go-waku/waku/v2/protocol/rln/waku_rln_relay.go
2022-10-19 15:54:02 -04:00

433 lines
13 KiB
Go

package rln
import (
"bytes"
"context"
"crypto/ecdsa"
"errors"
"math"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/ethclient"
proto "github.com/golang/protobuf/proto"
pubsub "github.com/libp2p/go-libp2p-pubsub"
"github.com/libp2p/go-libp2p/core/peer"
"github.com/status-im/go-waku/waku/v2/protocol/pb"
"github.com/status-im/go-waku/waku/v2/protocol/relay"
"github.com/status-im/go-waku/waku/v2/utils"
r "github.com/status-im/go-zerokit-rln/rln"
"go.uber.org/zap"
)
// the maximum clock difference between peers in seconds
const MAX_CLOCK_GAP_SECONDS = 20
// maximum allowed gap between the epochs of messages' RateLimitProofs
const MAX_EPOCH_GAP = int64(MAX_CLOCK_GAP_SECONDS / r.EPOCH_UNIT_SECONDS)
type RegistrationHandler = func(tx *types.Transaction)
type WakuRLNRelay struct {
ctx context.Context
membershipKeyPair *r.MembershipKeyPair
// membershipIndex denotes the index of a leaf in the Merkle tree
// that contains the pk of the current peer
// this index is used to retrieve the peer's authentication path
membershipIndex r.MembershipIndex
membershipContractAddress common.Address
ethClientAddress string
// ethAccountPrivateKey is required for signing transactions
// TODO may need to erase this ethAccountPrivateKey when is not used
// TODO may need to make ethAccountPrivateKey mandatory
ethAccountPrivateKey *ecdsa.PrivateKey
ethClient *ethclient.Client
RLN *r.RLN
// pubsubTopic is the topic for which rln relay is mounted
pubsubTopic string
contentTopic string
// the log of nullifiers and Shamir shares of the past messages grouped per epoch
nullifierLogLock sync.RWMutex
nullifierLog map[r.Epoch][]r.ProofMetadata
registrationHandler RegistrationHandler
log *zap.Logger
}
func (rln *WakuRLNRelay) Stop() {
if rln.ethClient != nil {
rln.ethClient.Close()
}
}
func StaticSetup(rlnRelayMemIndex r.MembershipIndex) ([]r.IDCommitment, r.MembershipKeyPair, r.MembershipIndex, error) {
// static group
groupKeys := r.STATIC_GROUP_KEYS
groupSize := r.STATIC_GROUP_SIZE
// validate the user-supplied membership index
if rlnRelayMemIndex >= r.MembershipIndex(groupSize) {
return nil, r.MembershipKeyPair{}, 0, errors.New("wrong membership index")
}
// prepare the outputs from the static group keys
// create a sequence of MembershipKeyPairs from the group keys (group keys are in string format)
groupKeyPairs, err := toMembershipKeyPairs(groupKeys)
if err != nil {
return nil, r.MembershipKeyPair{}, 0, errors.New("invalid data on group keypairs")
}
// extract id commitment keys
var groupOpt []r.IDCommitment
for _, c := range groupKeyPairs {
groupOpt = append(groupOpt, c.IDCommitment)
}
// user selected membership key pair
memKeyPairOpt := groupKeyPairs[rlnRelayMemIndex]
memIndexOpt := rlnRelayMemIndex
return groupOpt, memKeyPairOpt, memIndexOpt, nil
}
func (rln *WakuRLNRelay) HasDuplicate(msg *pb.WakuMessage) (bool, error) {
// returns true if there is another message in the `nullifierLog` of the `rlnPeer` with the same
// epoch and nullifier as `msg`'s epoch and nullifier but different Shamir secret shares
// otherwise, returns false
if msg == nil {
return false, errors.New("nil message")
}
msgProof := ToRateLimitProof(msg)
// extract the proof metadata of the supplied `msg`
proofMD := r.ProofMetadata{
Nullifier: msgProof.Nullifier,
ShareX: msgProof.ShareX,
ShareY: msgProof.ShareY,
}
rln.nullifierLogLock.RLock()
proofs, ok := rln.nullifierLog[msgProof.Epoch]
rln.nullifierLogLock.RUnlock()
// check if the epoch exists
if !ok {
return false, nil
}
for _, p := range proofs {
if p.Equals(proofMD) {
// there is an identical record, ignore rhe mag
return false, nil
}
}
// check for a message with the same nullifier but different secret shares
matched := false
for _, it := range proofs {
if bytes.Equal(it.Nullifier[:], proofMD.Nullifier[:]) && (!bytes.Equal(it.ShareX[:], proofMD.ShareX[:]) || !bytes.Equal(it.ShareY[:], proofMD.ShareY[:])) {
matched = true
break
}
}
return matched, nil
}
func (rln *WakuRLNRelay) updateLog(msg *pb.WakuMessage) (bool, error) {
// extracts the `ProofMetadata` of the supplied messages `msg` and
// saves it in the `nullifierLog` of the `rlnPeer`
if msg == nil {
return false, errors.New("nil message")
}
msgProof := ToRateLimitProof(msg)
proofMD := r.ProofMetadata{
Nullifier: msgProof.Nullifier,
ShareX: msgProof.ShareX,
ShareY: msgProof.ShareY,
}
rln.nullifierLogLock.Lock()
defer rln.nullifierLogLock.Unlock()
proofs, ok := rln.nullifierLog[msgProof.Epoch]
// check if the epoch exists
if !ok {
rln.nullifierLog[msgProof.Epoch] = []r.ProofMetadata{proofMD}
return true, nil
}
// check if an identical record exists
for _, p := range proofs {
if p.Equals(proofMD) {
return true, nil
}
}
// add proofMD to the log
proofs = append(proofs, proofMD)
rln.nullifierLog[msgProof.Epoch] = proofs
return true, nil
}
func (rln *WakuRLNRelay) ValidateMessage(msg *pb.WakuMessage, optionalTime *time.Time) (MessageValidationResult, error) {
// validate the supplied `msg` based on the waku-rln-relay routing protocol i.e.,
// the `msg`'s epoch is within MAX_EPOCH_GAP of the current epoch
// the `msg` has valid rate limit proof
// the `msg` does not violate the rate limit
// `timeOption` indicates Unix epoch time (fractional part holds sub-seconds)
// if `timeOption` is supplied, then the current epoch is calculated based on that
if msg == nil {
return MessageValidationResult_Unknown, errors.New("nil message")
}
// checks if the `msg`'s epoch is far from the current epoch
// it corresponds to the validation of rln external nullifier
var epoch r.Epoch
if optionalTime != nil {
epoch = r.CalcEpoch(*optionalTime)
} else {
// get current rln epoch
epoch = r.GetCurrentEpoch()
}
msgProof := ToRateLimitProof(msg)
if msgProof == nil {
// message does not contain a proof
rln.log.Debug("invalid message: message does not contain a proof")
return MessageValidationResult_Invalid, nil
}
// calculate the gaps and validate the epoch
gap := r.Diff(epoch, msgProof.Epoch)
if int64(math.Abs(float64(gap))) > MAX_EPOCH_GAP {
// message's epoch is too old or too ahead
// accept messages whose epoch is within +-MAX_EPOCH_GAP from the current epoch
rln.log.Debug("invalid message: epoch gap exceeds a threshold", zap.Int64("gap", gap))
return MessageValidationResult_Invalid, nil
}
// verify the proof
contentTopicBytes := []byte(msg.ContentTopic)
input := append(msg.Payload, contentTopicBytes...)
// TODO: set window of roots
roots := [][32]byte{}
valid, err := rln.RLN.VerifyWithRoots(input, *msgProof, roots)
if err != nil {
rln.log.Debug("could not verify proof", zap.Error(err))
return MessageValidationResult_Invalid, nil
}
if !valid {
// invalid proof
rln.log.Debug("Invalid proof")
return MessageValidationResult_Invalid, nil
}
// check if double messaging has happened
hasDup, err := rln.HasDuplicate(msg)
if err != nil {
rln.log.Debug("validation error", zap.Error(err))
return MessageValidationResult_Unknown, err
}
if hasDup {
rln.log.Debug("spam received")
return MessageValidationResult_Spam, nil
}
// insert the message to the log
// the result of `updateLog` is discarded because message insertion is guaranteed by the implementation i.e.,
// it will never error out
_, err = rln.updateLog(msg)
if err != nil {
return MessageValidationResult_Unknown, err
}
rln.log.Debug("message is valid")
return MessageValidationResult_Valid, nil
}
func (rln *WakuRLNRelay) AppendRLNProof(msg *pb.WakuMessage, senderEpochTime time.Time) error {
// returns error if it could not create and append a `RateLimitProof` to the supplied `msg`
// `senderEpochTime` indicates the number of seconds passed since Unix epoch. The fractional part holds sub-seconds.
// The `epoch` field of `RateLimitProof` is derived from the provided `senderEpochTime` (using `calcEpoch()`)
if msg == nil {
return errors.New("nil message")
}
if rln.membershipKeyPair == nil {
return errors.New("No keypair setup")
}
input := toRLNSignal(msg)
proof, err := rln.RLN.GenerateProof(input, *rln.membershipKeyPair, rln.membershipIndex, r.CalcEpoch(senderEpochTime))
if err != nil {
return err
}
msg.RateLimitProof = &pb.RateLimitProof{
Proof: proof.Proof[:],
MerkleRoot: proof.MerkleRoot[:],
Epoch: proof.Epoch[:],
ShareX: proof.ShareX[:],
ShareY: proof.ShareY[:],
Nullifier: proof.Nullifier[:],
RlnIdentifier: proof.RLNIdentifier[:],
}
return nil
}
func (r *WakuRLNRelay) MembershipKeyPair() *r.MembershipKeyPair {
return r.membershipKeyPair
}
func (r *WakuRLNRelay) MembershipIndex() r.MembershipIndex {
return r.membershipIndex
}
func (r *WakuRLNRelay) MembershipContractAddress() common.Address {
return r.membershipContractAddress
}
type SpamHandler = func(message *pb.WakuMessage) error
// this function sets a validator for the waku messages published on the supplied pubsubTopic and contentTopic
// if contentTopic is empty, then validation takes place for All the messages published on the given pubsubTopic
// the message validation logic is according to https://rfc.vac.dev/spec/17/
func (r *WakuRLNRelay) addValidator(
relay *relay.WakuRelay,
pubsubTopic string,
contentTopic string,
spamHandler SpamHandler) error {
validator := func(ctx context.Context, peerID peer.ID, message *pubsub.Message) bool {
r.log.Debug("rln-relay topic validator called")
wakuMessage := &pb.WakuMessage{}
if err := proto.Unmarshal(message.Data, wakuMessage); err != nil {
r.log.Debug("could not unmarshal message")
return true
}
// check the contentTopic
if (wakuMessage.ContentTopic != "") && (contentTopic != "") && (wakuMessage.ContentTopic != contentTopic) {
r.log.Debug("content topic did not match", zap.String("contentTopic", contentTopic))
return true
}
// validate the message
validationRes, err := r.ValidateMessage(wakuMessage, nil)
if err != nil {
r.log.Debug("validating message", zap.Error(err))
return false
}
switch validationRes {
case MessageValidationResult_Valid:
r.log.Debug("message verified",
zap.String("contentTopic", wakuMessage.ContentTopic),
zap.Binary("epoch", wakuMessage.RateLimitProof.Epoch),
zap.Int("timestamp", int(wakuMessage.Timestamp)),
zap.Binary("payload", wakuMessage.Payload),
zap.Any("proof", wakuMessage.RateLimitProof),
)
return true
case MessageValidationResult_Invalid:
r.log.Debug("message could not be verified",
zap.String("contentTopic", wakuMessage.ContentTopic),
zap.Binary("epoch", wakuMessage.RateLimitProof.Epoch),
zap.Int("timestamp", int(wakuMessage.Timestamp)),
zap.Binary("payload", wakuMessage.Payload),
zap.Any("proof", wakuMessage.RateLimitProof),
)
return false
case MessageValidationResult_Spam:
r.log.Debug("spam message found",
zap.String("contentTopic", wakuMessage.ContentTopic),
zap.Binary("epoch", wakuMessage.RateLimitProof.Epoch),
zap.Int("timestamp", int(wakuMessage.Timestamp)),
zap.Binary("payload", wakuMessage.Payload),
zap.Any("proof", wakuMessage.RateLimitProof),
)
if spamHandler != nil {
if err := spamHandler(wakuMessage); err != nil {
r.log.Error("executing spam handler", zap.Error(err))
}
}
return false
default:
r.log.Debug("unhandled validation result", zap.Int("validationResult", int(validationRes)))
return false
}
}
return relay.PubSub().RegisterTopicValidator(pubsubTopic, validator)
}
func toMembershipKeyPairs(groupKeys [][]string) ([]r.MembershipKeyPair, error) {
// groupKeys is sequence of membership key tuples in the form of (identity key, identity commitment) all in the hexadecimal format
// the ToMembershipKeyPairs proc populates a sequence of MembershipKeyPairs using the supplied groupKeys
groupKeyPairs := []r.MembershipKeyPair{}
for _, pair := range groupKeys {
idKey, err := utils.DecodeHexString(pair[0])
if err != nil {
return nil, err
}
idCommitment, err := utils.DecodeHexString(pair[1])
if err != nil {
return nil, err
}
groupKeyPairs = append(groupKeyPairs, r.MembershipKeyPair{IDKey: r.IDKey(r.Bytes32(idKey)), IDCommitment: r.IDCommitment(r.Bytes32(idCommitment))})
}
return groupKeyPairs, nil
}
func toRLNSignal(wakuMessage *pb.WakuMessage) []byte {
if wakuMessage == nil {
return []byte{}
}
contentTopicBytes := []byte(wakuMessage.ContentTopic)
return append(wakuMessage.Payload, contentTopicBytes...)
}
func ToRateLimitProof(msg *pb.WakuMessage) *r.RateLimitProof {
if msg == nil || msg.RateLimitProof == nil {
return nil
}
result := &r.RateLimitProof{
Proof: r.ZKSNARK(r.Bytes128(msg.RateLimitProof.Proof)),
MerkleRoot: r.MerkleNode(r.Bytes32(msg.RateLimitProof.MerkleRoot)),
Epoch: r.Epoch(r.Bytes32(msg.RateLimitProof.Epoch)),
ShareX: r.MerkleNode(r.Bytes32(msg.RateLimitProof.ShareX)),
ShareY: r.MerkleNode(r.Bytes32(msg.RateLimitProof.ShareY)),
Nullifier: r.Nullifier(r.Bytes32(msg.RateLimitProof.Nullifier)),
RLNIdentifier: r.RLNIdentifier(r.Bytes32(msg.RateLimitProof.RlnIdentifier)),
}
return result
}