go-libp2p/p2p/net/swarm/swarm_dial.go

639 lines
18 KiB
Go

package swarm
import (
"context"
"errors"
"fmt"
"sync"
"time"
"github.com/libp2p/go-libp2p/core/canonicallog"
"github.com/libp2p/go-libp2p/core/network"
"github.com/libp2p/go-libp2p/core/peer"
"github.com/libp2p/go-libp2p/core/peerstore"
"github.com/libp2p/go-libp2p/core/transport"
"github.com/lucas-clemente/quic-go"
ma "github.com/multiformats/go-multiaddr"
madns "github.com/multiformats/go-multiaddr-dns"
manet "github.com/multiformats/go-multiaddr/net"
)
// The maximum number of address resolution steps we'll perform for a single
// peer (for all addresses).
const maxAddressResolution = 32
// Diagram of dial sync:
//
// many callers of Dial() synched w. dials many addrs results to callers
// ----------------------\ dialsync use earliest /--------------
// -----------------------\ |----------\ /----------------
// ------------------------>------------<------- >---------<-----------------
// -----------------------| \----x \----------------
// ----------------------| \-----x \---------------
// any may fail if no addr at end
// retry dialAttempt x
var (
// ErrDialBackoff is returned by the backoff code when a given peer has
// been dialed too frequently
ErrDialBackoff = errors.New("dial backoff")
// ErrDialToSelf is returned if we attempt to dial our own peer
ErrDialToSelf = errors.New("dial to self attempted")
// ErrNoTransport is returned when we don't know a transport for the
// given multiaddr.
ErrNoTransport = errors.New("no transport for protocol")
// ErrAllDialsFailed is returned when connecting to a peer has ultimately failed
ErrAllDialsFailed = errors.New("all dials failed")
// ErrNoAddresses is returned when we fail to find any addresses for a
// peer we're trying to dial.
ErrNoAddresses = errors.New("no addresses")
// ErrNoGoodAddresses is returned when we find addresses for a peer but
// can't use any of them.
ErrNoGoodAddresses = errors.New("no good addresses")
// ErrGaterDisallowedConnection is returned when the gater prevents us from
// forming a connection with a peer.
ErrGaterDisallowedConnection = errors.New("gater disallows connection to peer")
)
// DialAttempts governs how many times a goroutine will try to dial a given peer.
// Note: this is down to one, as we have _too many dials_ atm. To add back in,
// add loop back in Dial(.)
const DialAttempts = 1
// ConcurrentFdDials is the number of concurrent outbound dials over transports
// that consume file descriptors
const ConcurrentFdDials = 160
// DefaultPerPeerRateLimit is the number of concurrent outbound dials to make
// per peer
var DefaultPerPeerRateLimit = 8
// dialbackoff is a struct used to avoid over-dialing the same, dead peers.
// Whenever we totally time out on a peer (all three attempts), we add them
// to dialbackoff. Then, whenevers goroutines would _wait_ (dialsync), they
// check dialbackoff. If it's there, they don't wait and exit promptly with
// an error. (the single goroutine that is actually dialing continues to
// dial). If a dial is successful, the peer is removed from backoff.
// Example:
//
// for {
// if ok, wait := dialsync.Lock(p); !ok {
// if backoff.Backoff(p) {
// return errDialFailed
// }
// <-wait
// continue
// }
// defer dialsync.Unlock(p)
// c, err := actuallyDial(p)
// if err != nil {
// dialbackoff.AddBackoff(p)
// continue
// }
// dialbackoff.Clear(p)
// }
//
// DialBackoff is a type for tracking peer dial backoffs.
//
// * It's safe to use its zero value.
// * It's thread-safe.
// * It's *not* safe to move this type after using.
type DialBackoff struct {
entries map[peer.ID]map[string]*backoffAddr
lock sync.RWMutex
}
type backoffAddr struct {
tries int
until time.Time
}
func (db *DialBackoff) init(ctx context.Context) {
if db.entries == nil {
db.entries = make(map[peer.ID]map[string]*backoffAddr)
}
go db.background(ctx)
}
func (db *DialBackoff) background(ctx context.Context) {
ticker := time.NewTicker(BackoffMax)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
db.cleanup()
}
}
}
// Backoff returns whether the client should backoff from dialing
// peer p at address addr
func (db *DialBackoff) Backoff(p peer.ID, addr ma.Multiaddr) (backoff bool) {
db.lock.Lock()
defer db.lock.Unlock()
ap, found := db.entries[p][string(addr.Bytes())]
return found && time.Now().Before(ap.until)
}
// BackoffBase is the base amount of time to backoff (default: 5s).
var BackoffBase = time.Second * 5
// BackoffCoef is the backoff coefficient (default: 1s).
var BackoffCoef = time.Second
// BackoffMax is the maximum backoff time (default: 5m).
var BackoffMax = time.Minute * 5
// AddBackoff lets other nodes know that we've entered backoff with
// peer p, so dialers should not wait unnecessarily. We still will
// attempt to dial with one goroutine, in case we get through.
//
// Backoff is not exponential, it's quadratic and computed according to the
// following formula:
//
// BackoffBase + BakoffCoef * PriorBackoffs^2
//
// Where PriorBackoffs is the number of previous backoffs.
func (db *DialBackoff) AddBackoff(p peer.ID, addr ma.Multiaddr) {
saddr := string(addr.Bytes())
db.lock.Lock()
defer db.lock.Unlock()
bp, ok := db.entries[p]
if !ok {
bp = make(map[string]*backoffAddr, 1)
db.entries[p] = bp
}
ba, ok := bp[saddr]
if !ok {
bp[saddr] = &backoffAddr{
tries: 1,
until: time.Now().Add(BackoffBase),
}
return
}
backoffTime := BackoffBase + BackoffCoef*time.Duration(ba.tries*ba.tries)
if backoffTime > BackoffMax {
backoffTime = BackoffMax
}
ba.until = time.Now().Add(backoffTime)
ba.tries++
}
// Clear removes a backoff record. Clients should call this after a
// successful Dial.
func (db *DialBackoff) Clear(p peer.ID) {
db.lock.Lock()
defer db.lock.Unlock()
delete(db.entries, p)
}
func (db *DialBackoff) cleanup() {
db.lock.Lock()
defer db.lock.Unlock()
now := time.Now()
for p, e := range db.entries {
good := false
for _, backoff := range e {
backoffTime := BackoffBase + BackoffCoef*time.Duration(backoff.tries*backoff.tries)
if backoffTime > BackoffMax {
backoffTime = BackoffMax
}
if now.Before(backoff.until.Add(backoffTime)) {
good = true
break
}
}
if !good {
delete(db.entries, p)
}
}
}
// DialPeer connects to a peer.
//
// The idea is that the client of Swarm does not need to know what network
// the connection will happen over. Swarm can use whichever it choses.
// This allows us to use various transport protocols, do NAT traversal/relay,
// etc. to achieve connection.
func (s *Swarm) DialPeer(ctx context.Context, p peer.ID) (network.Conn, error) {
// Avoid typed nil issues.
c, err := s.dialPeer(ctx, p)
if err != nil {
return nil, err
}
return c, nil
}
// internal dial method that returns an unwrapped conn
//
// It is gated by the swarm's dial synchronization systems: dialsync and
// dialbackoff.
func (s *Swarm) dialPeer(ctx context.Context, p peer.ID) (*Conn, error) {
log.Debugw("dialing peer", "from", s.local, "to", p)
err := p.Validate()
if err != nil {
return nil, err
}
if p == s.local {
return nil, ErrDialToSelf
}
// check if we already have an open (usable) connection first, or can't have a usable
// connection.
conn, err := s.bestAcceptableConnToPeer(ctx, p)
if conn != nil || err != nil {
return conn, err
}
if s.gater != nil && !s.gater.InterceptPeerDial(p) {
log.Debugf("gater disallowed outbound connection to peer %s", p.Pretty())
return nil, &DialError{Peer: p, Cause: ErrGaterDisallowedConnection}
}
// apply the DialPeer timeout
ctx, cancel := context.WithTimeout(ctx, network.GetDialPeerTimeout(ctx))
defer cancel()
conn, err = s.dsync.Dial(ctx, p)
if err == nil {
// Ensure we connected to the correct peer.
// This was most likely already checked by the security protocol, but it doesn't hurt do it again here.
if conn.RemotePeer() != p {
conn.Close()
log.Errorw("Handshake failed to properly authenticate peer", "authenticated", conn.RemotePeer(), "expected", p)
return nil, fmt.Errorf("unexpected peer")
}
return conn, nil
}
log.Debugf("network for %s finished dialing %s", s.local, p)
if ctx.Err() != nil {
// Context error trumps any dial errors as it was likely the ultimate cause.
return nil, ctx.Err()
}
if s.ctx.Err() != nil {
// Ok, so the swarm is shutting down.
return nil, ErrSwarmClosed
}
return nil, err
}
// dialWorkerLoop synchronizes and executes concurrent dials to a single peer
func (s *Swarm) dialWorkerLoop(p peer.ID, reqch <-chan dialRequest) {
w := newDialWorker(s, p, reqch)
w.loop()
}
func (s *Swarm) addrsForDial(ctx context.Context, p peer.ID) ([]ma.Multiaddr, error) {
peerAddrs := s.peers.Addrs(p)
if len(peerAddrs) == 0 {
return nil, ErrNoAddresses
}
peerAddrsAfterTransportResolved := make([]ma.Multiaddr, 0, len(peerAddrs))
for _, a := range peerAddrs {
tpt := s.TransportForDialing(a)
resolver, ok := tpt.(transport.Resolver)
if ok {
resolvedAddrs, err := resolver.Resolve(ctx, a)
if err != nil {
log.Warnf("Failed to resolve multiaddr %s by transport %v: %v", a, tpt, err)
continue
}
peerAddrsAfterTransportResolved = append(peerAddrsAfterTransportResolved, resolvedAddrs...)
} else {
peerAddrsAfterTransportResolved = append(peerAddrsAfterTransportResolved, a)
}
}
// Resolve dns or dnsaddrs
resolved, err := s.resolveAddrs(ctx, peer.AddrInfo{
ID: p,
Addrs: peerAddrsAfterTransportResolved,
})
if err != nil {
return nil, err
}
goodAddrs := s.filterKnownUndialables(p, resolved)
if forceDirect, _ := network.GetForceDirectDial(ctx); forceDirect {
goodAddrs = ma.FilterAddrs(goodAddrs, s.nonProxyAddr)
}
if len(goodAddrs) == 0 {
return nil, ErrNoGoodAddresses
}
s.peers.AddAddrs(p, goodAddrs, peerstore.TempAddrTTL)
return goodAddrs, nil
}
func (s *Swarm) resolveAddrs(ctx context.Context, pi peer.AddrInfo) ([]ma.Multiaddr, error) {
proto := ma.ProtocolWithCode(ma.P_P2P).Name
p2paddr, err := ma.NewMultiaddr("/" + proto + "/" + pi.ID.Pretty())
if err != nil {
return nil, err
}
resolveSteps := 0
// Recursively resolve all addrs.
//
// While the toResolve list is non-empty:
// * Pop an address off.
// * If the address is fully resolved, add it to the resolved list.
// * Otherwise, resolve it and add the results to the "to resolve" list.
toResolve := append(([]ma.Multiaddr)(nil), pi.Addrs...)
resolved := make([]ma.Multiaddr, 0, len(pi.Addrs))
for len(toResolve) > 0 {
// pop the last addr off.
addr := toResolve[len(toResolve)-1]
toResolve = toResolve[:len(toResolve)-1]
// if it's resolved, add it to the resolved list.
if !madns.Matches(addr) {
resolved = append(resolved, addr)
continue
}
resolveSteps++
// We've resolved too many addresses. We can keep all the fully
// resolved addresses but we'll need to skip the rest.
if resolveSteps >= maxAddressResolution {
log.Warnf(
"peer %s asked us to resolve too many addresses: %s/%s",
pi.ID,
resolveSteps,
maxAddressResolution,
)
continue
}
// otherwise, resolve it
reqaddr := addr.Encapsulate(p2paddr)
resaddrs, err := s.maResolver.Resolve(ctx, reqaddr)
if err != nil {
log.Infof("error resolving %s: %s", reqaddr, err)
}
// add the results to the toResolve list.
for _, res := range resaddrs {
pi, err := peer.AddrInfoFromP2pAddr(res)
if err != nil {
log.Infof("error parsing %s: %s", res, err)
}
toResolve = append(toResolve, pi.Addrs...)
}
}
return resolved, nil
}
func (s *Swarm) dialNextAddr(ctx context.Context, p peer.ID, addr ma.Multiaddr, resch chan dialResult) error {
// check the dial backoff
if forceDirect, _ := network.GetForceDirectDial(ctx); !forceDirect {
if s.backf.Backoff(p, addr) {
return ErrDialBackoff
}
}
// start the dial
s.limitedDial(ctx, p, addr, resch)
return nil
}
func (s *Swarm) canDial(addr ma.Multiaddr) bool {
t := s.TransportForDialing(addr)
return t != nil && t.CanDial(addr)
}
func (s *Swarm) nonProxyAddr(addr ma.Multiaddr) bool {
t := s.TransportForDialing(addr)
return !t.Proxy()
}
// filterKnownUndialables takes a list of multiaddrs, and removes those
// that we definitely don't want to dial: addresses configured to be blocked,
// IPv6 link-local addresses, addresses without a dial-capable transport,
// and addresses that we know to be our own.
// This is an optimization to avoid wasting time on dials that we know are going to fail.
func (s *Swarm) filterKnownUndialables(p peer.ID, addrs []ma.Multiaddr) []ma.Multiaddr {
lisAddrs, _ := s.InterfaceListenAddresses()
var ourAddrs []ma.Multiaddr
for _, addr := range lisAddrs {
protos := addr.Protocols()
// we're only sure about filtering out /ip4 and /ip6 addresses, so far
if protos[0].Code == ma.P_IP4 || protos[0].Code == ma.P_IP6 {
ourAddrs = append(ourAddrs, addr)
}
}
return maybeRemoveWebTransportAddrs(
maybeRemoveQUICDraft29(
ma.FilterAddrs(addrs,
func(addr ma.Multiaddr) bool { return !ma.Contains(ourAddrs, addr) },
s.canDial,
// TODO: Consider allowing link-local addresses
func(addr ma.Multiaddr) bool { return !manet.IsIP6LinkLocal(addr) },
func(addr ma.Multiaddr) bool {
return s.gater == nil || s.gater.InterceptAddrDial(p, addr)
},
)))
}
// limitedDial will start a dial to the given peer when
// it is able, respecting the various different types of rate
// limiting that occur without using extra goroutines per addr
func (s *Swarm) limitedDial(ctx context.Context, p peer.ID, a ma.Multiaddr, resp chan dialResult) {
timeout := s.dialTimeout
if lowTimeoutFilters.AddrBlocked(a) && s.dialTimeoutLocal < s.dialTimeout {
timeout = s.dialTimeoutLocal
}
s.limiter.AddDialJob(&dialJob{
addr: a,
peer: p,
resp: resp,
ctx: ctx,
timeout: timeout,
})
}
// dialAddr is the actual dial for an addr, indirectly invoked through the limiter
func (s *Swarm) dialAddr(ctx context.Context, p peer.ID, addr ma.Multiaddr) (transport.CapableConn, error) {
// Just to double check. Costs nothing.
if s.local == p {
return nil, ErrDialToSelf
}
log.Debugf("%s swarm dialing %s %s", s.local, p, addr)
tpt := s.TransportForDialing(addr)
if tpt == nil {
return nil, ErrNoTransport
}
connC, err := tpt.Dial(ctx, addr, p)
if err != nil {
return nil, err
}
canonicallog.LogPeerStatus(100, connC.RemotePeer(), connC.RemoteMultiaddr(), "connection_status", "established", "dir", "outbound")
// Trust the transport? Yeah... right.
if connC.RemotePeer() != p {
connC.Close()
err = fmt.Errorf("BUG in transport %T: tried to dial %s, dialed %s", p, connC.RemotePeer(), tpt)
log.Error(err)
return nil, err
}
// success! we got one!
return connC, nil
}
// TODO We should have a `IsFdConsuming() bool` method on the `Transport` interface in go-libp2p/core/transport.
// This function checks if any of the transport protocols in the address requires a file descriptor.
// For now:
// A Non-circuit address which has the TCP/UNIX protocol is deemed FD consuming.
// For a circuit-relay address, we look at the address of the relay server/proxy
// and use the same logic as above to decide.
func isFdConsumingAddr(addr ma.Multiaddr) bool {
first, _ := ma.SplitFunc(addr, func(c ma.Component) bool {
return c.Protocol().Code == ma.P_CIRCUIT
})
// for safety
if first == nil {
return true
}
_, err1 := first.ValueForProtocol(ma.P_TCP)
_, err2 := first.ValueForProtocol(ma.P_UNIX)
return err1 == nil || err2 == nil
}
func isExpensiveAddr(addr ma.Multiaddr) bool {
_, wsErr := addr.ValueForProtocol(ma.P_WS)
_, wssErr := addr.ValueForProtocol(ma.P_WSS)
_, wtErr := addr.ValueForProtocol(ma.P_WEBTRANSPORT)
return wsErr == nil || wssErr == nil || wtErr == nil
}
func isRelayAddr(addr ma.Multiaddr) bool {
_, err := addr.ValueForProtocol(ma.P_CIRCUIT)
return err == nil
}
func isWebTransport(addr ma.Multiaddr) bool {
_, err := addr.ValueForProtocol(ma.P_WEBTRANSPORT)
return err == nil
}
func quicVersion(addr ma.Multiaddr) (quic.VersionNumber, bool) {
found := false
foundWebTransport := false
var version quic.VersionNumber
ma.ForEach(addr, func(c ma.Component) bool {
switch c.Protocol().Code {
case ma.P_QUIC:
version = quic.VersionDraft29
found = true
return true
case ma.P_QUIC_V1:
version = quic.Version1
found = true
return true
case ma.P_WEBTRANSPORT:
version = quic.Version1
foundWebTransport = true
return false
default:
return true
}
})
if foundWebTransport {
return 0, false
}
return version, found
}
// If we have QUIC addresses, we don't want to dial WebTransport addresses.
// It's better to have a native QUIC connection.
// Note that this is a hack. The correct solution would be a proper
// Happy-Eyeballs-style dialing.
func maybeRemoveWebTransportAddrs(addrs []ma.Multiaddr) []ma.Multiaddr {
var hasQuic, hasWebTransport bool
for _, addr := range addrs {
if _, isQuic := quicVersion(addr); isQuic {
hasQuic = true
}
if isWebTransport(addr) {
hasWebTransport = true
}
}
if !hasWebTransport || !hasQuic {
return addrs
}
var c int
for _, addr := range addrs {
if isWebTransport(addr) {
continue
}
addrs[c] = addr
c++
}
return addrs[:c]
}
// If we have QUIC V1 addresses, we don't want to dial QUIC draft29 addresses.
// This is a similar hack to the above. If we add one more hack like this, let's
// define a `Filterer` interface like the `Resolver` interface that transports
// can optionally implement if they want to filter the multiaddrs.
//
// This mutates the input
func maybeRemoveQUICDraft29(addrs []ma.Multiaddr) []ma.Multiaddr {
var hasQuicV1, hasQuicDraft29 bool
for _, addr := range addrs {
v, isQuic := quicVersion(addr)
if !isQuic {
continue
}
if v == quic.Version1 {
hasQuicV1 = true
}
if v == quic.VersionDraft29 {
hasQuicDraft29 = true
}
}
if !hasQuicDraft29 || !hasQuicV1 {
return addrs
}
var c int
for _, addr := range addrs {
if v, isQuic := quicVersion(addr); isQuic && v == quic.VersionDraft29 {
continue
}
addrs[c] = addr
c++
}
return addrs[:c]
}