go-waku/waku/v2/node/waku_payload.go
2021-04-21 20:09:37 -04:00

421 lines
12 KiB
Go

package node
import (
"crypto/aes"
"crypto/cipher"
"crypto/ecdsa"
crand "crypto/rand"
"encoding/binary"
mrand "math/rand"
"errors"
"strconv"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/status-im/go-waku/waku/v2/protocol/pb"
)
type KeyKind string
const (
Symmetric KeyKind = "Symmetric"
Asymmetric KeyKind = "Asymmetric"
None KeyKind = "None"
)
// The message to encode
type Payload struct {
Data []byte // Raw message payload
Padding []byte // Used to align data size, since data size alone might reveal important metainformation.
Key *KeyInfo // Contains the type of encryption to apply and the private key to use for signing the message
}
// The decoded payload of a received message.
type DecodedPayload struct {
Data []byte // Decoded message payload
Padding []byte // Used to align data size, since data size alone might reveal important metainformation.
PubKey *ecdsa.PublicKey // The public key that signed the payload
Signature []byte
}
type KeyInfo struct {
Kind KeyKind // Indicates the type of encryption to use
SymKey []byte // If the encryption is Symmetric, a Symmetric key must be specified
PubKey ecdsa.PublicKey // If the encryption is Asymmetric, the public key of the message receptor must be specified
PrivKey *ecdsa.PrivateKey // Set a privkey if the message requires a signature
}
func (payload Payload) Encode(version uint32) ([]byte, error) {
switch version {
case 0:
return payload.Data, nil
case 1:
data, err := payload.v1Data()
if err != nil {
return nil, err
}
if payload.Key.PrivKey != nil {
data, err = sign(data, *payload.Key.PrivKey)
if err != nil {
return nil, err
}
}
switch payload.Key.Kind {
case Symmetric:
encoded, err := encryptSymmetric(data, payload.Key.SymKey)
if err != nil {
return nil, errors.New("Couldn't encrypt using symmetric key")
} else {
return encoded, nil
}
case Asymmetric:
encoded, err := encryptAsymmetric(data, &payload.Key.PubKey)
if err != nil {
return nil, errors.New("Couldn't encrypt using asymmetric key")
} else {
return encoded, nil
}
case None:
return nil, errors.New("Non supported KeyKind")
}
}
return nil, errors.New("Unsupported WakuMessage version")
}
func DecodePayload(message *pb.WakuMessage, keyInfo *KeyInfo) (*DecodedPayload, error) {
switch message.Version {
case uint32(0):
return &DecodedPayload{Data: message.Payload}, nil
case uint32(1):
switch keyInfo.Kind {
case Symmetric:
if keyInfo.SymKey == nil {
return nil, errors.New("Symmetric key is required")
}
decodedData, err := decryptSymmetric(message.Payload, keyInfo.SymKey)
if err != nil {
return nil, errors.New("Couldn't decrypt using symmetric key")
}
decodedPayload, err := validateAndParse(decodedData)
if err != nil {
return nil, err
}
return decodedPayload, nil
case Asymmetric:
if keyInfo.PrivKey == nil {
return nil, errors.New("Private key is required")
}
decodedData, err := decryptAsymmetric(message.Payload, keyInfo.PrivKey)
if err != nil {
return nil, errors.New("Couldn't decrypt using asymmetric key")
}
decodedPayload, err := validateAndParse(decodedData)
if err != nil {
return nil, err
}
return decodedPayload, nil
case None:
return nil, errors.New("Non supported KeyKind")
}
}
return nil, errors.New("Unsupported WakuMessage version")
}
const aesNonceLength = 12
const aesKeyLength = 32
const signatureFlag = byte(4)
const flagsLength = 1
const padSizeLimit = 256 // just an arbitrary number, could be changed without breaking the protocol
const signatureLength = 65
const sizeMask = byte(3)
// Decrypts a message with a topic key, using AES-GCM-256.
// nonce size should be 12 bytes (see cipher.gcmStandardNonceSize).
func decryptSymmetric(payload []byte, key []byte) ([]byte, error) {
// symmetric messages are expected to contain the 12-byte nonce at the end of the payload
if len(payload) < aesNonceLength {
return nil, errors.New("missing salt or invalid payload in symmetric message")
}
salt := payload[len(payload)-aesNonceLength:]
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
aesgcm, err := cipher.NewGCM(block)
if err != nil {
return nil, err
}
decrypted, err := aesgcm.Open(nil, salt, payload[:len(payload)-aesNonceLength], nil)
if err != nil {
return nil, err
}
return decrypted, nil
}
// Decrypts an encrypted payload with a private key.
func decryptAsymmetric(payload []byte, key *ecdsa.PrivateKey) ([]byte, error) {
decrypted, err := ecies.ImportECDSA(key).Decrypt(payload, nil, nil)
if err != nil {
return nil, err
}
return decrypted, err
}
// ValidatePublicKey checks the format of the given public key.
func validatePublicKey(k *ecdsa.PublicKey) bool {
return k != nil && k.X != nil && k.Y != nil && k.X.Sign() != 0 && k.Y.Sign() != 0
}
// Encrypts and returns with a public key.
func encryptAsymmetric(rawPayload []byte, key *ecdsa.PublicKey) ([]byte, error) {
if !validatePublicKey(key) {
return nil, errors.New("invalid public key provided for asymmetric encryption")
}
encrypted, err := ecies.Encrypt(crand.Reader, ecies.ImportECDSAPublic(key), rawPayload, nil, nil)
if err == nil {
return encrypted, nil
}
return nil, err
}
// Encrypts a payload with a topic key, using AES-GCM-256.
// nonce size should be 12 bytes (see cipher.gcmStandardNonceSize).
func encryptSymmetric(rawPayload []byte, key []byte) ([]byte, error) {
if !validateDataIntegrity(key, aesKeyLength) {
return nil, errors.New("invalid key provided for symmetric encryption, size: " + strconv.Itoa(len(key)))
}
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
aesgcm, err := cipher.NewGCM(block)
if err != nil {
return nil, err
}
salt, err := generateSecureRandomData(aesNonceLength) // never use more than 2^32 random nonces with a given key
if err != nil {
return nil, err
}
encrypted := aesgcm.Seal(nil, salt, rawPayload, nil)
return append(encrypted, salt...), nil
}
// validateDataIntegrity returns false if the data have the wrong or contains all zeros,
// which is the simplest and the most common bug.
func validateDataIntegrity(k []byte, expectedSize int) bool {
if len(k) != expectedSize {
return false
}
if expectedSize > 3 && containsOnlyZeros(k) {
return false
}
return true
}
// containsOnlyZeros checks if the data contain only zeros.
func containsOnlyZeros(data []byte) bool {
for _, b := range data {
if b != 0 {
return false
}
}
return true
}
// generateSecureRandomData generates random data where extra security is required.
// The purpose of this function is to prevent some bugs in software or in hardware
// from delivering not-very-random data. This is especially useful for AES nonce,
// where true randomness does not really matter, but it is very important to have
// a unique nonce for every message.
func generateSecureRandomData(length int) ([]byte, error) {
x := make([]byte, length)
y := make([]byte, length)
res := make([]byte, length)
_, err := crand.Read(x)
if err != nil {
return nil, err
} else if !validateDataIntegrity(x, length) {
return nil, errors.New("crypto/rand failed to generate secure random data")
}
_, err = mrand.Read(y)
if err != nil {
return nil, err
} else if !validateDataIntegrity(y, length) {
return nil, errors.New("math/rand failed to generate secure random data")
}
for i := 0; i < length; i++ {
res[i] = x[i] ^ y[i]
}
if !validateDataIntegrity(res, length) {
return nil, errors.New("failed to generate secure random data")
}
return res, nil
}
func isMessageSigned(flags byte) bool {
return (flags & signatureFlag) != 0
}
// sign calculates the cryptographic signature for the message,
// also setting the sign flag.
func sign(data []byte, privKey ecdsa.PrivateKey) ([]byte, error) {
result := make([]byte, len(data))
copy(result, data)
if isMessageSigned(result[0]) {
// this should not happen, but no reason to panic
return result, nil
}
result[0] |= signatureFlag // it is important to set this flag before signing
hash := crypto.Keccak256(result)
signature, err := crypto.Sign(hash, &privKey)
if err != nil {
result[0] &= (0xFF ^ signatureFlag) // clear the flag
return nil, err
}
result = append(result, signature...)
return result, nil
}
func (payload Payload) v1Data() ([]byte, error) {
const payloadSizeFieldMaxSize = 4
result := make([]byte, 1, flagsLength+payloadSizeFieldMaxSize+len(payload.Data)+len(payload.Padding)+signatureLength+padSizeLimit)
result[0] = 0 // set all the flags to zero
result = payload.addPayloadSizeField(result)
result = append(result, payload.Data...)
result, err := payload.appendPadding(result)
return result, err
}
// addPayloadSizeField appends the auxiliary field containing the size of payload
func (payload Payload) addPayloadSizeField(input []byte) []byte {
fieldSize := getSizeOfPayloadSizeField(payload.Data)
field := make([]byte, 4)
binary.LittleEndian.PutUint32(field, uint32(len(payload.Data)))
field = field[:fieldSize]
result := append(input, field...)
result[0] |= byte(fieldSize)
return result
}
// getSizeOfPayloadSizeField returns the number of bytes necessary to encode the size of payload
func getSizeOfPayloadSizeField(payload []byte) int {
s := 1
for i := len(payload); i >= 256; i /= 256 {
s++
}
return s
}
// appendPadding appends the padding specified in params.
// If no padding is provided in params, then random padding is generated.
func (payload Payload) appendPadding(input []byte) ([]byte, error) {
if len(payload.Padding) != 0 {
// padding data was provided by the Dapp, just use it as is
result := append(input, payload.Padding...)
return result, nil
}
rawSize := flagsLength + getSizeOfPayloadSizeField(payload.Data) + len(payload.Data)
if payload.Key.PrivKey != nil {
rawSize += signatureLength
}
odd := rawSize % padSizeLimit
paddingSize := padSizeLimit - odd
pad := make([]byte, paddingSize)
_, err := crand.Read(pad)
if err != nil {
return nil, err
}
if !validateDataIntegrity(pad, paddingSize) {
return nil, errors.New("failed to generate random padding of size " + strconv.Itoa(paddingSize))
}
result := append(input, pad...)
return result, nil
}
func validateAndParse(input []byte) (*DecodedPayload, error) {
end := len(input)
if end < 1 {
return nil, errors.New("invalid message length")
}
msg := new(DecodedPayload)
if isMessageSigned(input[0]) {
end -= signatureLength
if end <= 1 {
return nil, errors.New("invalid message length")
}
msg.Signature = input[end : end+signatureLength]
var err error
msg.PubKey, err = msg.sigToPubKey(input)
if err != nil {
return nil, err
}
}
beg := 1
payloadSize := 0
sizeOfPayloadSizeField := int(input[0] & sizeMask) // number of bytes indicating the size of payload
if sizeOfPayloadSizeField != 0 {
if end < beg+sizeOfPayloadSizeField {
return nil, errors.New("invalid message length")
}
payloadSize = int(bytesToUintLittleEndian(input[beg : beg+sizeOfPayloadSizeField]))
beg += sizeOfPayloadSizeField
if beg+payloadSize > end {
return nil, errors.New("invalid message length")
}
msg.Data = input[beg : beg+payloadSize]
}
beg += payloadSize
msg.Padding = input[beg:end]
return msg, nil
}
// SigToPubKey returns the public key associated to the message's
// signature.
func (p *DecodedPayload) sigToPubKey(input []byte) (*ecdsa.PublicKey, error) {
defer func() { _ = recover() }() // in case of invalid signature
hash := crypto.Keccak256(input[0 : len(input)-signatureLength])
pub, err := crypto.SigToPub(hash, p.Signature)
if err != nil {
return nil, err
}
return pub, nil
}
// bytesToUintLittleEndian converts the slice to 64-bit unsigned integer.
func bytesToUintLittleEndian(b []byte) (res uint64) {
mul := uint64(1)
for i := 0; i < len(b); i++ {
res += uint64(b[i]) * mul
mul *= 256
}
return res
}