# Sharding -- Polynomial Commitments **Notice**: This document is a work-in-progress for researchers and implementers. ## Table of contents - [Introduction](#introduction) - [Constants](#constants) - [BLS Field](#bls-field) - [KZG Trusted setup](#kzg-trusted-setup) - [Custom types](#custom-types) - [Helper functions](#helper-functions) - [`next_power_of_two`](#next_power_of_two) - [`reverse_bit_order`](#reverse_bit_order) - [`list_to_reverse_bit_order`](#list_to_reverse_bit_order) - [Field operations](#field-operations) - [Generic field operations](#generic-field-operations) - [`bls_modular_inverse`](#bls_modular_inverse) - [`roots_of_unity`](#roots_of_unity) - [Field helper functions](#field-helper-functions) - [`compute_powers`](#compute_powers) - [`low_degree_check`](#low_degree_check) - [`vector_lincomb`](#vector_lincomb) - [`bytes_to_field_elements`](#bytes_to_field_elements) - [Polynomial operations](#polynomial-operations) - [`add_polynomials`](#add_polynomials) - [`multiply_polynomials`](#multiply_polynomials) - [`interpolate_polynomial`](#interpolate_polynomial) - [`evaluate_polynomial_in_evaluation_form`](#evaluate_polynomial_in_evaluation_form) - [KZG Operations](#kzg-operations) - [Elliptic curve helper functions](#elliptic-curve-helper-functions) - [`elliptic_curve_lincomb`](#elliptic_curve_lincomb) - [Hash to field](#hash-to-field) - [`hash_to_bls_field`](#hash_to_bls_field) - [KZG operations](#kzg-operations) - [`verify_kzg_proof`](#verify_kzg_proof) - [`verify_kzg_multiproof`](#verify_kzg_multiproof) - [`verify_degree_proof`](#verify_degree_proof) ## Introduction This document specifies basic polynomial operations and KZG polynomial commitment operations as they are needed for the sharding specification. The implementations are not optimized for performance, but readability. All practical implementations should optimize the polynomial operations, and hints what the best known algorithms for these implementations are included below. ## Constants ### BLS Field | Name | Value | Notes | | - | - | - | | `BLS_MODULUS` | `0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001` (curve order of BLS12_381) | | `PRIMITIVE_ROOT_OF_UNITY` | `7` | Primitive root of unity of the BLS12_381 (inner) BLS_MODULUS | ### KZG Trusted setup | Name | Value | | - | - | | `G1_SETUP` | Type `List[G1]`. The G1-side trusted setup `[G, G*s, G*s**2....]`; note that the first point is the generator. | | `G2_SETUP` | Type `List[G2]`. The G2-side trusted setup `[G, G*s, G*s**2....]` | ## Custom types We define the following Python custom types for type hinting and readability: | Name | SSZ equivalent | Description | | - | - | - | | `KZGCommitment` | `Bytes48` | A G1 curve point | | `BLSFieldElement` | `uint256` | A number `x` in the range `0 <= x < BLS_MODULUS` | | `BLSPolynomialByCoefficients` | `List[BLSFieldElement]` | A polynomial over the BLS field, given in coefficient form | | `BLSPolynomialByEvaluations` | `List[BLSFieldElement]` | A polynomial over the BLS field, given in evaluation form | ## Helper functions #### `next_power_of_two` ```python def next_power_of_two(x: int) -> int: assert x > 0 return 2 ** ((x - 1).bit_length()) ``` #### `reverse_bit_order` ```python def reverse_bit_order(n: int, order: int) -> int: """ Reverse the bit order of an integer n """ assert is_power_of_two(order) # Convert n to binary with the same number of bits as "order" - 1, then reverse its bit order return int(('{:0' + str(order.bit_length() - 1) + 'b}').format(n)[::-1], 2) ``` #### `list_to_reverse_bit_order` ```python def list_to_reverse_bit_order(l: List[int]) -> List[int]: """ Convert a list between normal and reverse bit order. The permutation is an involution (inverts itself).. """ return [l[reverse_bit_order(i, len(l))] for i in range(len(l))] ``` ## Field operations ### Generic field operations #### `bls_modular_inverse` ```python def bls_modular_inverse(x: BLSFieldElement) -> BLSFieldElement: """ Compute the modular inverse of x, i.e. y such that x * y % BLS_MODULUS == 1 and return 1 for x == 0 """ lm, hm = 1, 0 low, high = x % BLS_MODULUS, BLS_MODULUS while low > 1: r = high // low nm, new = hm - lm * r, high - low * r lm, low, hm, high = nm, new, lm, low return lm % BLS_MODULUS ``` #### `roots_of_unity` ```python def roots_of_unity(order: uint64) -> List[BLSFieldElement]: """ Compute a list of roots of unity for a given order. The order must divide the BLS multiplicative group order, i.e. BLS_MODULUS - 1 """ assert (BLS_MODULUS - 1) % order == 0 roots = [] root_of_unity = pow(PRIMITIVE_ROOT_OF_UNITY, (BLS_MODULUS - 1) // order, BLS_MODULUS) current_root_of_unity = 1 for i in range(SAMPLES_PER_BLOB * FIELD_ELEMENTS_PER_SAMPLE): roots.append(current_root_of_unity) current_root_of_unity = current_root_of_unity * root_of_unity % BLS_MODULUS return roots ``` ### Field helper functions #### `compute_powers` ```python def compute_powers(x: BLSFieldElement, n: uint64) -> List[BLSFieldElement]: current_power = 1 powers = [] for _ in range(n): powers.append(BLSFieldElement(current_power)) current_power = current_power * int(x) % BLS_MODULUS return powers ``` #### `low_degree_check` ```python def low_degree_check(commitments: List[KZGCommitment]): """ Checks that the commitments are on a low-degree polynomial. If there are 2*N commitments, that means they should lie on a polynomial of degree d = K - N - 1, where K = next_power_of_two(2*N) (The remaining positions are filled with 0, this is to make FFTs usable) For details see here: https://notes.ethereum.org/@dankrad/barycentric_low_degree_check """ assert len(commitments) % 2 == 0 N = len(commitments) // 2 r = hash_to_bls_field(commitments, 0) K = next_power_of_two(2 * N) d = K - N - 1 r_to_K = pow(r, N, K) roots = list_to_reverse_bit_order(roots_of_unity(K)) # For an efficient implementation, B and Bprime should be precomputed def B(z): r = 1 for w in roots[:d + 1]: r = r * (z - w) % BLS_MODULUS return r def Bprime(z): r = 0 for i in range(d + 1): m = 1 for w in roots[:i] + roots[i + 1:d + 1]: m = m * (z - w) % BLS_MODULUS r = (r + m) % BLS_MODULUS return r coefs = [] for i in range(K): coefs.append( - (r_to_K - 1) * bls_modular_inverse(K * roots[i * (K - 1) % K] * (r - roots[i])) % BLS_MODULUS) for i in range(d + 1): coefs[i] = (coefs[i] + B(r) * bls_modular_inverse(Bprime(r) * (r - roots[i]))) % BLS_MODULUS assert elliptic_curve_lincomb(commitments, coefs) == bls.inf_G1() ``` #### `vector_lincomb` ```python def vector_lincomb(vectors: List[List[BLSFieldElement]], scalars: List[BLSFieldElement]) -> List[BLSFieldElement]: """ Compute a linear combination of field element vectors. """ r = [0]*len(vectors[0]) for v, a in zip(vectors, scalars): for i, x in enumerate(v): r[i] = (r[i] + a * x) % BLS_MODULUS return [BLSFieldElement(x) for x in r] ``` #### `bytes_to_field_elements` ```python def bytes_to_field_elements(block: bytes) -> List[BLSFieldElement]: """ Slices a block into 31-byte chunks that can fit into field elements. """ sliced_block = [block[i:i + 31] for i in range(0, len(bytes), 31)] return [BLSFieldElement(int.from_bytes(x, "little")) for x in sliced_block] ``` ## Polynomial operations #### `add_polynomials` ```python def add_polynomials(a: BLSPolynomialByCoefficients, b: BLSPolynomialByCoefficients) -> BLSPolynomialByCoefficients: """ Sum the polynomials ``a`` and ``b`` given by their coefficients. """ a, b = (a, b) if len(a) >= len(b) else (b, a) return [(a[i] + (b[i] if i < len(b) else 0)) % BLS_MODULUS for i in range(len(a))] ``` #### `multiply_polynomials` ```python def multiply_polynomials(a: BLSPolynomialByCoefficients, b: BLSPolynomialByCoefficients) -> BLSPolynomialByCoefficients: """ Multiplies the polynomials `a` and `b` given by their coefficients """ r = [0] for power, coef in enumerate(a): summand = [0] * power + [coef * x % BLS_MODULUS for x in b] r = add_polynomials(r, summand) return r ``` #### `interpolate_polynomial` ```python def interpolate_polynomial(xs: List[BLSFieldElement], ys: List[BLSFieldElement]) -> BLSPolynomialByCoefficients: """ Lagrange interpolation """ assert len(xs) == len(ys) r = [0] for i in range(len(xs)): summand = [ys[i]] for j in range(len(ys)): if j != i: weight_adjustment = bls_modular_inverse(xs[j] - xs[i]) summand = multiply_polynomials( summand, [weight_adjustment, ((BLS_MODULUS - weight_adjustment) * xs[i])] ) r = add_polynomials(r, summand) return r ``` #### `evaluate_polynomial_in_evaluation_form` ```python def evaluate_polynomial_in_evaluation_form(poly: BLSPolynomialByEvaluations, x: BLSFieldElement) -> BLSFieldElement: """ Evaluates a polynomial (in evaluation form) at an arbitrary point """ field_elements_per_blob = SAMPLES_PER_BLOB * FIELD_ELEMENTS_PER_SAMPLE roots = roots_of_unity(field_elements_per_blob) def A(z): r = 1 for w in roots: r = r * (z - w) % BLS_MODULUS return r def Aprime(z): return field_elements_per_blob * pow(z, field_elements_per_blob - 1, BLS_MODULUS) r = 0 inverses = [bls_modular_inverse(z - x) for z in roots] for i, x in enumerate(inverses): r += poly[i] * bls_modular_inverse(Aprime(roots[i])) * x % BLS_MODULUS r = r * A(x) % BLS_MODULUS return r ``` ## KZG Operations We are using the KZG10 polynomial commitment scheme (Kate, Zaverucha and Goldberg, 2010: https://www.iacr.org/archive/asiacrypt2010/6477178/6477178.pdf). ### Elliptic curve helper functions #### `elliptic_curve_lincomb` ```python def elliptic_curve_lincomb(points: List[KZGCommitment], scalars: List[BLSFieldElement]) -> KZGCommitment: """ BLS multiscalar multiplication. This function can be optimized using Pippenger's algorithm and variants. This is a non-optimized implementation. """ r = bls.inf_G1() for x, a in zip(points, scalars): r = r.add(x.mult(a)) return r ``` ### Hash to field #### `hash_to_bls_field` ```python def hash_to_bls_field(x: Container, challenge_number: uint64) -> BLSFieldElement: """ This function is used to generate Fiat-Shamir challenges. The output is not uniform over the BLS field. """ return ( (int.from_bytes(hash(hash_tree_root(x) + int.to_bytes(challenge_number, 32, "little")), "little")) % BLS_MODULUS ) ``` ### KZG operations #### `verify_kzg_proof` ```python def verify_kzg_proof(commitment: KZGCommitment, x: BLSFieldElement, y: BLSFieldElement, proof: KZGCommitment) -> None: """ Check that `proof` is a valid KZG proof for the polynomial committed to by `commitment` evaluated at `x` equals `y`. """ zero_poly = G2_SETUP[1].add(G2_SETUP[0].mult(x).neg()) assert ( bls.Pairing(proof, zero_poly) == bls.Pairing(commitment.add(G1_SETUP[0].mult(y).neg), G2_SETUP[0]) ) ``` #### `verify_kzg_multiproof` ```python def verify_kzg_multiproof(commitment: KZGCommitment, xs: List[BLSFieldElement], ys: List[BLSFieldElement], proof: KZGCommitment) -> None: """ Verify a KZG multiproof. """ zero_poly = elliptic_curve_lincomb(G2_SETUP[:len(xs)], interpolate_polynomial(xs, [0] * len(ys))) interpolated_poly = elliptic_curve_lincomb(G2_SETUP[:len(xs)], interpolate_polynomial(xs, ys)) assert ( bls.Pairing(proof, zero_poly) == bls.Pairing(commitment.add(interpolated_poly.neg()), G2_SETUP[0]) ) ``` #### `verify_degree_proof` ```python def verify_degree_proof(commitment: KZGCommitment, degree_bound: uint64, proof: KZGCommitment): """ Verifies that the commitment is of polynomial degree < degree_bound. """ assert ( bls.Pairing(proof, G2_SETUP[0]) == bls.Pairing(commitment, G2_SETUP[-degree_bound]) ) ```