/** * This file is part of the Status project, https://status.im/ * * Copyright (c) 2018 Status Research & Development GmbH * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "main.h" #include "flash.h" #include "sha256.h" #include "uECC.h" // The public keys used to verify the firmware signatures. These are the raw X,Y coordinates. Each key is exactly 64 bytes long and there is no separator. #ifdef BOOTLOADER_RELEASE static const uint8_t fw_public_keys[] = { \ //TODO: generate production keys }; #else static const uint8_t fw_public_keys[] = { \ 0xfe, 0xcb, 0x28, 0xb9, 0x50, 0xdd, 0x8b, 0x2f, 0xc7, 0x34, 0xd3, 0x60, 0x5b, 0x1a, 0xc6, 0xed, 0x02, 0x50, 0xf2, 0x4a, 0xc4, 0x75, 0xd1, 0x28, 0x7f, 0x7c, 0xb5, 0xce, 0x61, 0xd6, 0x95, 0xb9, 0xb5, 0x27, 0x0b, 0x52, 0x77, 0x42, 0x4b, 0xf3, 0xb4, 0x3c, 0xef, 0xcb, 0x56, 0xd1, 0x98, 0x22, 0x11, 0xc2, 0xe5, 0xd3, 0xf0, 0x22, 0x87, 0xb9, 0xe8, 0x20, 0xdc, 0xee, 0x9f, 0xc2, 0xad, 0x22, \ 0xe8, 0xb4, 0x6f, 0xfd, 0xe2, 0x77, 0xe4, 0xb7, 0x8e, 0x64, 0xed, 0x8d, 0x1d, 0xd4, 0xe0, 0x41, 0x72, 0x40, 0xba, 0xc3, 0xc5, 0x25, 0xbe, 0x53, 0xb7, 0x5e, 0xf9, 0xf5, 0x19, 0xda, 0x03, 0xdf, 0xb9, 0x41, 0xeb, 0x63, 0x39, 0xdf, 0xee, 0x47, 0x9f, 0x86, 0xbf, 0x87, 0x8a, 0xcd, 0xf0, 0x3b, 0x1e, 0x7d, 0x85, 0xd2, 0x3d, 0x96, 0xf2, 0x31, 0x1a, 0x49, 0x0a, 0xd6, 0xad, 0xdd, 0x44, 0xf0, \ 0x5c, 0x25, 0xe5, 0x96, 0xa1, 0xc0, 0x17, 0xf2, 0x18, 0x80, 0x3f, 0x99, 0x40, 0xda, 0x02, 0x8a, 0x9a, 0x8c, 0xef, 0x34, 0x60, 0xc9, 0x53, 0x6b, 0x34, 0x07, 0x42, 0x87, 0xce, 0xe7, 0xa1, 0x47, 0x6a, 0x9f, 0xf2, 0x9e, 0xfd, 0xf3, 0xa0, 0x1a, 0xd2, 0x6c, 0xd0, 0x28, 0xc9, 0x4c, 0x21, 0xfb, 0x32, 0xcc, 0x08, 0x56, 0x16, 0xa7, 0x86, 0xcb, 0x36, 0x26, 0x1e, 0x60, 0x58, 0x90, 0x67, 0xae, \ 0x37, 0xa5, 0xfb, 0xbc, 0xe9, 0xa9, 0x62, 0x45, 0x0f, 0x71, 0x7a, 0x91, 0x09, 0xb3, 0xe5, 0xfe, 0x2c, 0x37, 0x94, 0x5e, 0xc0, 0x91, 0xe7, 0x91, 0xd8, 0xc0, 0xe3, 0x84, 0x7e, 0x48, 0xe0, 0xe3, 0x5b, 0xb2, 0xf3, 0xe0, 0xc6, 0x86, 0x37, 0xc9, 0xd3, 0x56, 0x7d, 0x5e, 0xe1, 0xfc, 0x71, 0x1f, 0xf0, 0xfb, 0xa0, 0xe5, 0xf4, 0xc8, 0x8f, 0x40, 0x5d, 0x95, 0x0d, 0xd6, 0x51, 0xd3, 0xb3, 0x13, \ }; #endif int main(void) { protect_flash(); if (!check_firmware(UPGRADE_FW_START)) { upgrade_firmware(); } else if (check_firmware(FIRMWARE_START)) { if(!check_firmware(RECOVERY_FW_START)) { factory_reset(); } else { for(;;); // This should never happen, but if the recovery firmware is also corrupted, we enter an endless loop since there is nothing else we can do } } run_firmware(); } int check_firmware(uintptr_t addr) { if(UINT32_PTR(addr)[0] != FW_MAGIC) { return 1; } uint32_t fw_size = UINT32_PTR(addr)[1]; if (fw_size > FIRMWARE_SIZE) { return 1; } uint8_t hash[CF_SHA256_HASHSZ]; cf_sha256_context ctx; uECC_Curve ec_curve = uECC_secp256k1(); cf_sha256_init(&ctx); cf_sha256_update(&ctx, UINT8_PTR(addr + FIRMWARE_HEADER_SIZE), fw_size); cf_sha256_digest(&ctx, hash); for(int i = 0; i < SIGNATURE_COUNT; i++) { if (uECC_verify((fw_public_keys + (KEY_LENGTH * i)), hash, CF_SHA256_HASHSZ, UINT8_PTR(addr + SIGNATURE_HEADER_OFFSET + (SIGNATURE_LENGTH * i)), ec_curve) != 1) { return 1; } } return 0; } void protect_flash() { #ifdef BOOTLOADER_RELEASE if (FLASH_IS_RDP2()) { return; } flash_optunlock(); FLASH_SET_RDP2(); FLASH_WP(FLASH->WRP1AR, BOOTLOADER_FIRST_PAGE, (FIRMWARE_FIRST_PAGE - 1)); FLASH_WP(FLASH->WRP1BR, RECOVERY_FW_FIRST_PAGE, (RECOVERY_FW_FIRST_PAGE + FIRMWARE_PAGE_COUNT - 1)); // This resets the MCU flash_optprogram(); #endif } void _load_firmware(uintptr_t newfw, uint8_t newfw_bank, uint8_t newfw_page, uint8_t remove_newfw) { flash_unlock(); SET_BIT(RCC->CR, RCC_CR_HSION); do { flash_erase(FLASH_BANK1, FIRMWARE_FIRST_PAGE, FIRMWARE_PAGE_COUNT); flash_copy(UINT32_PTR(newfw), UINT32_PTR(FIRMWARE_START), (UINT32_PTR(newfw)[1]/4)); } while(check_firmware(FIRMWARE_START) != 0); if (remove_newfw) { flash_erase(newfw_bank, newfw_page, FIRMWARE_PAGE_COUNT); } CLEAR_BIT(RCC->CR, RCC_CR_HSION); flash_lock(); } void upgrade_firmware() { _load_firmware(UPGRADE_FW_START, FLASH_BANK2, UPGRADE_FW_FIRST_PAGE, 1); } void factory_reset(void) { _load_firmware(RECOVERY_FW_START, FLASH_BANK1, RECOVERY_FW_FIRST_PAGE, 0); } void run_firmware(void) { memzero(SRAM_START, SRAM_END); uint32_t* fw_entry = UINT32_PTR(FIRMWARE_CODE_START); SCB->VTOR = (uint32_t) fw_entry; __set_MSP(fw_entry[0]); ((void (*)(void*))fw_entry[1])(check_firmware); } const void* bl_service_table[] = { &check_firmware };