# EIP-4844 -- Polynomial Commitments ## Table of contents - [Introduction](#introduction) - [Custom types](#custom-types) - [Constants](#constants) - [Preset](#preset) - [Blob](#blob) - [Crypto](#crypto) - [Trusted setup](#trusted-setup) - [Helper functions](#helper-functions) - [Bit-reversal permutation](#bit-reversal-permutation) - [`is_power_of_two`](#is_power_of_two) - [`reverse_bits`](#reverse_bits) - [`bit_reversal_permutation`](#bit_reversal_permutation) - [BLS12-381 helpers](#bls12-381-helpers) - [`bytes_to_bls_field`](#bytes_to_bls_field) - [`blob_to_polynomial`](#blob_to_polynomial) - [`hash_to_bls_field`](#hash_to_bls_field) - [`bls_modular_inverse`](#bls_modular_inverse) - [`div`](#div) - [`g1_lincomb`](#g1_lincomb) - [`poly_lincomb`](#poly_lincomb) - [`compute_powers`](#compute_powers) - [Polynomials](#polynomials) - [`evaluate_polynomial_in_evaluation_form`](#evaluate_polynomial_in_evaluation_form) - [KZG](#kzg) - [`blob_to_kzg_commitment`](#blob_to_kzg_commitment) - [`verify_kzg_proof`](#verify_kzg_proof) - [`compute_kzg_proof`](#compute_kzg_proof) - [`compute_aggregated_poly_and_commitment`](#compute_aggregated_poly_and_commitment) - [`compute_aggregate_kzg_proof`](#compute_aggregate_kzg_proof) - [`verify_aggregate_kzg_proof`](#verify_aggregate_kzg_proof) ## Introduction This document specifies basic polynomial operations and KZG polynomial commitment operations as they are needed for the EIP-4844 specification. The implementations are not optimized for performance, but readability. All practical implementations should optimize the polynomial operations. ## Custom types | Name | SSZ equivalent | Description | | - | - | - | | `G1Point` | `Bytes48` | | | `G2Point` | `Bytes96` | | | `BLSFieldElement` | `uint256` | `x < BLS_MODULUS` | | `KZGCommitment` | `Bytes48` | Same as BLS standard "is valid pubkey" check but also allows `0x00..00` for point-at-infinity | | `KZGProof` | `Bytes48` | Same as for `KZGCommitment` | | `Polynomial` | `Vector[BLSFieldElement, FIELD_ELEMENTS_PER_BLOB]` | a polynomial in evaluation form | | `Blob` | `ByteVector[BYTES_PER_FIELD_ELEMENT * FIELD_ELEMENTS_PER_BLOB]` | a basic blob data | ## Constants | Name | Value | Notes | | - | - | - | | `BLS_MODULUS` | `52435875175126190479447740508185965837690552500527637822603658699938581184513` | Scalar field modulus of BLS12-381 | | `BYTES_PER_FIELD_ELEMENT` | `uint64(32)` | Bytes used to encode a BLS scalar field element | ## Preset ### Blob | Name | Value | | - | - | | `FIELD_ELEMENTS_PER_BLOB` | `uint64(4096)` | | `FIAT_SHAMIR_PROTOCOL_DOMAIN` | `b'FSBLOBVERIFY_V1_'` | ### Crypto | Name | Value | Notes | | - | - | - | | `ROOTS_OF_UNITY` | `Vector[BLSFieldElement, FIELD_ELEMENTS_PER_BLOB]` | Roots of unity of order FIELD_ELEMENTS_PER_BLOB over the BLS12-381 field | ### Trusted setup The trusted setup is part of the preset: during testing a `minimal` insecure variant may be used, but reusing the `mainnet` settings in public networks is a critical security requirement. | Name | Value | | - | - | | `KZG_SETUP_G1` | `Vector[G1Point, FIELD_ELEMENTS_PER_BLOB]`, contents TBD | | `KZG_SETUP_G2` | `Vector[G2Point, FIELD_ELEMENTS_PER_BLOB]`, contents TBD | | `KZG_SETUP_LAGRANGE` | `Vector[KZGCommitment, FIELD_ELEMENTS_PER_BLOB]`, contents TBD | ## Helper functions ### Bit-reversal permutation All polynomials (which are always given in Lagrange form) should be interpreted as being in bit-reversal permutation. In practice, clients can implement this by storing the lists `KZG_SETUP_LAGRANGE` and `ROOTS_OF_UNITY` in bit-reversal permutation, so these functions only have to be called once at startup. #### `is_power_of_two` ```python def is_power_of_two(value: int) -> bool: """ Check if ``value`` is a power of two integer. """ return (value > 0) and (value & (value - 1) == 0) ``` #### `reverse_bits` ```python def reverse_bits(n: int, order: int) -> int: """ Reverse the bit order of an integer ``n``. """ assert is_power_of_two(order) # Convert n to binary with the same number of bits as "order" - 1, then reverse its bit order return int(('{:0' + str(order.bit_length() - 1) + 'b}').format(n)[::-1], 2) ``` #### `bit_reversal_permutation` ```python def bit_reversal_permutation(sequence: Sequence[T]) -> Sequence[T]: """ Return a copy with bit-reversed permutation. The permutation is an involution (inverts itself). The input and output are a sequence of generic type ``T`` objects. """ return [sequence[reverse_bits(i, len(sequence))] for i in range(len(sequence))] ``` ### BLS12-381 helpers #### `bytes_to_bls_field` ```python def bytes_to_bls_field(b: Bytes32) -> BLSFieldElement: """ Convert 32-byte value to a BLS field scalar. The output is not uniform over the BLS field. """ return int.from_bytes(b, ENDIANNESS) % BLS_MODULUS ``` #### `blob_to_polynomial` ```python def blob_to_polynomial(blob: Blob) -> Polynomial: """ Convert a blob to list of BLS field scalars. """ polynomial = Polynomial() for i in range(FIELD_ELEMENTS_PER_BLOB): value = int.from_bytes(blob[i * BYTES_PER_FIELD_ELEMENT: (i + 1) * BYTES_PER_FIELD_ELEMENT], ENDIANNESS) assert value < BLS_MODULUS polynomial[i] = value return polynomial ``` #### `hash_to_bls_field` ```python def hash_to_bls_field(polys: Sequence[Polynomial], comms: Sequence[KZGCommitment]) -> BLSFieldElement: """ Compute 32-byte hash of serialized polynomials and commitments concatenated. This hash is then converted to a BLS field element, where the result is not uniform over the BLS field. Return the BLS field element. """ # Append the number of polynomials and the degree of each polynomial as a domain separator num_polys = int.to_bytes(len(polys), 8, ENDIANNESS) degree_poly = int.to_bytes(FIELD_ELEMENTS_PER_BLOB, 8, ENDIANNESS) data = FIAT_SHAMIR_PROTOCOL_DOMAIN + degree_poly + num_polys # Append each polynomial which is composed by field elements for poly in polys: for field_element in poly: data += int.to_bytes(field_element, BYTES_PER_FIELD_ELEMENT, ENDIANNESS) # Append serialized G1 points for commitment in comms: data += commitment return bytes_to_bls_field(hash(data)) ``` #### `bls_modular_inverse` ```python def bls_modular_inverse(x: BLSFieldElement) -> BLSFieldElement: """ Compute the modular inverse of x i.e. return y such that x * y % BLS_MODULUS == 1 and return 0 for x == 0 """ return pow(x, -1, BLS_MODULUS) if x != 0 else 0 ``` #### `div` ```python def div(x: BLSFieldElement, y: BLSFieldElement) -> BLSFieldElement: """ Divide two field elements: ``x`` by `y``. """ return (int(x) * int(bls_modular_inverse(y))) % BLS_MODULUS ``` #### `g1_lincomb` ```python def g1_lincomb(points: Sequence[KZGCommitment], scalars: Sequence[BLSFieldElement]) -> KZGCommitment: """ BLS multiscalar multiplication. This function can be optimized using Pippenger's algorithm and variants. """ assert len(points) == len(scalars) result = bls.Z1 for x, a in zip(points, scalars): result = bls.add(result, bls.multiply(bls.bytes48_to_G1(x), a)) return KZGCommitment(bls.G1_to_bytes48(result)) ``` #### `poly_lincomb` ```python def poly_lincomb(polys: Sequence[Polynomial], scalars: Sequence[BLSFieldElement]) -> Polynomial: """ Given a list of ``polynomials``, interpret it as a 2D matrix and compute the linear combination of each column with `scalars`: return the resulting polynomials. """ result = [0] * len(polys[0]) for v, s in zip(polys, scalars): for i, x in enumerate(v): result[i] = (result[i] + int(s) * int(x)) % BLS_MODULUS return [BLSFieldElement(x) for x in result] ``` #### `compute_powers` ```python def compute_powers(x: BLSFieldElement, n: uint64) -> Sequence[BLSFieldElement]: """ Return ``x`` to power of [0, n-1]. """ current_power = 1 powers = [] for _ in range(n): powers.append(BLSFieldElement(current_power)) current_power = current_power * int(x) % BLS_MODULUS return powers ``` ### Polynomials #### `evaluate_polynomial_in_evaluation_form` ```python def evaluate_polynomial_in_evaluation_form(polynomial: Polynomial, z: BLSFieldElement) -> BLSFieldElement: """ Evaluate a polynomial (in evaluation form) at an arbitrary point ``z``. Uses the barycentric formula: f(z) = (z**WIDTH - 1) / WIDTH * sum_(i=0)^WIDTH (f(DOMAIN[i]) * DOMAIN[i]) / (z - DOMAIN[i]) """ width = len(polynomial) assert width == FIELD_ELEMENTS_PER_BLOB inverse_width = bls_modular_inverse(width) # Make sure we won't divide by zero during division assert z not in ROOTS_OF_UNITY roots_of_unity_brp = bit_reversal_permutation(ROOTS_OF_UNITY) result = 0 for i in range(width): result += div(int(polynomial[i]) * int(roots_of_unity_brp[i]), (int(z) - roots_of_unity_brp[i])) result = result * (pow(z, width, BLS_MODULUS) - 1) * inverse_width % BLS_MODULUS return result ``` ### KZG KZG core functions. These are also defined in EIP-4844 execution specs. #### `blob_to_kzg_commitment` ```python def blob_to_kzg_commitment(blob: Blob) -> KZGCommitment: return g1_lincomb(bit_reversal_permutation(KZG_SETUP_LAGRANGE), blob_to_polynomial(blob)) ``` #### `verify_kzg_proof` ```python def verify_kzg_proof(polynomial_kzg: KZGCommitment, z: BLSFieldElement, y: BLSFieldElement, kzg_proof: KZGProof) -> bool: """ Verify KZG proof that ``p(z) == y`` where ``p(z)`` is the polynomial represented by ``polynomial_kzg``. """ # Verify: P - y = Q * (X - z) X_minus_z = bls.add(bls.bytes96_to_G2(KZG_SETUP_G2[1]), bls.multiply(bls.G2, BLS_MODULUS - z)) P_minus_y = bls.add(bls.bytes48_to_G1(polynomial_kzg), bls.multiply(bls.G1, BLS_MODULUS - y)) return bls.pairing_check([ [P_minus_y, bls.neg(bls.G2)], [bls.bytes48_to_G1(kzg_proof), X_minus_z] ]) ``` #### `compute_kzg_proof` ```python def compute_kzg_proof(polynomial: Polynomial, z: BLSFieldElement) -> KZGProof: """ Compute KZG proof at point `z` with `polynomial` being in evaluation form Do this by computing the quotient polynomial in evaluation form: q(x) = (p(x) - p(z)) / (x - z) """ # To avoid SSZ overflow/underflow, convert element into int polynomial = [int(i) for i in polynomial] z = int(z) y = evaluate_polynomial_in_evaluation_form(polynomial, z) polynomial_shifted = [(p - int(y)) % BLS_MODULUS for p in polynomial] # Make sure we won't divide by zero during division assert z not in ROOTS_OF_UNITY denominator_poly = [(int(x) - z) % BLS_MODULUS for x in bit_reversal_permutation(ROOTS_OF_UNITY)] # Calculate quotient polynomial by doing point-by-point division quotient_polynomial = [div(a, b) for a, b in zip(polynomial_shifted, denominator_poly)] return KZGProof(g1_lincomb(bit_reversal_permutation(KZG_SETUP_LAGRANGE), quotient_polynomial)) ``` #### `compute_aggregated_poly_and_commitment` ```python def compute_aggregated_poly_and_commitment( blobs: Sequence[Blob], kzg_commitments: Sequence[KZGCommitment]) -> Tuple[Polynomial, KZGCommitment, BLSFieldElement]: """ Return (1) the aggregated polynomial, (2) the aggregated KZG commitment, and (3) the polynomial evaluation random challenge. """ # Generate random linear combination challenges r = hash_to_bls_field(blobs, kzg_commitments) r_powers = compute_powers(r, len(kzg_commitments)) evaluation_challenge = int(r_powers[-1]) * r % BLS_MODULUS # Create aggregated polynomial in evaluation form aggregated_poly = Polynomial(poly_lincomb([blob_to_polynomial(blob) for blob in blobs], r_powers)) # Compute commitment to aggregated polynomial aggregated_poly_commitment = KZGCommitment(g1_lincomb(kzg_commitments, r_powers)) return aggregated_poly, aggregated_poly_commitment, evaluation_challenge ``` #### `compute_aggregate_kzg_proof` ```python def compute_aggregate_kzg_proof(blobs: Sequence[Blob]) -> KZGProof: commitments = [blob_to_kzg_commitment(blob) for blob in blobs] aggregated_poly, aggregated_poly_commitment, evaluation_challenge = compute_aggregated_poly_and_commitment( blobs, commitments ) return compute_kzg_proof(aggregated_poly, evaluation_challenge) ``` #### `verify_aggregate_kzg_proof` ```python def verify_aggregate_kzg_proof(blobs: Sequence[Blob], expected_kzg_commitments: Sequence[KZGCommitment], kzg_aggregated_proof: KZGCommitment) -> bool: aggregated_poly, aggregated_poly_commitment, evaluation_challenge = compute_aggregated_poly_and_commitment( blobs, expected_kzg_commitments, ) # Evaluate aggregated polynomial at `evaluation_challenge` (evaluation function checks for div-by-zero) y = evaluate_polynomial_in_evaluation_form(aggregated_poly, evaluation_challenge) # Verify aggregated proof return verify_kzg_proof(aggregated_poly_commitment, evaluation_challenge, y, kzg_aggregated_proof) ```