Merge pull request #4 from raulk/refactor

This commit is contained in:
Raúl Kripalani 2020-12-09 16:23:37 +00:00 committed by GitHub
commit a99678239d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 649 additions and 732 deletions

View File

@ -5,9 +5,17 @@
[![godocs](https://img.shields.io/badge/godoc-reference-5272B4.svg?style=flat-square)](https://godoc.org/github.com/raulk/go-watchdog)
[![build status](https://circleci.com/gh/raulk/go-watchdog.svg?style=svg)](<LINK>)
go-watchdog runs a singleton memory watchdog. It takes system and heap memory
readings periodically, and feeds them to a user-defined policy to determine
whether GC needs to run immediately.
go-watchdog runs a singleton memory watchdog in the process, which watches
memory utilization and forces Go GC in accordance with a user-defined policy.
There are two kinds of watchdog so far:
* **heap-driven:** applies a limit to the heap, and obtains current usage through
`runtime.ReadMemStats()`.
* **system-driven:** applies a limit to the total system memory used, and obtains
current usage through [`elastic/go-sigar`](https://github.com/elastic/gosigar).
A third process-driven watchdog that uses cgroups is underway.
This library ships with two policies out of the box:
@ -19,12 +27,6 @@ This library ships with two policies out of the box:
You can easily build a custom policy tailored to the allocation patterns of your
program.
It is recommended that you set both (a) a memory limit and (b) a scope of
application of that limit (system or heap) when you start the watchdog.
Otherwise, go-watchdog will use the system scope, and will default to the
total system memory as the limit. [elastic/go-sigar](https://github.com/elastic/gosigar)
is used to make the discovery.
## Why is this even needed?
The garbage collector that ships with the go runtime is pretty good in some

View File

@ -1,54 +1,31 @@
package watchdog
// AdaptivePolicy is a policy that forces GC when the usage surpasses a
// user-configured percentage (Factor) of the available memory that remained
// after the last GC run.
// NewAdaptivePolicy creates a policy that forces GC when the usage surpasses a
// user-configured percentage (factor) of the available memory.
//
// TODO tests
type AdaptivePolicy struct {
// Factor determines how much this policy will let the heap expand
// before it triggers.
//
// On every GC run, this policy recalculates the next target as
// (limit-currentHeap)*Factor (i.e. available*Factor).
//
// If the GC target calculated by the runtime is lower than the one
// calculated by this policy, this policy will set the new target, but the
// effect will be nil, since the the go runtime will run GC sooner than us
// anyway.
Factor float64
active bool
target uint64
initialized bool
// This policy recalculates the next target as usage+(limit-usage)*factor.
func NewAdaptivePolicy(factor float64) PolicyCtor {
return func(limit uint64) (Policy, error) {
return &adaptivePolicy{
factor: factor,
limit: limit,
}, nil
}
}
var _ Policy = (*AdaptivePolicy)(nil)
func (a *AdaptivePolicy) Evaluate(input PolicyInput) (trigger bool) {
if !a.initialized {
// when initializing, set the target to the limit; it will be reset
// when the first GC happens.
a.target = input.Limit
a.initialized = true
}
// determine the value to compare utilisation against.
var actual uint64
switch input.Scope {
case ScopeSystem:
actual = input.SysStats.ActualUsed
case ScopeHeap:
actual = input.MemStats.HeapAlloc
}
if input.GCTrigger {
available := float64(input.Limit) - float64(actual)
calc := uint64(available * a.Factor)
a.target = calc
}
if actual >= a.target {
return true
}
return false
type adaptivePolicy struct {
factor float64
limit uint64
}
var _ Policy = (*adaptivePolicy)(nil)
func (p *adaptivePolicy) Evaluate(_ UtilizationType, used uint64) (next uint64) {
if used >= p.limit {
return used
}
available := float64(p.limit) - float64(used)
next = used + uint64(available*p.factor)
return next
}

28
adaptive_test.go Normal file
View File

@ -0,0 +1,28 @@
package watchdog
import (
"testing"
"github.com/raulk/clock"
"github.com/stretchr/testify/require"
)
func TestAdaptivePolicy(t *testing.T) {
clk := clock.NewMock()
Clock = clk
p, err := NewAdaptivePolicy(0.5)(limit)
require.NoError(t, err)
// at zero; next = 50%.
next := p.Evaluate(UtilizationSystem, 0)
require.EqualValues(t, limit/2, next)
// at half; next = 75%.
next = p.Evaluate(UtilizationSystem, limit/2)
require.EqualValues(t, 3*(limit/4), next)
// at limit.
next = p.Evaluate(UtilizationSystem, limit)
require.EqualValues(t, limit, next)
}

3
go.mod
View File

@ -3,11 +3,10 @@ module github.com/raulk/go-watchdog
go 1.15
require (
github.com/davecgh/go-spew v1.1.1 // indirect
github.com/containerd/cgroups v0.0.0-20201119153540-4cbc285b3327
github.com/elastic/gosigar v0.12.0
github.com/kr/pretty v0.1.0 // indirect
github.com/raulk/clock v1.1.0
github.com/stretchr/testify v1.4.0
golang.org/x/sys v0.0.0-20190412213103-97732733099d // indirect
gopkg.in/check.v1 v1.0.0-20180628173108-788fd7840127 // indirect
)

31
go.sum
View File

@ -1,27 +1,54 @@
github.com/BurntSushi/toml v0.3.1/go.mod h1:xHWCNGjB5oqiDr8zfno3MHue2Ht5sIBksp03qcyfWMU=
github.com/cilium/ebpf v0.2.0/go.mod h1:To2CFviqOWL/M0gIMsvSMlqe7em/l1ALkX1PyjrX2Qs=
github.com/containerd/cgroups v0.0.0-20201119153540-4cbc285b3327 h1:7grrpcfCtbZLsjtB0DgMuzs1umsJmpzaHMZ6cO6iAWw=
github.com/containerd/cgroups v0.0.0-20201119153540-4cbc285b3327/go.mod h1:ZJeTFisyysqgcCdecO57Dj79RfL0LNeGiFUqLYQRYLE=
github.com/coreos/go-systemd/v22 v22.1.0 h1:kq/SbG2BCKLkDKkjQf5OWwKWUKj1lgs3lFI4PxnR5lg=
github.com/coreos/go-systemd/v22 v22.1.0/go.mod h1:xO0FLkIi5MaZafQlIrOotqXZ90ih+1atmu1JpKERPPk=
github.com/cpuguy83/go-md2man/v2 v2.0.0-20190314233015-f79a8a8ca69d/go.mod h1:maD7wRr/U5Z6m/iR4s+kqSMx2CaBsrgA7czyZG/E6dU=
github.com/cpuguy83/go-md2man/v2 v2.0.0/go.mod h1:maD7wRr/U5Z6m/iR4s+kqSMx2CaBsrgA7czyZG/E6dU=
github.com/davecgh/go-spew v1.1.0 h1:ZDRjVQ15GmhC3fiQ8ni8+OwkZQO4DARzQgrnXU1Liz8=
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/docker/go-units v0.4.0 h1:3uh0PgVws3nIA0Q+MwDC8yjEPf9zjRfZZWXZYDct3Tw=
github.com/docker/go-units v0.4.0/go.mod h1:fgPhTUdO+D/Jk86RDLlptpiXQzgHJF7gydDDbaIK4Dk=
github.com/elastic/gosigar v0.12.0 h1:AsdhYCJlTudhfOYQyFNgx+fIVTfrDO0V1ST0vHgiapU=
github.com/elastic/gosigar v0.12.0/go.mod h1:iXRIGg2tLnu7LBdpqzyQfGDEidKCfWcCMS0WKyPWoMs=
github.com/godbus/dbus/v5 v5.0.3 h1:ZqHaoEF7TBzh4jzPmqVhE/5A1z9of6orkAe5uHoAeME=
github.com/godbus/dbus/v5 v5.0.3/go.mod h1:xhWf0FNVPg57R7Z0UbKHbJfkEywrmjJnf7w5xrFpKfA=
github.com/gogo/protobuf v1.3.1 h1:DqDEcV5aeaTmdFBePNpYsp3FlcVH/2ISVVM9Qf8PSls=
github.com/gogo/protobuf v1.3.1/go.mod h1:SlYgWuQ5SjCEi6WLHjHCa1yvBfUnHcTbrrZtXPKa29o=
github.com/google/go-cmp v0.5.2/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/kisielk/errcheck v1.2.0/go.mod h1:/BMXB+zMLi60iA8Vv6Ksmxu/1UDYcXs4uQLJ+jE2L00=
github.com/kisielk/gotool v1.0.0/go.mod h1:XhKaO+MFFWcvkIS/tQcRk01m1F5IRFswLeQ+oQHNcck=
github.com/kr/pretty v0.1.0 h1:L/CwN0zerZDmRFUapSPitk6f+Q3+0za1rQkzVuMiMFI=
github.com/kr/pretty v0.1.0/go.mod h1:dAy3ld7l9f0ibDNOQOHHMYYIIbhfbHSm3C4ZsoJORNo=
github.com/kr/pty v1.1.1/go.mod h1:pFQYn66WHrOpPYNljwOMqo10TkYh1fy3cYio2l3bCsQ=
github.com/kr/text v0.1.0 h1:45sCR5RtlFHMR4UwH9sdQ5TC8v0qDQCHnXt+kaKSTVE=
github.com/kr/text v0.1.0/go.mod h1:4Jbv+DJW3UT/LiOwJeYQe1efqtUx/iVham/4vfdArNI=
github.com/opencontainers/runtime-spec v1.0.2 h1:UfAcuLBJB9Coz72x1hgl8O5RVzTdNiaglX6v2DM6FI0=
github.com/opencontainers/runtime-spec v1.0.2/go.mod h1:jwyrGlmzljRJv/Fgzds9SsS/C5hL+LL3ko9hs6T5lQ0=
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/raulk/clock v1.1.0 h1:dpb29+UKMbLqiU/jqIJptgLR1nn23HLgMY0sTCDza5Y=
github.com/raulk/clock v1.1.0/go.mod h1:3MpVxdZ/ODBQDxbN+kzshf5OSZwPjtMDx6BBXBmOeY0=
github.com/russross/blackfriday/v2 v2.0.1/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
github.com/shurcooL/sanitized_anchor_name v1.0.0/go.mod h1:1NzhyTcUVG4SuEtjjoZeVRXNmyL/1OwPU0+IJeTBvfc=
github.com/sirupsen/logrus v1.7.0/go.mod h1:yWOB1SBYBC5VeMP7gHvWumXLIWorT60ONWic61uBYv0=
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
github.com/stretchr/testify v1.2.2/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs=
github.com/stretchr/testify v1.4.0 h1:2E4SXV/wtOkTonXsotYi4li6zVWxYlZuYNCXe9XRJyk=
github.com/stretchr/testify v1.4.0/go.mod h1:j7eGeouHqKxXV5pUuKE4zz7dFj8WfuZ+81PSLYec5m4=
github.com/urfave/cli v1.22.2/go.mod h1:Gos4lmkARVdJ6EkW0WaNv/tZAAMe9V7XWyB60NtXRu0=
golang.org/x/sys v0.0.0-20180810173357-98c5dad5d1a0 h1:8H8QZJ30plJyIVj60H3lr8TZGIq2Fh3Cyrs/ZNg1foU=
golang.org/x/sys v0.0.0-20180810173357-98c5dad5d1a0/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190412213103-97732733099d h1:+R4KGOnez64A81RvjARKc4UT5/tI9ujCIVX+P5KiHuI=
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20191026070338-33540a1f6037/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200124204421-9fbb57f87de9 h1:1/DFK4b7JH8DmkqhUk48onnSfrPzImPoVxuomtbT2nk=
golang.org/x/sys v0.0.0-20200124204421-9fbb57f87de9/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/tools v0.0.0-20181030221726-6c7e314b6563/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405 h1:yhCVgyC4o1eVCa2tZl7eS0r+SDo693bJlVdllGtEeKM=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/check.v1 v1.0.0-20180628173108-788fd7840127 h1:qIbj1fsPNlZgppZ+VLlY7N33q108Sa+fhmuc+sWQYwY=

8
log.go
View File

@ -2,17 +2,17 @@ package watchdog
import "log"
// Logger is an interface to be implemented by custom loggers.
type Logger interface {
// logger is an interface to be implemented by custom loggers.
type logger interface {
Debugf(template string, args ...interface{})
Infof(template string, args ...interface{})
Warnf(template string, args ...interface{})
Errorf(template string, args ...interface{})
}
var _ Logger = (*stdlog)(nil)
var _ logger = (*stdlog)(nil)
// stdlog is a Logger that proxies to a standard log.Logger.
// stdlog is a logger that proxies to a standard log.logger.
type stdlog struct {
log *log.Logger
debug bool

24
sys_linux.go Normal file
View File

@ -0,0 +1,24 @@
package watchdog
import (
"github.com/containerd/cgroups"
)
func ProcessMemoryLimit() uint64 {
var (
pid = os.Getpid()
memSubsystem = cgroups.SingleSubsystem(cgroups.V1, cgroups.Memory)
)
cgroup, err := cgroups.Load(memSubsystem, cgroups.PidPath(pid))
if err != nil {
return 0
}
metrics, err := cgroup.Stat()
if err != nil {
return 0
}
if metrics.Memory == nil {
return 0
}
return metrics.Memory.HierarchicalMemoryLimit
}

7
sys_other.go Normal file
View File

@ -0,0 +1,7 @@
// +build !linux
package watchdog
func ProcessMemoryLimit() uint64 {
return 0
}

View File

@ -3,21 +3,76 @@ package watchdog
import (
"fmt"
"log"
"math"
"runtime"
"runtime/debug"
"sync"
"sync/atomic"
"time"
"github.com/elastic/gosigar"
"github.com/raulk/clock"
)
// DecimalPrecision is the rounding precision that float calculations will use.
// By default, 4 decimal places.
var DecimalPrecision = 1e4
// PolicyTempDisabled is a marker value for policies to signal that the policy
// is temporarily disabled. Use it when all hope is lost to turn around from
// significant memory pressure (such as when above an "extreme" watermark).
const PolicyTempDisabled uint64 = math.MaxUint64
// Clock can be used to inject a mock clock for testing.
var Clock = clock.New()
// The watchdog is designed to be used as a singleton; global vars are OK for
// that reason.
var (
// Logger is the logger to use. If nil, it will default to a logger that
// proxies to a standard logger using the "[watchdog]" prefix.
Logger logger = &stdlog{log: log.New(log.Writer(), "[watchdog] ", log.LstdFlags|log.Lmsgprefix)}
// Clock can be used to inject a mock clock for testing.
Clock = clock.New()
// NotifyFired, if non-nil, will be called when the policy has fired,
// prior to calling GC, even if GC is disabled.
NotifyFired func() = func() {}
)
var (
// ReadMemStats stops the world. But as of go1.9, it should only
// take ~25µs to complete.
//
// Before go1.15, calls to ReadMemStats during an ongoing GC would
// block due to the worldsema lock. As of go1.15, this was optimized
// and the runtime holds on to worldsema less during GC (only during
// sweep termination and mark termination).
//
// For users using go1.14 and earlier, if this call happens during
// GC, it will just block for longer until serviced, but it will not
// take longer in itself. No harm done.
//
// Actual benchmarks
// -----------------
//
// In Go 1.15.5, ReadMem with no ongoing GC takes ~27µs in a MBP 16
// i9 busy with another million things. During GC, it takes an
// average of less than 175µs per op.
//
// goos: darwin
// goarch: amd64
// pkg: github.com/filecoin-project/lotus/api
// BenchmarkReadMemStats-16 44530 27523 ns/op
// BenchmarkReadMemStats-16 43743 26879 ns/op
// BenchmarkReadMemStats-16 45627 26791 ns/op
// BenchmarkReadMemStats-16 44538 26219 ns/op
// BenchmarkReadMemStats-16 44958 26757 ns/op
// BenchmarkReadMemStatsWithGCContention-16 10 183733 p50-ns 211859 p90-ns 211859 p99-ns
// BenchmarkReadMemStatsWithGCContention-16 7 198765 p50-ns 314873 p90-ns 314873 p99-ns
// BenchmarkReadMemStatsWithGCContention-16 10 195151 p50-ns 311408 p90-ns 311408 p99-ns
// BenchmarkReadMemStatsWithGCContention-16 10 217279 p50-ns 295308 p90-ns 295308 p99-ns
// BenchmarkReadMemStatsWithGCContention-16 10 167054 p50-ns 327072 p90-ns 327072 p99-ns
// PASS
//
// See: https://github.com/golang/go/issues/19812
// See: https://github.com/prometheus/client_golang/issues/403
memstatsFn = runtime.ReadMemStats
sysmemFn = (*gosigar.Mem).Get
)
var (
// ErrAlreadyStarted is returned when the user tries to start the watchdog more than once.
@ -26,239 +81,313 @@ var (
const (
// stateUnstarted represents an unstarted state.
stateUnstarted int64 = iota
// stateStarted represents a started state.
stateStarted
stateUnstarted int32 = iota
// stateRunning represents an operational state.
stateRunning
)
// watchdog is a global singleton watchdog.
var watchdog struct {
state int64
config MemConfig
// _watchdog is a global singleton watchdog.
var _watchdog struct {
lk sync.Mutex
state int32
scope UtilizationType
closing chan struct{}
wg sync.WaitGroup
}
// ScopeType defines the scope of the utilisation that we'll apply the limit to.
type ScopeType int
// UtilizationType is the utilization metric in use.
type UtilizationType int
const (
// ScopeSystem specifies that the policy compares against actual used
// UtilizationSystem specifies that the policy compares against actual used
// system memory.
ScopeSystem ScopeType = iota
// ScopeHeap specifies that the policy compares against heap used.
ScopeHeap
UtilizationSystem UtilizationType = iota
// UtilizationHeap specifies that the policy compares against heap used.
UtilizationHeap
)
// PolicyInput is the object that's passed to a policy when evaluating it.
type PolicyInput struct {
Scope ScopeType
Limit uint64
MemStats *runtime.MemStats
SysStats *gosigar.Mem
GCTrigger bool // is this a GC trigger?
Logger Logger
}
// PolicyCtor is a policy constructor.
type PolicyCtor func(limit uint64) (Policy, error)
// Policy encapsulates the logic that the watchdog will run on every tick.
// Policy is polled by the watchdog to determine the next utilisation at which
// a GC should be forced.
type Policy interface {
// Evaluate determines whether the policy should fire. It receives the
// limit (either guessed or manually set), go runtime memory stats, and
// system memory stats, amongst other things. It returns whether the policy
// has fired or not.
Evaluate(input PolicyInput) (trigger bool)
// Evaluate determines when the next GC should take place. It receives the
// current usage, and it returns the next usage at which to trigger GC.
Evaluate(scope UtilizationType, used uint64) (next uint64)
}
type MemConfig struct {
// Scope is the scope at which the limit will be applied.
Scope ScopeType
// HeapDriven starts a singleton heap-driven watchdog.
//
// The heap-driven watchdog adjusts GOGC dynamically after every GC, to honour
// the policy requirements.
//
// A zero-valued limit will error.
func HeapDriven(limit uint64, policyCtor PolicyCtor) (err error, stopFn func()) {
_watchdog.lk.Lock()
defer _watchdog.lk.Unlock()
// Limit is the memory available to this process. If zero, we will fall
// back to querying the system total memory via SIGAR.
Limit uint64
// Resolution is the interval at which the watchdog will retrieve memory
// stats and invoke the Policy.
Resolution time.Duration
// Policy sets the firing policy of this watchdog.
Policy Policy
// NotifyFired, if non-nil, will be called when the policy has fired,
// prior to calling GC, even if GC is disabled.
NotifyFired func()
// NotifyOnly, if true, will cause the watchdog to only notify via the
// callbacks, without triggering actual GC.
NotifyOnly bool
// Logger is the logger to use. If nil, it will default to a logger that
// proxies to a standard logger using the "[watchdog]" prefix.
Logger Logger
}
// Memory starts the singleton memory watchdog with the provided configuration.
func Memory(config MemConfig) (err error, stop func()) {
if !atomic.CompareAndSwapInt64(&watchdog.state, stateUnstarted, stateStarted) {
if _watchdog.state != stateUnstarted {
return ErrAlreadyStarted, nil
}
if config.Logger == nil {
config.Logger = &stdlog{log: log.New(log.Writer(), "[watchdog] ", log.LstdFlags|log.Lmsgprefix)}
if limit == 0 {
return fmt.Errorf("cannot use zero limit for heap-driven watchdog"), nil
}
// if the user didn't provide a limit, get the total memory.
if config.Limit == 0 {
var mem gosigar.Mem
if err := mem.Get(); err != nil {
return fmt.Errorf("failed to get system memory limit via SIGAR: %w", err), nil
policy, err := policyCtor(limit)
if err != nil {
return fmt.Errorf("failed to construct policy with limit %d: %w", limit, err), nil
}
_watchdog.state = stateRunning
_watchdog.scope = UtilizationHeap
_watchdog.closing = make(chan struct{})
gcTriggered := make(chan struct{}, 16)
setupGCSentinel(gcTriggered)
_watchdog.wg.Add(1)
go func() {
defer _watchdog.wg.Done()
// get the initial effective GOGC; guess it's 100 (default), and restore
// it to whatever it actually was. This works because SetGCPercent
// returns the previous value.
originalGOGC := debug.SetGCPercent(debug.SetGCPercent(100))
currGOGC := originalGOGC
var memstats runtime.MemStats
for {
select {
case <-gcTriggered:
NotifyFired()
case <-_watchdog.closing:
return
}
// recompute the next trigger.
memstatsFn(&memstats)
// heapMarked is the amount of heap that was marked as live by GC.
// it is inferred from our current GOGC and the new target picked.
heapMarked := uint64(float64(memstats.NextGC) / (1 + float64(currGOGC)/100))
if heapMarked == 0 {
// this shouldn't happen, but just in case; avoiding a div by 0.
Logger.Warnf("heap-driven watchdog: inferred zero heap marked; skipping evaluation")
continue
}
// evaluate the policy.
next := policy.Evaluate(UtilizationHeap, memstats.HeapAlloc)
// calculate how much to set GOGC to honour the next trigger point.
// next=PolicyTempDisabled value would make currGOGC extremely high,
// greater than originalGOGC, and therefore we'd restore originalGOGC.
currGOGC = int(((float64(next) / float64(heapMarked)) - float64(1)) * 100)
if currGOGC >= originalGOGC {
Logger.Debugf("heap watchdog: requested GOGC percent higher than default; capping at default; requested: %d; default: %d", currGOGC, originalGOGC)
currGOGC = originalGOGC
} else {
if currGOGC < 1 {
currGOGC = 1
}
Logger.Infof("heap watchdog: setting GOGC percent: %d", currGOGC)
}
debug.SetGCPercent(currGOGC)
memstatsFn(&memstats)
Logger.Infof("heap watchdog stats: heap_alloc: %d, heap_marked: %d, next_gc: %d, policy_next_gc: %d, gogc: %d",
memstats.HeapAlloc, heapMarked, memstats.NextGC, next, currGOGC)
}
config.Limit = mem.Total
}
}()
watchdog.config = config
watchdog.closing = make(chan struct{})
watchdog.wg.Add(1)
go watch()
return nil, stopMemory
return nil, stop
}
func watch() {
var (
lk sync.Mutex // guards gcTriggered channel, which is drained and flipped to nil on closure.
gcTriggered = make(chan struct{}, 16)
// SystemDriven starts a singleton system-driven watchdog.
//
// The system-driven watchdog keeps a threshold, above which GC will be forced.
// The watchdog polls the system utilization at the specified frequency. When
// the actual utilization exceeds the threshold, a GC is forced.
//
// This threshold is calculated by querying the policy every time that GC runs,
// either triggered by the runtime, or forced by us.
func SystemDriven(limit uint64, frequency time.Duration, policyCtor PolicyCtor) (err error, stopFn func()) {
_watchdog.lk.Lock()
defer _watchdog.lk.Unlock()
memstats runtime.MemStats
sysmem gosigar.Mem
config = watchdog.config
)
if _watchdog.state != stateUnstarted {
return ErrAlreadyStarted, nil
}
if limit == 0 {
limit, err = determineLimit(false)
if err != nil {
return err, nil
}
}
policy, err := policyCtor(limit)
if err != nil {
return fmt.Errorf("failed to construct policy with limit %d: %w", limit, err), nil
}
_watchdog.state = stateRunning
_watchdog.scope = UtilizationSystem
_watchdog.closing = make(chan struct{})
gcTriggered := make(chan struct{}, 16)
setupGCSentinel(gcTriggered)
_watchdog.wg.Add(1)
go func() {
defer _watchdog.wg.Done()
var (
memstats runtime.MemStats
sysmem gosigar.Mem
threshold uint64
)
renewThreshold := func() {
// get the current usage.
if err := sysmemFn(&sysmem); err != nil {
Logger.Warnf("failed to obtain system memory stats; err: %s", err)
return
}
// calculate the threshold.
threshold = policy.Evaluate(UtilizationSystem, sysmem.ActualUsed)
}
// initialize the threshold.
renewThreshold()
// initialize an empty timer.
timer := Clock.Timer(0)
stopTimer := func() {
if !timer.Stop() {
<-timer.C
}
}
for {
timer.Reset(frequency)
select {
case <-timer.C:
// get the current usage.
if err := sysmemFn(&sysmem); err != nil {
Logger.Warnf("failed to obtain system memory stats; err: %s", err)
continue
}
actual := sysmem.ActualUsed
if actual < threshold {
// nothing to do.
continue
}
// trigger GC; this will emit a gcTriggered event which we'll
// consume next to readjust the threshold.
Logger.Warnf("system-driven watchdog triggering GC; %d/%d bytes (used/threshold)", actual, threshold)
forceGC(&memstats)
case <-gcTriggered:
NotifyFired()
renewThreshold()
stopTimer()
case <-_watchdog.closing:
stopTimer()
return
}
}
}()
return nil, stop
}
func determineLimit(restrictByProcess bool) (uint64, error) {
// TODO.
// if restrictByProcess {
// if pmem := ProcessMemoryLimit(); pmem > 0 {
// Logger.Infof("watchdog using process limit: %d bytes", pmem)
// return pmem, nil
// }
// Logger.Infof("watchdog was unable to determine process limit; falling back to total system memory")
// }
// populate initial utilisation and system stats.
var sysmem gosigar.Mem
if err := sysmemFn(&sysmem); err != nil {
return 0, fmt.Errorf("failed to get system memory stats: %w", err)
}
return sysmem.Total, nil
}
// forceGC forces a manual GC.
func forceGC(memstats *runtime.MemStats) {
Logger.Infof("watchdog is forcing GC")
// it's safe to assume that the finalizer will attempt to run before
// runtime.GC() returns because runtime.GC() waits for the sweep phase to
// finish before returning.
// finalizers are run in the sweep phase.
start := time.Now()
runtime.GC()
took := time.Since(start)
memstatsFn(memstats)
Logger.Infof("watchdog-triggered GC finished; took: %s; current heap allocated: %d bytes", took, memstats.HeapAlloc)
}
func setupGCSentinel(gcTriggered chan struct{}) {
logger := Logger
// this non-zero sized struct is used as a sentinel to detect when a GC
// run has finished, by setting and resetting a finalizer on it.
// it essentially creates a GC notification "flywheel"; every GC will
// trigger this finalizer, which will reset itself so it gets notified
// of the next GC, breaking the cycle when the watchdog is stopped.
type sentinel struct{ a *int }
var sentinelObj sentinel
var finalizer func(o *sentinel)
finalizer = func(o *sentinel) {
lk.Lock()
defer lk.Unlock()
select {
case gcTriggered <- struct{}{}:
default:
config.Logger.Warnf("failed to queue gc trigger; channel backlogged")
}
runtime.SetFinalizer(o, finalizer)
}
finalizer(&sentinelObj)
_watchdog.lk.Lock()
defer _watchdog.lk.Unlock()
defer watchdog.wg.Done()
for {
var eventIsGc bool
select {
case <-Clock.After(config.Resolution):
// exit select.
case <-gcTriggered:
eventIsGc = true
// exit select.
case <-watchdog.closing:
runtime.SetFinalizer(&sentinelObj, nil) // clear the sentinel finalizer.
lk.Lock()
ch := gcTriggered
gcTriggered = nil
lk.Unlock()
// close and drain
close(ch)
for range ch {
}
if _watchdog.state != stateRunning {
// this GC triggered after the watchdog was stopped; ignore
// and do not reset the finalizer.
return
}
// ReadMemStats stops the world. But as of go1.9, it should only
// take ~25µs to complete.
//
// Before go1.15, calls to ReadMemStats during an ongoing GC would
// block due to the worldsema lock. As of go1.15, this was optimized
// and the runtime holds on to worldsema less during GC (only during
// sweep termination and mark termination).
//
// For users using go1.14 and earlier, if this call happens during
// GC, it will just block for longer until serviced, but it will not
// take longer in itself. No harm done.
//
// Actual benchmarks
// -----------------
//
// In Go 1.15.5, ReadMem with no ongoing GC takes ~27µs in a MBP 16
// i9 busy with another million things. During GC, it takes an
// average of less than 175µs per op.
//
// goos: darwin
// goarch: amd64
// pkg: github.com/filecoin-project/lotus/api
// BenchmarkReadMemStats-16 44530 27523 ns/op
// BenchmarkReadMemStats-16 43743 26879 ns/op
// BenchmarkReadMemStats-16 45627 26791 ns/op
// BenchmarkReadMemStats-16 44538 26219 ns/op
// BenchmarkReadMemStats-16 44958 26757 ns/op
// BenchmarkReadMemStatsWithGCContention-16 10 183733 p50-ns 211859 p90-ns 211859 p99-ns
// BenchmarkReadMemStatsWithGCContention-16 7 198765 p50-ns 314873 p90-ns 314873 p99-ns
// BenchmarkReadMemStatsWithGCContention-16 10 195151 p50-ns 311408 p90-ns 311408 p99-ns
// BenchmarkReadMemStatsWithGCContention-16 10 217279 p50-ns 295308 p90-ns 295308 p99-ns
// BenchmarkReadMemStatsWithGCContention-16 10 167054 p50-ns 327072 p90-ns 327072 p99-ns
// PASS
//
// See: https://github.com/golang/go/issues/19812
// See: https://github.com/prometheus/client_golang/issues/403
// reset so it triggers on the next GC.
runtime.SetFinalizer(o, finalizer)
if eventIsGc {
config.Logger.Infof("watchdog after GC")
}
runtime.ReadMemStats(&memstats)
if err := sysmem.Get(); err != nil {
config.Logger.Warnf("failed to obtain system memory stats; err: %s", err)
}
trigger := config.Policy.Evaluate(PolicyInput{
Scope: config.Scope,
Limit: config.Limit,
MemStats: &memstats,
SysStats: &sysmem,
GCTrigger: eventIsGc,
Logger: config.Logger,
})
if !trigger {
continue
}
config.Logger.Infof("watchdog policy fired")
if f := config.NotifyFired; f != nil {
f()
}
if !config.NotifyOnly {
config.Logger.Infof("watchdog is triggering GC")
start := time.Now()
runtime.GC()
runtime.ReadMemStats(&memstats)
config.Logger.Infof("watchdog-triggered GC finished; took: %s; current heap allocated: %d bytes", time.Since(start), memstats.HeapAlloc)
select {
case gcTriggered <- struct{}{}:
default:
logger.Warnf("failed to queue gc trigger; channel backlogged")
}
}
runtime.SetFinalizer(&sentinel{}, finalizer) // start the flywheel.
}
func stopMemory() {
if !atomic.CompareAndSwapInt64(&watchdog.state, stateStarted, stateUnstarted) {
func stop() {
_watchdog.lk.Lock()
defer _watchdog.lk.Unlock()
if _watchdog.state != stateRunning {
return
}
close(watchdog.closing)
watchdog.wg.Wait()
close(_watchdog.closing)
_watchdog.wg.Wait()
_watchdog.state = stateUnstarted
}

View File

@ -1,92 +1,150 @@
package watchdog
import (
"fmt"
"log"
"os"
"runtime"
"runtime/debug"
"testing"
"time"
"github.com/elastic/gosigar"
"github.com/raulk/clock"
"github.com/stretchr/testify/require"
)
type testPolicy struct {
ch chan *PolicyInput
trigger bool
// These integration tests are a hugely non-deterministic, but necessary to get
// good coverage and confidence. The Go runtime makes its own pacing decisions,
// and those may vary based on machine, OS, kernel memory management, other
// running programs, exogenous memory pressure, and Go runtime versions.
//
// The assertions we use here are lax, but should be sufficient to serve as a
// reasonable litmus test of whether the watchdog is doing what it's supposed
// to or not.
var (
limit uint64 = 64 << 20 // 64MiB.
)
func init() {
Logger = &stdlog{log: log.New(os.Stdout, "[watchdog test] ", log.LstdFlags|log.Lmsgprefix), debug: true}
}
var _ Policy = (*testPolicy)(nil)
func TestControl(t *testing.T) {
debug.SetGCPercent(100)
func (t *testPolicy) Evaluate(input PolicyInput) (trigger bool) {
t.ch <- &input
return t.trigger
}
// retain 1MiB every iteration, up to 100MiB (beyond heap limit!).
var retained [][]byte
for i := 0; i < 100; i++ {
b := make([]byte, 1*1024*1024)
for i := range b {
b[i] = byte(i)
}
retained = append(retained, b)
}
func TestWatchdog(t *testing.T) {
clk := clock.NewMock()
Clock = clk
tp := &testPolicy{ch: make(chan *PolicyInput, 1)}
notifyCh := make(chan struct{}, 1)
err, stop := Memory(MemConfig{
Scope: ScopeHeap,
Limit: 100,
Resolution: 10 * time.Second,
Policy: tp,
NotifyFired: func() { notifyCh <- struct{}{} },
})
require.NoError(t, err)
defer stop()
time.Sleep(500 * time.Millisecond) // wait til the watchdog goroutine starts.
clk.Add(10 * time.Second)
pi := <-tp.ch
require.EqualValues(t, 100, pi.Limit)
require.NotNil(t, pi.MemStats)
require.NotNil(t, pi.SysStats)
require.Equal(t, ScopeHeap, pi.Scope)
require.Len(t, notifyCh, 0)
for _, b := range retained {
for i := range b {
b[i] = byte(i)
}
}
var ms runtime.MemStats
runtime.ReadMemStats(&ms)
require.EqualValues(t, 0, ms.NumGC)
// now fire.
tp.trigger = true
clk.Add(10 * time.Second)
pi = <-tp.ch
require.EqualValues(t, 100, pi.Limit)
require.NotNil(t, pi.MemStats)
require.NotNil(t, pi.SysStats)
require.Equal(t, ScopeHeap, pi.Scope)
time.Sleep(500 * time.Millisecond) // wait until the watchdog runs.
require.Len(t, notifyCh, 1)
runtime.ReadMemStats(&ms)
require.EqualValues(t, 1, ms.NumGC)
require.LessOrEqual(t, ms.NumGC, uint32(5)) // a maximum of 8 GCs should've happened.
require.Zero(t, ms.NumForcedGC) // no forced GCs.
}
func TestDoubleClose(t *testing.T) {
defer func() {
if r := recover(); r != nil {
t.Fatal(r)
}
}()
func TestHeapDriven(t *testing.T) {
// we can't mock ReadMemStats, because we're relying on the go runtime to
// enforce the GC run, and the go runtime won't use our mock. Therefore, we
// need to do the actual thing.
debug.SetGCPercent(100)
tp := &testPolicy{ch: make(chan *PolicyInput, 1)}
clk := clock.NewMock()
Clock = clk
err, stop := Memory(MemConfig{
Scope: ScopeHeap,
Limit: 100,
Resolution: 10 * time.Second,
Policy: tp,
})
observations := make([]*runtime.MemStats, 0, 100)
NotifyFired = func() {
var ms runtime.MemStats
runtime.ReadMemStats(&ms)
observations = append(observations, &ms)
}
// limit is 64MiB.
err, stopFn := HeapDriven(limit, NewAdaptivePolicy(0.5))
require.NoError(t, err)
stop()
stop()
defer stopFn()
time.Sleep(500 * time.Millisecond) // give time for the watchdog to init.
// retain 1MiB every iteration, up to 100MiB (beyond heap limit!).
var retained [][]byte
for i := 0; i < 100; i++ {
retained = append(retained, make([]byte, 1*1024*1024))
}
for _, o := range observations {
fmt.Println("heap alloc:", o.HeapAlloc, "next gc:", o.NextGC, "gc count:", o.NumGC, "forced gc:", o.NumForcedGC)
}
var ms runtime.MemStats
runtime.ReadMemStats(&ms)
require.GreaterOrEqual(t, ms.NumGC, uint32(9)) // over 9 GCs should've taken place.
}
func TestSystemDriven(t *testing.T) {
debug.SetGCPercent(100)
clk := clock.NewMock()
Clock = clk
// mock the system reporting.
var actualUsed uint64
sysmemFn = func(g *gosigar.Mem) error {
g.ActualUsed = actualUsed
return nil
}
// limit is 64MiB.
err, stopFn := SystemDriven(limit, 5*time.Second, NewAdaptivePolicy(0.5))
require.NoError(t, err)
defer stopFn()
time.Sleep(200 * time.Millisecond) // give time for the watchdog to init.
notifyCh := make(chan struct{}, 1)
NotifyFired = func() {
notifyCh <- struct{}{}
}
// first tick; used = 0.
clk.Add(5 * time.Second)
time.Sleep(200 * time.Millisecond)
require.Len(t, notifyCh, 0) // no GC has taken place.
// second tick; used = just over 50%; will trigger GC.
actualUsed = (limit / 2) + 1
clk.Add(5 * time.Second)
time.Sleep(200 * time.Millisecond)
require.Len(t, notifyCh, 1)
<-notifyCh
// third tick; just below 75%; no GC.
actualUsed = uint64(float64(limit)*0.75) - 1
clk.Add(5 * time.Second)
time.Sleep(200 * time.Millisecond)
require.Len(t, notifyCh, 0)
// fourth tick; 75% exactly; will trigger GC.
actualUsed = uint64(float64(limit)*0.75) + 1
clk.Add(5 * time.Second)
time.Sleep(200 * time.Millisecond)
require.Len(t, notifyCh, 1)
<-notifyCh
var ms runtime.MemStats
runtime.ReadMemStats(&ms)
require.GreaterOrEqual(t, ms.NumForcedGC, uint32(2))
}

View File

@ -1,142 +1,42 @@
package watchdog
import (
"math"
"time"
)
// WatermarkPolicy is a watchdog firing policy that triggers when watermarks are
// surpassed in the increasing direction.
//
// For example, a policy configured with the watermarks 0.50, 0.75, 0.80, and
// 0.99 will trigger at most once, and only once, each time that a watermark
// is surpassed upwards.
//
// Even if utilisation pierces through several watermarks at once between two
// subsequent calls to Evaluate, the policy will fire only once.
//
// It is possible to suppress the watermark policy from firing too often by
// setting a Silence period. When non-zero, if a watermark is surpassed within
// the Silence window (using the last GC timestamp as basis), that event will
// not immediately trigger firing. Instead, the policy will wait until the
// silence period is over, and only then will it fire if utilisation is still
// beyond that watermark.
//
// At last, if an EmergencyWatermark is set, when utilisation is above that
// level, the Silence period will be ignored and the policy will fire
// persistenly, as long as utilisation stays above that watermark.
type WatermarkPolicy struct {
// Watermarks are the percentual amounts of limit. The policy will panic if
// Watermarks is zero length.
Watermarks []float64
// EmergencyWatermark is a watermark that, when surpassed, puts this
// watchdog in emergency mode. During emergency mode, the system is
// considered to be under significant memory pressure, and the Quiesce
// period is not honoured.
EmergencyWatermark float64
// Silence is the quiet period the watchdog will honour except when in
// emergency mode.
Silence time.Duration
// internal state.
thresholds []uint64
currIdx int // idx of the current watermark.
lastIdx int
firedLast bool
silenceNs int64
initialized bool
// NewWatermarkPolicy creates a watchdog policy that schedules GC at concrete
// watermarks. When queried, it will determine the next trigger point based
// on the current utilisation. If the last watermark is surpassed,
// the policy will be disarmed. It is recommended to set an extreme watermark
// as the last element (e.g. 0.99) to prevent the policy from disarming too soon.
func NewWatermarkPolicy(watermarks ...float64) PolicyCtor {
return func(limit uint64) (Policy, error) {
p := new(watermarkPolicy)
p.limit = limit
p.thresholds = make([]uint64, 0, len(watermarks))
for _, m := range watermarks {
p.thresholds = append(p.thresholds, uint64(float64(limit)*m))
}
Logger.Infof("initialized watermark watchdog policy; watermarks: %v; thresholds: %v", p.watermarks, p.thresholds)
return p, nil
}
}
var _ Policy = (*WatermarkPolicy)(nil)
func (w *WatermarkPolicy) Evaluate(input PolicyInput) (trigger bool) {
if !w.initialized {
w.thresholds = make([]uint64, 0, len(w.Watermarks))
for _, m := range w.Watermarks {
w.thresholds = append(w.thresholds, uint64(float64(input.Limit)*m))
}
w.silenceNs = w.Silence.Nanoseconds()
w.lastIdx = len(w.Watermarks) - 1
w.initialized = true
input.Logger.Infof("initialized watermark watchdog policy; watermarks: %v; emergency watermark: %f, thresholds: %v; silence period: %s",
w.Watermarks, w.EmergencyWatermark, w.thresholds, w.Silence)
}
// determine the value to compare utilisation against.
var actual uint64
switch input.Scope {
case ScopeSystem:
actual = input.SysStats.ActualUsed
case ScopeHeap:
actual = input.MemStats.HeapAlloc
}
input.Logger.Debugf("watermark policy: evaluating; curr_watermark: %f, utilization: %d/%d/%d (used/curr_threshold/limit)",
w.Watermarks[w.currIdx], actual, w.thresholds[w.currIdx], input.Limit)
// determine whether we're past the emergency watermark; if we are, we fire
// unconditionally. Disabled if 0.
if w.EmergencyWatermark > 0 {
currPercentage := math.Round((float64(actual)/float64(input.Limit))*DecimalPrecision) / DecimalPrecision // round float.
if pastEmergency := currPercentage >= w.EmergencyWatermark; pastEmergency {
emergencyThreshold := uint64(float64(input.Limit) / w.EmergencyWatermark)
input.Logger.Infof("watermark policy: emergency trigger; perc: %f/%f (%% used/%% emergency), utilization: %d/%d/%d (used/emergency/limit), used: %d, limit: %d, ",
currPercentage, w.EmergencyWatermark, actual, emergencyThreshold, input.Limit)
return true
}
}
// short-circuit if within the silencing period.
if silencing := w.silenceNs > 0; silencing {
now := Clock.Now().UnixNano()
if elapsed := now - int64(input.MemStats.LastGC); elapsed < w.silenceNs {
input.Logger.Debugf("watermark policy: silenced")
return false
}
}
// check if the the utilisation is below our current threshold; try
// to downscale before returning false.
if actual < w.thresholds[w.currIdx] {
for w.currIdx > 0 {
if actual >= w.thresholds[w.currIdx-1] {
break
}
w.firedLast = false
w.currIdx--
}
return false
}
// we are above our current watermark, but if this is the last watermark and
// we've already fired, suppress the firing.
if w.currIdx == w.lastIdx && w.firedLast {
input.Logger.Debugf("watermark policy: last watermark already fired; skipping")
return false
}
// if our value is above the last threshold, record the last threshold as
// our current watermark, and also the fact that we've already fired for
// it.
if actual >= w.thresholds[w.lastIdx] {
w.currIdx = w.lastIdx
w.firedLast = true
input.Logger.Infof("watermark policy triggering: %f watermark surpassed", w.Watermarks[w.currIdx])
return true
}
input.Logger.Infof("watermark policy triggering: %f watermark surpassed", w.Watermarks[w.currIdx])
// we are triggering; update the current watermark, upscaling it to the
// next threshold.
for w.currIdx < w.lastIdx {
w.currIdx++
if actual < w.thresholds[w.currIdx] {
break
}
}
return true
type watermarkPolicy struct {
// watermarks are the percentual amounts of limit.
watermarks []float64
// thresholds are the absolute trigger points of this policy.
thresholds []uint64
limit uint64
}
var _ Policy = (*watermarkPolicy)(nil)
func (w *watermarkPolicy) Evaluate(_ UtilizationType, used uint64) (next uint64) {
Logger.Debugf("watermark policy: evaluating; utilization: %d/%d (used/limit)", used, w.limit)
var i int
for ; i < len(w.thresholds); i++ {
t := w.thresholds[i]
if used < t {
return t
}
}
// we reached the maximum threshold, so we disable this policy.
return PolicyTempDisabled
}

View File

@ -1,288 +1,54 @@
package watchdog
import (
"log"
"os"
"runtime"
"testing"
"time"
"github.com/elastic/gosigar"
"github.com/raulk/clock"
"github.com/stretchr/testify/require"
)
var (
limit uint64 = 64 << 20 // 64MiB.
firstWatermark = 0.50
secondWatermark = 0.75
thirdWatermark = 0.80
emergencyWatermark = 0.90
logger = &stdlog{log: log.New(os.Stdout, "[watchdog test] ", log.LstdFlags|log.Lmsgprefix), debug: true}
watermarks = []float64{0.50, 0.75, 0.80}
thresholds = func() []uint64 {
var ret []uint64
for _, w := range watermarks {
ret = append(ret, uint64(float64(limit)*w))
}
return ret
}()
)
func TestProgressiveWatermarksSystem(t *testing.T) {
func TestProgressiveWatermarks(t *testing.T) {
clk := clock.NewMock()
Clock = clk
p := WatermarkPolicy{
Watermarks: []float64{firstWatermark, secondWatermark, thirdWatermark},
EmergencyWatermark: emergencyWatermark,
}
p, err := NewWatermarkPolicy(watermarks...)(limit)
require.NoError(t, err)
require.False(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit)*firstWatermark) - 1},
}))
// at zero
next := p.Evaluate(UtilizationSystem, uint64(0))
require.EqualValues(t, thresholds[0], next)
// trigger the first watermark.
require.True(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(time.Now().UnixNano())},
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit) * firstWatermark)},
}))
// before the watermark.
next = p.Evaluate(UtilizationSystem, uint64(float64(limit)*watermarks[0])-1)
require.EqualValues(t, thresholds[0], next)
// this won't fire because we're still on the same watermark.
for i := 0; i < 100; i++ {
require.False(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(time.Now().UnixNano())},
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit) * firstWatermark)},
}))
}
// exactly at the watermark; gives us the next watermark, as the watchdodg would've
// taken care of triggering the first watermark.
next = p.Evaluate(UtilizationSystem, uint64(float64(limit)*watermarks[0]))
require.EqualValues(t, thresholds[1], next)
// now let's move to the second watermark.
require.True(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(time.Now().UnixNano())},
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit) * secondWatermark)},
}))
// after the watermark gives us the next watermark.
next = p.Evaluate(UtilizationSystem, uint64(float64(limit)*watermarks[0])+1)
require.EqualValues(t, thresholds[1], next)
// this won't fire because we're still on the same watermark.
for i := 0; i < 100; i++ {
require.False(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(0)},
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit) * secondWatermark)},
}))
}
// last watermark; disable the policy.
next = p.Evaluate(UtilizationSystem, uint64(float64(limit)*watermarks[2]))
require.EqualValues(t, PolicyTempDisabled, next)
// now let's move to the third and last watermark.
require.True(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(0)},
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit) * thirdWatermark)},
}))
next = p.Evaluate(UtilizationSystem, uint64(float64(limit)*watermarks[2]+1))
require.EqualValues(t, PolicyTempDisabled, next)
// this won't fire because we're still on the same watermark.
for i := 0; i < 100; i++ {
require.False(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(0)},
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit) * thirdWatermark)},
}))
}
}
func TestProgressiveWatermarksHeap(t *testing.T) {
clk := clock.NewMock()
Clock = clk
p := WatermarkPolicy{
Watermarks: []float64{firstWatermark, secondWatermark, thirdWatermark},
}
// now back up step by step, check that all of them fire.
for _, wm := range []float64{firstWatermark, secondWatermark, thirdWatermark} {
require.True(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeHeap,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(0), HeapAlloc: uint64(float64(limit) * wm)},
SysStats: &gosigar.Mem{ActualUsed: 0},
}))
}
}
func TestDownscalingWatermarks_Reentrancy(t *testing.T) {
clk := clock.NewMock()
Clock = clk
p := WatermarkPolicy{
Watermarks: []float64{firstWatermark, secondWatermark, thirdWatermark},
}
// crank all the way to the top.
require.True(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(0)},
SysStats: &gosigar.Mem{ActualUsed: limit},
}))
// now back down, checking that none of the boundaries fire.
for _, wm := range []float64{thirdWatermark, secondWatermark, firstWatermark} {
require.False(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(0)},
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit)*wm - 1)},
}))
}
// now back up step by step, check that all of them fire.
for _, wm := range []float64{firstWatermark, secondWatermark, thirdWatermark} {
require.True(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(0)},
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit)*wm + 1)},
}))
}
// check the top does not fire because it already fired.
for i := 0; i < 100; i++ {
require.False(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(0)},
SysStats: &gosigar.Mem{ActualUsed: limit},
}))
}
}
func TestEmergencyWatermark(t *testing.T) {
clk := clock.NewMock()
Clock = clk
p := WatermarkPolicy{
Watermarks: []float64{firstWatermark},
EmergencyWatermark: emergencyWatermark,
Silence: 1 * time.Minute,
}
// every tick triggers, even within the silence period.
for i := 0; i < 100; i++ {
require.True(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(clk.Now().UnixNano())},
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit) * emergencyWatermark)},
}))
}
}
func TestJumpWatermark(t *testing.T) {
clk := clock.NewMock()
Clock = clk
p := WatermarkPolicy{
Watermarks: []float64{firstWatermark, secondWatermark, thirdWatermark},
}
// check that jumping to the top only fires once.
require.True(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(0)},
SysStats: &gosigar.Mem{ActualUsed: limit},
}))
for i := 0; i < 100; i++ {
require.False(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(0)},
SysStats: &gosigar.Mem{ActualUsed: limit},
}))
}
}
func TestSilencePeriod(t *testing.T) {
clk := clock.NewMock()
Clock = clk
var (
limit uint64 = 64 << 20 // 64MiB.
firstWatermark = 0.50
secondWatermark = 0.75
thirdWatermark = 0.80
)
p := WatermarkPolicy{
Watermarks: []float64{firstWatermark, secondWatermark, thirdWatermark},
Silence: 1 * time.Minute,
}
// going above the first threshold, but within silencing period, so nothing happens.
for i := 0; i < 100; i++ {
require.False(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(clk.Now().UnixNano())},
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit) * firstWatermark)},
}))
}
// now outside the silencing period, we do fire.
clk.Add(time.Minute)
require.True(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: 0},
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit) * firstWatermark)},
}))
// but not the second time.
require.False(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: 0},
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit) * firstWatermark)},
}))
// now let's go up inside the silencing period, nothing happens.
require.False(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(clk.Now().UnixNano())},
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit) * secondWatermark)},
}))
// same thing, outside the silencing period should trigger.
require.True(t, p.Evaluate(PolicyInput{
Logger: logger,
Scope: ScopeSystem,
Limit: limit,
MemStats: &runtime.MemStats{LastGC: uint64(0)},
SysStats: &gosigar.Mem{ActualUsed: uint64(float64(limit) * secondWatermark)},
}))
next = p.Evaluate(UtilizationSystem, limit)
require.EqualValues(t, PolicyTempDisabled, next)
}