from .hash_function import hash ZERO_BYTES32 = b'\x00' * 32 zerohashes = [ZERO_BYTES32] for layer in range(1, 100): zerohashes.append(hash(zerohashes[layer - 1] + zerohashes[layer - 1])) # Compute a Merkle root of a right-zerobyte-padded 2**32 sized tree def calc_merkle_tree_from_leaves(values): values = list(values) tree = [values[::]] for h in range(32): if len(values) % 2 == 1: values.append(zerohashes[h]) values = [hash(values[i] + values[i + 1]) for i in range(0, len(values), 2)] tree.append(values[::]) return tree def get_merkle_root(values): return calc_merkle_tree_from_leaves(values)[-1][0] def get_merkle_proof(tree, item_index): proof = [] for i in range(32): subindex = (item_index // 2**i) ^ 1 proof.append(tree[i][subindex] if subindex < len(tree[i]) else zerohashes[i]) return proof def next_power_of_two(v: int) -> int: """ Get the next power of 2. (for 64 bit range ints). 0 is a special case, to have non-empty defaults. Examples: 0 -> 1, 1 -> 1, 2 -> 2, 3 -> 4, 32 -> 32, 33 -> 64 """ if v == 0: return 1 return 1 << (v - 1).bit_length() def merkleize_chunks(chunks, pad_to: int = 1): count = len(chunks) depth = max(count - 1, 0).bit_length() max_depth = max(depth, (pad_to - 1).bit_length()) tmp = [None for _ in range(max_depth + 1)] def merge(h, i): j = 0 while True: if i & (1 << j) == 0: if i == count and j < depth: h = hash(h + zerohashes[j]) # keep going if we are complementing the void to the next power of 2 else: break else: h = hash(tmp[j] + h) j += 1 tmp[j] = h # merge in leaf by leaf. for i in range(count): merge(chunks[i], i) # complement with 0 if empty, or if not the right power of 2 if 1 << depth != count: merge(zerohashes[0], count) # the next power of two may be smaller than the ultimate virtual size, complement with zero-hashes at each depth. for j in range(depth, max_depth): tmp[j + 1] = hash(tmp[j] + zerohashes[j]) return tmp[max_depth]