# [WIP] SimpleSerialize (SSZ) Spec This is the **work in progress** document to describe `SimpleSerialize`, the current selected serialization method for Ethereum 2.0 using the Beacon Chain. This document specifies the general information for serializing and deserializing objects and data types. ## ToC * [About](#about) * [Terminology](#terminology) * [Constants](#constants) * [Overview](#overview) + [Serialize/Encode](#serializeencode) - [uint](#uint) - [Bool](#bool) - [Address](#address) - [Hash](#hash) - [Bytes](#bytes) - [List/Vectors](#listvectors) - [Container](#container) + [Deserialize/Decode](#deserializedecode) - [uint](#uint-1) - [Bool](#bool-1) - [Address](#address-1) - [Hash](#hash-1) - [Bytes](#bytes-1) - [List/Vectors](#listvectors-1) - [Container](#container-1) + [Tree Hash](#tree-hash) * [Implementations](#implementations) ## About `SimpleSerialize` was first proposed by Vitalik Buterin as the serialization protocol for use in the Ethereum 2.0 Beacon Chain. The core feature of `ssz` is the simplicity of the serialization with low overhead. ## Terminology | Term | Definition | |:-------------|:-----------------------------------------------------------------------------------------------| | `big` | Big Endian | | `byte_order` | Specifies [endianness:](https://en.wikipedia.org/wiki/Endianness) Big Endian or Little Endian. | | `len` | Length/Number of Bytes. | | `to_bytes` | Convert to bytes. Should take parameters ``size`` and ``byte_order``. | | `from_bytes` | Convert from bytes to object. Should take ``bytes`` and ``byte_order``. | | `value` | The value to serialize. | | `rawbytes` | Raw serialized bytes. | ## Constants | Constant | Value | Definition | |:------------------|:-----:|:--------------------------------------------------------------------------------------| | `LENGTH_BYTES` | 4 | Number of bytes used for the length added before a variable-length serialized object. | | `SSZ_CHUNK_SIZE` | 128 | Number of bytes for the chunk size of the Merkle tree leaf. | ## Overview ### Serialize/Encode #### uint | uint Type | Usage | |:---------:|:-----------------------------------------------------------| | `uintN` | Type of `N` bits unsigned integer, where ``N % 8 == 0``. | Convert directly to bytes the size of the int. (e.g. ``uint16 = 2 bytes``) All integers are serialized as **big endian**. | Check to perform | Code | |:-----------------------|:----------------------| | Size is a byte integer | ``int_size % 8 == 0`` | ```python assert(int_size % 8 == 0) buffer_size = int_size / 8 return value.to_bytes(buffer_size, 'big') ``` #### Bool Convert directly to a single 0x00 or 0x01 byte. | Check to perform | Code | |:------------------|:---------------------------| | Value is boolean | ``value in (True, False)`` | ```python assert(value in (True, False)) return b'\x01' if value is True else b'\x00' ``` #### Address The `address` should already come as a hash/byte format. Ensure that length is **20**. | Check to perform | Code | |:-----------------------|:---------------------| | Length is correct (20) | ``len(value) == 20`` | ```python assert( len(value) == 20 ) return value ``` #### Hash | Hash Type | Usage | |:---------:|:------------------------------------------------| | `hashN` | Hash of arbitrary byte length `N`. | | Checks to perform | Code | |:---------------------------------------|:---------------------| | Length in bytes is correct for `hashN` | ``len(value) == N`` | ##### hashN ```python assert(len(value) == N) return value ``` #### Bytes For general `bytes` type: 1. Get the length/number of bytes; Encode into a `4-byte` integer. 2. Append the value to the length and return: ``[ length_bytes ] + [ value_bytes ]`` | Check to perform | Code | |:-------------------------------------|:-----------------------| | Length of bytes can fit into 4 bytes | ``len(value) < 2**32`` | ```python assert(len(value) < 2**32) byte_length = (len(value)).to_bytes(LENGTH_BYTES, 'big') return byte_length + value ``` #### List/Vectors Lists are a collection of elements of the same homogeneous type. | Check to perform | Code | |:--------------------------------------------|:----------------------------| | Length of serialized list fits into 4 bytes | ``len(serialized) < 2**32`` | 1. Get the number of raw bytes to serialize: it is ``len(list) * sizeof(element)``. * Encode that as a `4-byte` **big endian** `uint32`. 2. Append the elements in a packed manner. * *Note on efficiency*: consider using a container that does not need to iterate over all elements to get its length. For example Python lists, C++ vectors or Rust Vec. **Example in Python** ```python serialized_list_string = b'' for item in value: serialized_list_string += serialize(item) assert(len(serialized_list_string) < 2**32) serialized_len = (len(serialized_list_string).to_bytes(LENGTH_BYTES, 'big')) return serialized_len + serialized_list_string ``` #### Container A container represents a heterogenous, associative collection of key-value pairs. Each pair is referred to as a `field`. To get the value for a given field, you supply the key which is a symbol unique to the container referred to as the field's `name`. The container data type is analogous to the `struct` type found in many languages like C or Go. To serialize a container, obtain the set of its field's names and sort them lexicographically. For each field name in this sorted list, obtain the corresponding value and serialize it. Tightly pack the complete set of serialized values in the same order as the sorted field names into a buffer. Calculate the size of this buffer of serialized bytes and encode as a `4-byte` **big endian** `uint32`. Prepend the encoded length to the buffer. The result of this concatenation is the final serialized value of the container. | Check to perform | Code | |:--------------------------------------------|:----------------------------| | Length of serialized fields fits into 4 bytes | ``len(serialized) < 2**32`` | To serialize: 1. Get the names of the container's fields and sort them. 2. For each name in the sorted list, obtain the corresponding value from the container and serialize it. Place this serialized value into a buffer. The serialized values should be tightly packed. 3. Get the number of raw bytes in the serialized buffer. Encode that number as a `4-byte` **big endian** `uint32`. 4. Prepend the length to the serialized buffer. **Example in Python** ```python def get_field_names(typ): return typ.fields.keys() def get_value_for_field_name(value, field_name): return getattr(value, field_name) def get_type_for_field_name(typ, field_name): return typ.fields[field_name] serialized_buffer = b'' typ = type(value) for field_name in sorted(get_field_names(typ)): field_value = get_value_for_field_name(value, field_name) field_type = get_type_for_field_name(typ, field_name) serialized_buffer += serialize(field_value, field_type) assert(len(serialized_buffer) < 2**32) serialized_len = (len(serialized_buffer).to_bytes(LENGTH_BYTES, 'big')) return serialized_len + serialized_buffer ``` ### Deserialize/Decode The decoding requires knowledge of the type of the item to be decoded. When performing decoding on an entire serialized string, it also requires knowledge of the order in which the objects have been serialized. Note: Each return will provide ``deserialized_object, new_index`` keeping track of the new index. At each step, the following checks should be made: | Check to perform | Check | |:-------------------------|:-----------------------------------------------------------| | Ensure sufficient length | ``length(rawbytes) >= current_index + deserialize_length`` | #### uint Convert directly from bytes into integer utilising the number of bytes the same size as the integer length. (e.g. ``uint16 == 2 bytes``) All integers are interpreted as **big endian**. ```python assert(len(rawbytes) >= current_index + int_size) byte_length = int_size / 8 new_index = current_index + int_size return int.from_bytes(rawbytes[current_index:current_index+int_size], 'big'), new_index ``` #### Bool Return True if 0x01, False if 0x00. ```python assert rawbytes in (b'\x00', b'\x01') return True if rawbytes == b'\x01' else False ``` #### Address Return the 20-byte deserialized address. ```python assert(len(rawbytes) >= current_index + 20) new_index = current_index + 20 return rawbytes[current_index:current_index+20], new_index ``` #### Hash ##### hashN Return the `N` bytes. ```python assert(len(rawbytes) >= current_index + N) new_index = current_index + N return rawbytes[current_index:current_index+N], new_index ``` #### Bytes Get the length of the bytes, return the bytes. | Check to perform | code | |:--------------------------------------------------|:-------------------------------------------------| | rawbytes has enough left for length | ``len(rawbytes) > current_index + LENGTH_BYTES`` | | bytes to return not greater than serialized bytes | ``len(rawbytes) > bytes_end `` | ```python assert(len(rawbytes) > current_index + LENGTH_BYTES) bytes_length = int.from_bytes(rawbytes[current_index:current_index + LENGTH_BYTES], 'big') bytes_start = current_index + LENGTH_BYTES bytes_end = bytes_start + bytes_length new_index = bytes_end assert(len(rawbytes) >= bytes_end) return rawbytes[bytes_start:bytes_end], new_index ``` #### List/Vectors Deserialize each element in the list. 1. Get the length of the serialized list. 2. Loop through deserializing each item in the list until you reach the entire length of the list. | Check to perform | code | |:------------------------------------------|:----------------------------------------------------------------| | rawbytes has enough left for length | ``len(rawbytes) > current_index + LENGTH_BYTES`` | | list is not greater than serialized bytes | ``len(rawbytes) > current_index + LENGTH_BYTES + total_length`` | ```python assert(len(rawbytes) > current_index + LENGTH_BYTES) total_length = int.from_bytes(rawbytes[current_index:current_index + LENGTH_BYTES], 'big') new_index = current_index + LENGTH_BYTES + total_length assert(len(rawbytes) >= new_index) item_index = current_index + LENGTH_BYTES deserialized_list = [] while item_index < new_index: object, item_index = deserialize(rawbytes, item_index, item_type) deserialized_list.append(object) return deserialized_list, new_index ``` #### Container Refer to the section on container encoding for some definitions. To deserialize a container, loop over each field in the container and use the type of that field to know what kind of deserialization to perform. Consume successive elements of the data stream for each successful deserialization. Instantiate a container with the full set of deserialized data, matching each member with the corresponding field. | Check to perform | code | |:------------------------------------------|:----------------------------------------------------------------| | rawbytes has enough left for length | ``len(rawbytes) > current_index + LENGTH_BYTES`` | | list is not greater than serialized bytes | ``len(rawbytes) > current_index + LENGTH_BYTES + total_length`` | To deserialize: 1. Get the names of the container's fields and sort them. 2. For each name in the sorted list, attempt to deserialize a value for that type. Collect these values as they will be used to construct an instance of the container. 3. Construct a container instance after successfully consuming the entire subset of the stream for the serialized container. **Example in Python** ```python def get_field_names(typ): return typ.fields.keys() def get_value_for_field_name(value, field_name): return getattr(value, field_name) def get_type_for_field_name(typ, field_name): return typ.fields[field_name] class Container: # this is the container; here we will define an empty class for demonstration pass # get a reference to the type in some way... container = Container() typ = type(container) assert(len(rawbytes) > current_index + LENGTH_BYTES) total_length = int.from_bytes(rawbytes[current_index:current_index + LENGTH_BYTES], 'big') new_index = current_index + LENGTH_BYTES + total_length assert(len(rawbytes) >= new_index) item_index = current_index + LENGTH_BYTES values = {} for field_name in sorted(get_field_names(typ)): field_name_type = get_type_for_field_name(typ, field_name) values[field_name], item_index = deserialize(data, item_index, field_name_type) assert item_index == start + LENGTH_BYTES + length return typ(**values), item_index ``` ### Tree Hash The below `SSZTreeHash` algorithm is defined recursively in the case of lists and containers, and it outputs a value equal to or less than 32 bytes in size. For the final output only (ie. not intermediate outputs), if the output is less than 32 bytes, right-zero-pad it to 32 bytes. The goal is collision resistance *within* each type, not between types. Refer to [Appendix A](https://github.com/ethereum/eth2.0-specs/blob/master/specs/core/0_beacon-chain.md#appendix-a---hash-function) of Phase 0 of the [Eth2.0 specs](https://github.com/ethereum/eth2.0-specs) for a definition of the hash function used below, `hash(x)`. #### `uint8`..`uint256`, `bool`, `address`, `hash1`..`hash32` Return the serialization of the value. #### `uint264`..`uintN`, `bytes`, `hash33`..`hashN` Return the hash of the serialization of the value. #### List/Vectors First, we define some helpers and then the Merkle tree function. ```python # Merkle tree hash of a list of homogenous, non-empty items def merkle_hash(lst): # Store length of list (to compensate for non-bijectiveness of padding) datalen = len(lst).to_bytes(32, 'big') if len(lst) == 0: # Handle empty list case chunkz = [b'\x00' * SSZ_CHUNK_SIZE] elif len(lst[0]) < SSZ_CHUNK_SIZE: # See how many items fit in a chunk items_per_chunk = SSZ_CHUNK_SIZE // len(lst[0]) # Build a list of chunks based on the number of items in the chunk chunkz = [b''.join(lst[i:i+items_per_chunk]) for i in range(0, len(lst), items_per_chunk)] else: # Leave large items alone chunkz = lst # Tree-hash while len(chunkz) > 1: if len(chunkz) % 2 == 1: chunkz.append(b'\x00' * SSZ_CHUNK_SIZE) chunkz = [hash(chunkz[i] + chunkz[i+1]) for i in range(0, len(chunkz), 2)] # Return hash of root and length data return hash(chunkz[0] + datalen) ``` To `SSZTreeHash` a list, we simply do: ```python return merkle_hash([SSZTreeHash(item) for item in value]) ``` Where the inner `SSZTreeHash` is a recursive application of the tree-hashing function (returning less than 32 bytes for short single values). #### Container Recursively tree hash the values in the container in order sorted by key, and return the hash of the concatenation of the results. ```python return hash(b''.join([SSZTreeHash(getattr(x, field)) for field in sorted(value.fields))) ``` ## Implementations | Language | Implementation | Description | |:--------:|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------| | Python | [ https://github.com/ethereum/beacon_chain/blob/master/ssz/ssz.py ](https://github.com/ethereum/beacon_chain/blob/master/ssz/ssz.py) | Beacon chain reference implementation written in Python. | | Rust | [ https://github.com/sigp/lighthouse/tree/master/beacon_chain/utils/ssz ](https://github.com/sigp/lighthouse/tree/master/beacon_chain/utils/ssz) | Lighthouse (Rust Ethereum 2.0 Node) maintained SSZ. | | Nim | [ https://github.com/status-im/nim-beacon-chain/blob/master/beacon_chain/ssz.nim ](https://github.com/status-im/nim-beacon-chain/blob/master/beacon_chain/ssz.nim) | Nim Implementation maintained SSZ. | | Rust | [ https://github.com/paritytech/shasper/tree/master/util/ssz ](https://github.com/paritytech/shasper/tree/master/util/ssz) | Shasper implementation of SSZ maintained by ParityTech. | | Javascript | [ https://github.com/ChainSafeSystems/ssz-js/blob/master/src/index.js ](https://github.com/ChainSafeSystems/ssz-js/blob/master/src/index.js) | Javascript Implementation maintained SSZ | | Java | [ https://www.github.com/ConsenSys/cava/tree/master/ssz ](https://www.github.com/ConsenSys/cava/tree/master/ssz) | SSZ Java library part of the Cava suite | ## Copyright Copyright and related rights waived via [CC0](https://creativecommons.org/publicdomain/zero/1.0/).