go-waku/waku/v2/peermanager/fastest_peer_selector.go

175 lines
3.5 KiB
Go

package peermanager
import (
"context"
"errors"
"sort"
"sync"
"time"
"github.com/libp2p/go-libp2p/core/host"
"github.com/libp2p/go-libp2p/core/network"
"github.com/libp2p/go-libp2p/core/peer"
"github.com/libp2p/go-libp2p/p2p/protocol/ping"
"github.com/waku-org/go-waku/logging"
"github.com/waku-org/go-waku/waku/v2/utils"
"go.uber.org/zap"
)
type FastestPeerSelector struct {
sync.RWMutex
host host.Host
logger *zap.Logger
}
func NewFastestPeerSelector(logger *zap.Logger) *FastestPeerSelector {
return &FastestPeerSelector{
logger: logger.Named("rtt-cache"),
}
}
func (r *FastestPeerSelector) SetHost(h host.Host) {
r.host = h
}
func (r *FastestPeerSelector) PingPeer(ctx context.Context, peer peer.ID) (time.Duration, error) {
if peer == r.host.ID() {
return 0, errors.New("can't ping yourself")
}
ctx, cancel := context.WithTimeout(ctx, 7*time.Second)
defer cancel()
select {
case <-ctx.Done():
return 0, ctx.Err()
case result := <-ping.Ping(ctx, r.host, peer):
r.Lock()
defer r.Unlock()
if result.Error == nil {
return result.RTT, nil
} else {
r.logger.Debug("could not ping", logging.HostID("peer", peer), zap.Error(result.Error))
return 0, result.Error
}
}
}
func (r *FastestPeerSelector) FastestPeer(ctx context.Context, peers peer.IDSlice) (peer.ID, error) {
var peerRTT []pingResult
var peerRTTMutex sync.Mutex
wg := sync.WaitGroup{}
pingCh := make(chan peer.ID)
pinged := make(map[peer.ID]struct{})
go func() {
defer utils.LogOnPanic()
// Ping any peer with no latency recorded
for peerToPing := range pingCh {
go func(p peer.ID) {
defer utils.LogOnPanic()
defer wg.Done()
rtt := time.Hour
result, err := r.PingPeer(ctx, p)
if err == nil {
rtt = result
}
peerRTTMutex.Lock()
peerRTT = append(peerRTT, pingResult{
peerID: p,
rtt: rtt,
connectedness: r.host.Network().Connectedness(p),
})
peerRTTMutex.Unlock()
}(peerToPing)
}
}()
for _, p := range peers {
latency := r.host.Peerstore().LatencyEWMA(p)
if latency == 0 {
wg.Add(1)
pinged[p] = struct{}{} // To avoid double pings
pingCh <- p
} else {
peerRTTMutex.Lock()
peerRTT = append(peerRTT, pingResult{
peerID: p,
rtt: latency,
connectedness: r.host.Network().Connectedness(p),
})
peerRTTMutex.Unlock()
}
}
// Wait for pings to be done (if any)
wg.Wait()
close(pingCh)
sort.Sort(pingSort(peerRTT))
for _, p := range peerRTT {
if p.rtt == time.Hour {
break
}
// Make sure peer is reachable
_, exists := pinged[p.peerID] // Did we just ping the peer?
if !exists {
_, err := r.PingPeer(ctx, p.peerID)
if err != nil {
continue
} else {
if p.rtt != time.Hour {
return p.peerID, nil
}
}
} else {
if p.rtt != time.Hour {
return p.peerID, nil
}
}
}
return "", ErrNoPeersAvailable
}
type pingResult struct {
peerID peer.ID
rtt time.Duration
connectedness network.Connectedness
}
type pingSort []pingResult
func (a pingSort) Len() int {
return len(a)
}
func (a pingSort) Swap(i, j int) {
a[i], a[j] = a[j], a[i]
}
var connectednessPriority map[network.Connectedness]int
func init() {
// Closer to 0 is prefered
connectednessPriority = map[network.Connectedness]int{
network.Connected: 1,
network.NotConnected: 2,
network.Limited: 3,
}
}
func (a pingSort) Less(i, j int) bool {
return connectednessPriority[a[i].connectedness] < connectednessPriority[a[j].connectedness] && a[i].rtt < a[j].rtt
}