MIN_DEPOSIT_AMOUNT: constant(uint256) = 1000000000 # Gwei DEPOSIT_CONTRACT_TREE_DEPTH: constant(uint256) = 32 MAX_DEPOSIT_COUNT: constant(uint256) = 4294967295 # 2**DEPOSIT_CONTRACT_TREE_DEPTH - 1 PUBKEY_LENGTH: constant(uint256) = 48 # bytes WITHDRAWAL_CREDENTIALS_LENGTH: constant(uint256) = 32 # bytes AMOUNT_LENGTH: constant(uint256) = 8 # bytes SIGNATURE_LENGTH: constant(uint256) = 96 # bytes Deposit: event({ pubkey: bytes[48], withdrawal_credentials: bytes[32], amount: bytes[8], signature: bytes[96], index: bytes[8], }) branch: bytes32[DEPOSIT_CONTRACT_TREE_DEPTH] deposit_count: uint256 # Compute hashes in empty sparse Merkle tree zero_hashes: bytes32[DEPOSIT_CONTRACT_TREE_DEPTH] @public def __init__(): for i in range(DEPOSIT_CONTRACT_TREE_DEPTH - 1): self.zero_hashes[i + 1] = sha256(concat(self.zero_hashes[i], self.zero_hashes[i])) @private @constant def to_little_endian_64(value: uint256) -> bytes[8]: # Reversing bytes using bitwise uint256 manipulations # Note: array accesses of bytes[] are not currently supported in Vyper # Note: this function is only called when `value < 2**64` y: uint256 = 0 x: uint256 = value for _ in range(8): y = shift(y, 8) y = y + bitwise_and(x, 255) x = shift(x, -8) return slice(convert(y, bytes32), start=24, len=8) @public @constant def get_deposit_root() -> bytes32: zero_bytes32: bytes32 = 0x0000000000000000000000000000000000000000000000000000000000000000 node: bytes32 = zero_bytes32 size: uint256 = self.deposit_count for height in range(DEPOSIT_CONTRACT_TREE_DEPTH): if bitwise_and(size, 1) == 1: # More gas efficient than `size % 2 == 1` node = sha256(concat(self.branch[height], node)) else: node = sha256(concat(node, self.zero_hashes[height])) size /= 2 return sha256(concat(node, self.to_little_endian_64(self.deposit_count), slice(zero_bytes32, start=0, len=24))) @public @constant def get_deposit_count() -> bytes[8]: return self.to_little_endian_64(self.deposit_count) @payable @public def deposit(pubkey: bytes[PUBKEY_LENGTH], withdrawal_credentials: bytes[WITHDRAWAL_CREDENTIALS_LENGTH], signature: bytes[SIGNATURE_LENGTH]): # Avoid overflowing the Merkle tree (and prevent edge case in computing `self.branch`) assert self.deposit_count < MAX_DEPOSIT_COUNT # Validate deposit data deposit_amount: uint256 = msg.value / as_wei_value(1, "gwei") assert deposit_amount >= MIN_DEPOSIT_AMOUNT assert len(pubkey) == PUBKEY_LENGTH assert len(withdrawal_credentials) == WITHDRAWAL_CREDENTIALS_LENGTH assert len(signature) == SIGNATURE_LENGTH # Emit `Deposit` log amount: bytes[8] = self.to_little_endian_64(deposit_amount) log.Deposit(pubkey, withdrawal_credentials, amount, signature, self.to_little_endian_64(self.deposit_count)) # Compute `DepositData` root zero_bytes32: bytes32 = 0x0000000000000000000000000000000000000000000000000000000000000000 pubkey_root: bytes32 = sha256(concat(pubkey, slice(zero_bytes32, start=0, len=64 - PUBKEY_LENGTH))) signature_root: bytes32 = sha256(concat( sha256(slice(signature, start=0, len=64)), sha256(concat(slice(signature, start=64, len=SIGNATURE_LENGTH - 64), zero_bytes32)), )) node: bytes32 = sha256(concat( sha256(concat(pubkey_root, withdrawal_credentials)), sha256(concat(amount, slice(zero_bytes32, start=0, len=32 - AMOUNT_LENGTH), signature_root)), )) # Add `DepositData` root to Merkle tree (update a single `branch` node) self.deposit_count += 1 size: uint256 = self.deposit_count for height in range(DEPOSIT_CONTRACT_TREE_DEPTH): if bitwise_and(size, 1) == 1: # More gas efficient than `size % 2 == 1` self.branch[height] = node break node = sha256(concat(self.branch[height], node)) size /= 2