli_numDigits(vli, max_words); if (num_digits == 0) { return 0; } digit = vli[num_digits - 1]; for (i = 0; digit; ++i) { digit >>= 1; } return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i); } /* Sets dest = src. */ #if !asm_set uECC_VLI_API void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src, wordcount_t num_words) { wordcount_t i; for (i = 0; i < num_words; ++i) { dest[i] = src[i]; } } #endif /* !asm_set */ /* Returns sign of left - right. */ static cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, const uECC_word_t *right, wordcount_t num_words) { wordcount_t i; for (i = num_words - 1; i >= 0; --i) { if (left[i] > right[i]) { return 1; } else if (left[i] < right[i]) { return -1; } } return 0; } /* Constant-time comparison function - secure way to compare long integers */ /* Returns one if left == right, zero otherwise. */ uECC_VLI_API uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right, wordcount_t num_words) { uECC_word_t diff = 0; wordcount_t i; for (i = num_words - 1; i >= 0; --i) { diff |= (left[i] ^ right[i]); } return (diff == 0); } /* Computes vli = vli >> 1. */ #if !asm_rshift1 uECC_VLI_API void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words) { uECC_word_t *end = vli; uECC_word_t carry = 0; vli += num_words; while (vli-- > end) { uECC_word_t temp = *vli; *vli = (temp >> 1) | carry; carry = temp << (uECC_WORD_BITS - 1); } } #endif /* !asm_rshift1 */ /* Computes result = (left + right) % mod. Assumes that left < mod and right < mod, and that result does not overlap mod. */ uECC_VLI_API void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, const uECC_word_t *mod, wordcount_t num_words) { uECC_word_t carry = uECC_vli_add(result, left, right, num_words); if (carry || uECC_vli_cmp_unsafe(mod, result, num_words) != 1) { /* result > mod (result = mod + remainder), so subtract mod to get remainder. */ uECC_vli_sub(result, result, mod, num_words); } } /* Computes result = (left - right) % mod. Assumes that left < mod and right < mod, and that result does not overlap mod. */ uECC_VLI_API void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, const uECC_word_t *mod, wordcount_t num_words) { uECC_word_t l_borrow = uECC_vli_sub(result, left, right, num_words); if (l_borrow) { /* In this case, result == -diff == (max int) - diff. Since -x % d == d - x, we can get the correct result from result + mod (with overflow). */ uECC_vli_add(result, result, mod, num_words); } } /* Computes result = product % mod, where product is 2N words long. */ /* Currently only designed to work for curve_p or curve_n. */ uECC_VLI_API void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product, const uECC_word_t *mod, wordcount_t num_words) { uECC_word_t mod_multiple[2 * uECC_MAX_WORDS]; uECC_word_t tmp[2 * uECC_MAX_WORDS]; uECC_word_t *v[2] = {tmp, product}; uECC_word_t index; /* Shift mod so its highest set bit is at the maximum position. */ bitcount_t shift = (num_words * 2 * uECC_WORD_BITS) - uECC_vli_numBits(mod, num_words); wordcount_t word_shift = shift / uECC_WORD_BITS; wordcount_t bit_shift = shift % uECC_WORD_BITS; uECC_word_t carry = 0; uECC_vli_clear(mod_multiple, word_shift); if (bit_shift > 0) { for(index = 0; index < (uECC_word_t)num_words; ++index) { mod_multiple[word_shift + index] = (mod[index] << bit_shift) | carry; carry = mod[index] >> (uECC_WORD_BITS - bit_shift); } } else { uECC_vli_set(mod_multiple + word_shift, mod, num_words); } for (index = 1; shift >= 0; --shift) { uECC_word_t borrow = 0; wordcount_t i; for (i = 0; i < num_words * 2; ++i) { uECC_word_t diff = v[index][i] - mod_multiple[i] - borrow; if (diff != v[index][i]) { borrow = (diff > v[index][i]); } v[1 - index][i] = diff; } index = !(index ^ borrow); /* Swap the index if there was no borrow */ uECC_vli_rshift1(mod_multiple, num_words); mod_multiple[num_words - 1] |= mod_multiple[num_words] << (uECC_WORD_BITS - 1); uECC_vli_rshift1(mod_multiple + num_words, num_words); } uECC_vli_set(result, v[index], num_words); } /* Computes result = (left * right) % mod. */ uECC_VLI_API void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, const uECC_word_t *mod, wordcount_t num_words) { uECC_word_t product[2 * uECC_MAX_WORDS]; uECC_vli_mult(product, left, right, num_words); uECC_vli_mmod(result, product, mod, num_words); } uECC_VLI_API void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, uECC_Curve curve) { uECC_word_t product[2 * uECC_MAX_WORDS]; uECC_vli_mult(product, left, right, curve->num_words); curve->mmod_fast(result, product); } uECC_VLI_API void uECC_vli_modSquare_fast(uECC_word_t *result, const uECC_word_t *left, uECC_Curve curve) { uECC_vli_modMult_fast(result, left, left, curve); } #define EVEN(vli) (!(vli[0] & 1)) static void vli_modInv_update(uECC_word_t *uv, const uECC_word_t *mod, wordcount_t num_words) { uECC_word_t carry = 0; if (!EVEN(uv)) { carry = uECC_vli_add(uv, uv, mod, num_words); } uECC_vli_rshift1(uv, num_words); if (carry) { uv[num_words - 1] |= HIGH_BIT_SET; } } /* Computes result = (1 / input) % mod. All VLIs are the same size. See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" */ uECC_VLI_API void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input, const uECC_word_t *mod, wordcount_t num_words) { uECC_word_t a[uECC_MAX_WORDS], b[uECC_MAX_WORDS], u[uECC_MAX_WORDS], v[uECC_MAX_WORDS]; cmpresult_t cmpResult; if (uECC_vli_isZero(input, num_words)) { uECC_vli_clear(result, num_words); return; } uECC_vli_set(a, input, num_words); uECC_vli_set(b, mod, num_words); uECC_vli_clear(u, num_words); u[0] = 1; uECC_vli_clear(v, num_words); while ((cmpResult = uECC_vli_cmp_unsafe(a, b, num_words)) != 0) { if (EVEN(a)) { uECC_vli_rshift1(a, num_words); vli_modInv_update(u, mod, num_words); } else if (EVEN(b)) { uECC_vli_rshift1(b, num_words); vli_modInv_update(v, mod, num_words); } else if (cmpResult > 0) { uECC_vli_sub(a, a, b, num_words); uECC_vli_rshift1(a, num_words); if (uECC_vli_cmp_unsafe(u, v, num_words) < 0) { uECC_vli_add(u, u, mod, num_words); } uECC_vli_sub(u, u, v, num_words); vli_modInv_update(u, mod, num_words); } else { uECC_vli_sub(b, b, a, num_words); uECC_vli_rshift1(b, num_words); if (uECC_vli_cmp_unsafe(v, u, num_words) < 0) { uECC_vli_add(v, v, mod, num_words); } uECC_vli_sub(v, v, u, num_words); vli_modInv_update(v, mod, num_words); } } uECC_vli_set(result, u, num_words); } /* ------ Point operations ------ */ #include "uECC_curve-specific.inc" /* Returns 1 if 'point' is the point at infinity, 0 otherwise. */ #define EccPoint_isZero(point, curve) uECC_vli_isZero((point), (curve)->num_words * 2) /* Point multiplication algorithm using Montgomery's ladder with co-Z coordinates. From http://eprint.iacr.org/2011/338.pdf */ /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ static void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z, uECC_Curve curve) { uECC_word_t t1[uECC_MAX_WORDS]; uECC_vli_modSquare_fast(t1, Z, curve); /* z^2 */ uECC_vli_modMult_fast(X1, X1, t1, curve); /* x1 * z^2 */ uECC_vli_modMult_fast(t1, t1, Z, curve); /* z^3 */ uECC_vli_modMult_fast(Y1, Y1, t1, curve); /* y1 * z^3 */ } /* Input P = (x1, y1, Z), Q = (x2, y2, Z) Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) or P => P', Q => P + Q */ static void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * X2, uECC_word_t * Y2, uECC_Curve curve) { /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ uECC_word_t t5[uECC_MAX_WORDS]; wordcount_t num_words = curve->num_words; uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */ uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */ uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */ uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */ uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */ uECC_vli_modSquare_fast(t5, Y2, curve); /* t5 = (y2 - y1)^2 = D */ uECC_vli_modSub(t5, t5, X1, curve->p, num_words); /* t5 = D - B */ uECC_vli_modSub(t5, t5, X2, curve->p, num_words); /* t5 = D - B - C = x3 */ uECC_vli_modSub(X2, X2, X1, curve->p, num_words); /* t3 = C - B */ uECC_vli_modMult_fast(Y1, Y1, X2, curve); /* t2 = y1*(C - B) */ uECC_vli_modSub(X2, X1, t5, curve->p, num_words); /* t3 = B - x3 */ uECC_vli_modMult_fast(Y2, Y2, X2, curve); /* t4 = (y2 - y1)*(B - x3) */ uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y3 */ uECC_vli_set(X2, t5, num_words); } uECC_VLI_API void uECC_vli_bytesToNative(uECC_word_t *native, const uint8_t *bytes, int num_bytes) { wordcount_t i; uECC_vli_clear(native, (num_bytes + (uECC_WORD_SIZE - 1)) / uECC_WORD_SIZE); for (i = 0; i < num_bytes; ++i) { unsigned b = num_bytes - 1 - i; native[b / uECC_WORD_SIZE] |= (uECC_word_t)bytes[i] << (8 * (b % uECC_WORD_SIZE)); } } int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve) { uECC_word_t tmp1[uECC_MAX_WORDS]; uECC_word_t tmp2[uECC_MAX_WORDS]; wordcount_t num_words = curve->num_words; /* The point at infinity is invalid. */ if (EccPoint_isZero(point, curve)) { return 0; } /* x and y must be smaller than p. */ if (uECC_vli_cmp_unsafe(curve->p, point, num_words) != 1 || uECC_vli_cmp_unsafe(curve->p, point + num_words, num_words) != 1) { return 0; } uECC_vli_modSquare_fast(tmp1, point + num_words, curve); curve->x_side(tmp2, point, curve); /* tmp2 = x^3 + ax + b */ /* Make sure that y^2 == x^3 + ax + b */ return (int)(uECC_vli_equal(tmp1, tmp2, num_words)); } /* -------- ECDSA code -------- */ static void bits2int(uECC_word_t *native, const uint8_t *bits, unsigned bits_size, uECC_Curve curve) { unsigned num_n_bytes = BITS_TO_BYTES(curve->num_n_bits); unsigned num_n_words = BITS_TO_WORDS(curve->num_n_bits); int shift; uECC_word_t carry; uECC_word_t *ptr; if (bits_size > num_n_bytes) { bits_size = num_n_bytes; } uECC_vli_clear(native, num_n_words); uECC_vli_bytesToNative(native, bits, bits_size); if (bits_size * 8 <= (unsigned)curve->num_n_bits) { return; } shift = bits_size * 8 - curve->num_n_bits; carry = 0; ptr = native + num_n_words; while (ptr-- > native) { uECC_word_t temp = *ptr; *ptr = (temp >> shift) | carry; carry = temp << (uECC_WORD_BITS - shift); } /* Reduce mod curve_n */ if (uECC_vli_cmp_unsafe(curve->n, native, num_n_words) != 1) { uECC_vli_sub(native, native, curve->n, num_n_words); } } static bitcount_t smax(bitcount_t a, bitcount_t b) { return (a > b ? a : b); } int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash, unsigned hash_size, const uint8_t *signature, uECC_Curve curve) { uECC_word_t u1[uECC_MAX_WORDS], u2[uECC_MAX_WORDS]; uECC_word_t z[uECC_MAX_WORDS]; uECC_word_t sum[uECC_MAX_WORDS * 2]; uECC_word_t rx[uECC_MAX_WORDS]; uECC_word_t ry[uECC_MAX_WORDS]; uECC_word_t tx[uECC_MAX_WORDS]; uECC_word_t ty[uECC_MAX_WORDS]; uECC_word_t tz[uECC_MAX_WORDS]; const uECC_word_t *points[4]; const uECC_word_t *point; bitcount_t num_bits; bitcount_t i; uECC_word_t _public[uECC_MAX_WORDS * 2]; uECC_word_t r[uECC_MAX_WORDS], s[uECC_MAX_WORDS]; wordcount_t num_words = curve->num_words; wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits); rx[num_n_words - 1] = 0; r[num_n_words - 1] = 0; s[num_n_words - 1] = 0; uECC_vli_bytesToNative(_public, public_key, curve->num_bytes); uECC_vli_bytesToNative(_public + num_words, public_key + curve->num_bytes, curve->num_bytes); uECC_vli_bytesToNative(r, signature, curve->num_bytes); uECC_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes); /* r, s must not be 0. */ if (uECC_vli_isZero(r, num_words) || uECC_vli_isZero(s, num_words)) { return 0; } /* r, s must be < n. */ if (uECC_vli_cmp_unsafe(curve->n, r, num_n_words) != 1 || uECC_vli_cmp_unsafe(curve->n, s, num_n_words) != 1) { return 0; } /* Calculate u1 and u2. */ uECC_vli_modInv(z, s, curve->n, num_n_words); /* z = 1/s */ u1[num_n_words - 1] = 0; bits2int(u1, message_hash, hash_size, curve); uECC_vli_modMult(u1, u1, z, curve->n, num_n_words); /* u1 = e/s */ uECC_vli_modMult(u2, r, z, curve->n, num_n_words); /* u2 = r/s */ /* Calculate sum = G + Q. */ uECC_vli_set(sum, _public, num_words); uECC_vli_set(sum + num_words, _public + num_words, num_words); uECC_vli_set(tx, curve->G, num_words); uECC_vli_set(ty, curve->G + num_words, num_words); uECC_vli_modSub(z, sum, tx, curve->p, num_words); /* z = x2 - x1 */ XYcZ_add(tx, ty, sum, sum + num_words, curve); uECC_vli_modInv(z, z, curve->p, num_words); /* z = 1/z */ apply_z(sum, sum + num_words, z, curve); /* Use Shamir's trick to calculate u1*G + u2*Q */ points[0] = 0; points[1] = curve->G; points[2] = _public; points[3] = sum; num_bits = smax(uECC_vli_numBits(u1, num_n_words), uECC_vli_numBits(u2, num_n_words)); point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) | ((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)]; uECC_vli_set(rx, point, num_words); uECC_vli_set(ry, point + num_words, num_words); uECC_vli_clear(z, num_words); z[0] = 1; for (i = num_bits - 2; i >= 0; --i) { uECC_word_t index; curve->double_jacobian(rx, ry, z, curve); index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1); point = points[index]; if (point) { uECC_vli_set(tx, point, num_words); uECC_vli_set(ty, point + num_words, num_words); apply_z(tx, ty, z, curve); uECC_vli_modSub(tz, rx, tx, curve->p, num_words); /* Z = x2 - x1 */ XYcZ_add(tx, ty, rx, ry, curve); uECC_vli_modMult_fast(z, z, tz, curve); } } uECC_vli_modInv(z, z, curve->p, num_words); /* Z = 1/Z */ apply_z(rx, ry, z, curve); /* v = x1 (mod n) */ if (uECC_vli_cmp_unsafe(curve->n, rx, num_n_words) != 1) { uECC_vli_sub(rx, rx, curve->n, num_n_words); } /* Accept only if v == r. */ return (int)(uECC_vli_equal(rx, r, num_words)); }