# Deneb -- Polynomial Commitments ## Table of contents - [Introduction](#introduction) - [Custom types](#custom-types) - [Constants](#constants) - [Preset](#preset) - [Blob](#blob) - [Trusted setup](#trusted-setup) - [Helper functions](#helper-functions) - [Bit-reversal permutation](#bit-reversal-permutation) - [`is_power_of_two`](#is_power_of_two) - [`reverse_bits`](#reverse_bits) - [`bit_reversal_permutation`](#bit_reversal_permutation) - [BLS12-381 helpers](#bls12-381-helpers) - [`hash_to_bls_field`](#hash_to_bls_field) - [`bytes_to_bls_field`](#bytes_to_bls_field) - [`bls_field_to_bytes`](#bls_field_to_bytes) - [`validate_kzg_g1`](#validate_kzg_g1) - [`bytes_to_kzg_commitment`](#bytes_to_kzg_commitment) - [`bytes_to_kzg_proof`](#bytes_to_kzg_proof) - [`blob_to_polynomial`](#blob_to_polynomial) - [`compute_challenge`](#compute_challenge) - [`bls_modular_inverse`](#bls_modular_inverse) - [`div`](#div) - [`g1_lincomb`](#g1_lincomb) - [`compute_powers`](#compute_powers) - [`compute_roots_of_unity`](#compute_roots_of_unity) - [Polynomials](#polynomials) - [`evaluate_polynomial_in_evaluation_form`](#evaluate_polynomial_in_evaluation_form) - [KZG](#kzg) - [`blob_to_kzg_commitment`](#blob_to_kzg_commitment) - [`verify_kzg_proof`](#verify_kzg_proof) - [`verify_kzg_proof_impl`](#verify_kzg_proof_impl) - [`verify_kzg_proof_batch`](#verify_kzg_proof_batch) - [`compute_kzg_proof`](#compute_kzg_proof) - [`compute_quotient_eval_within_domain`](#compute_quotient_eval_within_domain) - [`compute_kzg_proof_impl`](#compute_kzg_proof_impl) - [`compute_blob_kzg_proof`](#compute_blob_kzg_proof) - [`verify_blob_kzg_proof`](#verify_blob_kzg_proof) - [`verify_blob_kzg_proof_batch`](#verify_blob_kzg_proof_batch) ## Introduction This document specifies basic polynomial operations and KZG polynomial commitment operations that are essential for the implementation of the EIP-4844 feature in the Deneb specification. The implementations are not optimized for performance, but readability. All practical implementations should optimize the polynomial operations. Functions flagged as "Public method" MUST be provided by the underlying KZG library as public functions. All other functions are private functions used internally by the KZG library. Public functions MUST accept raw bytes as input and perform the required cryptographic normalization before invoking any internal functions. ## Custom types | Name | SSZ equivalent | Description | | - | - | - | | `G1Point` | `Bytes48` | | | `G2Point` | `Bytes96` | | | `BLSFieldElement` | `uint256` | Validation: `x < BLS_MODULUS` | | `KZGCommitment` | `Bytes48` | Validation: Perform [BLS standard's](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-2.5) "KeyValidate" check but do allow the identity point | | `KZGProof` | `Bytes48` | Same as for `KZGCommitment` | | `Polynomial` | `Vector[BLSFieldElement, FIELD_ELEMENTS_PER_BLOB]` | A polynomial in evaluation form | | `Blob` | `ByteVector[BYTES_PER_FIELD_ELEMENT * FIELD_ELEMENTS_PER_BLOB]` | A basic data blob | ## Constants | Name | Value | Notes | | - | - | - | | `BLS_MODULUS` | `52435875175126190479447740508185965837690552500527637822603658699938581184513` | Scalar field modulus of BLS12-381 | | `BYTES_PER_COMMITMENT` | `uint64(48)` | The number of bytes in a KZG commitment | | `BYTES_PER_PROOF` | `uint64(48)` | The number of bytes in a KZG proof | | `BYTES_PER_FIELD_ELEMENT` | `uint64(32)` | Bytes used to encode a BLS scalar field element | | `BYTES_PER_BLOB` | `uint64(BYTES_PER_FIELD_ELEMENT * FIELD_ELEMENTS_PER_BLOB)` | The number of bytes in a blob | | `G1_POINT_AT_INFINITY` | `Bytes48(b'\xc0' + b'\x00' * 47)` | Serialized form of the point at infinity on the G1 group | | `KZG_ENDIANNESS` | `'big'` | The endianness of the field elements including blobs | | `PRIMITIVE_ROOT_OF_UNITY` | `7` | The primitive root of unity from which all roots of unity should be derived | ## Preset ### Blob | Name | Value | | - | - | | `FIELD_ELEMENTS_PER_BLOB` | `uint64(4096)` | | `FIAT_SHAMIR_PROTOCOL_DOMAIN` | `b'FSBLOBVERIFY_V1_'` | | `RANDOM_CHALLENGE_KZG_BATCH_DOMAIN` | `b'RCKZGBATCH___V1_'` | ### Trusted setup | Name | Value | | - | - | | `KZG_SETUP_G2_LENGTH` | `65` | | `KZG_SETUP_G1_MONOMIAL` | `Vector[G1Point, FIELD_ELEMENTS_PER_BLOB]` | | `KZG_SETUP_G1_LAGRANGE` | `Vector[G1Point, FIELD_ELEMENTS_PER_BLOB]` | | `KZG_SETUP_G2_MONOMIAL` | `Vector[G2Point, KZG_SETUP_G2_LENGTH]` | ## Helper functions ### Bit-reversal permutation All polynomials (which are always given in Lagrange form) should be interpreted as being in bit-reversal permutation. In practice, clients can implement this by storing the lists `KZG_SETUP_G1_LAGRANGE` and roots of unity in bit-reversal permutation, so these functions only have to be called once at startup. #### `is_power_of_two` ```python def is_power_of_two(value: int) -> bool: """ Check if ``value`` is a power of two integer. """ return (value > 0) and (value & (value - 1) == 0) ``` #### `reverse_bits` ```python def reverse_bits(n: int, order: int) -> int: """ Reverse the bit order of an integer ``n``. """ assert is_power_of_two(order) # Convert n to binary with the same number of bits as "order" - 1, then reverse its bit order return int(('{:0' + str(order.bit_length() - 1) + 'b}').format(n)[::-1], 2) ``` #### `bit_reversal_permutation` ```python def bit_reversal_permutation(sequence: Sequence[T]) -> Sequence[T]: """ Return a copy with bit-reversed permutation. The permutation is an involution (inverts itself). The input and output are a sequence of generic type ``T`` objects. """ return [sequence[reverse_bits(i, len(sequence))] for i in range(len(sequence))] ``` ### BLS12-381 helpers #### `hash_to_bls_field` ```python def hash_to_bls_field(data: bytes) -> BLSFieldElement: """ Hash ``data`` and convert the output to a BLS scalar field element. The output is not uniform over the BLS field. """ hashed_data = hash(data) return BLSFieldElement(int.from_bytes(hashed_data, KZG_ENDIANNESS) % BLS_MODULUS) ``` #### `bytes_to_bls_field` ```python def bytes_to_bls_field(b: Bytes32) -> BLSFieldElement: """ Convert untrusted bytes to a trusted and validated BLS scalar field element. This function does not accept inputs greater than the BLS modulus. """ field_element = int.from_bytes(b, KZG_ENDIANNESS) assert field_element < BLS_MODULUS return BLSFieldElement(field_element) ``` #### `bls_field_to_bytes` ```python def bls_field_to_bytes(x: BLSFieldElement) -> Bytes32: return int.to_bytes(x % BLS_MODULUS, 32, KZG_ENDIANNESS) ``` #### `validate_kzg_g1` ```python def validate_kzg_g1(b: Bytes48) -> None: """ Perform BLS validation required by the types `KZGProof` and `KZGCommitment`. """ if b == G1_POINT_AT_INFINITY: return assert bls.KeyValidate(b) ``` #### `bytes_to_kzg_commitment` ```python def bytes_to_kzg_commitment(b: Bytes48) -> KZGCommitment: """ Convert untrusted bytes into a trusted and validated KZGCommitment. """ validate_kzg_g1(b) return KZGCommitment(b) ``` #### `bytes_to_kzg_proof` ```python def bytes_to_kzg_proof(b: Bytes48) -> KZGProof: """ Convert untrusted bytes into a trusted and validated KZGProof. """ validate_kzg_g1(b) return KZGProof(b) ``` #### `blob_to_polynomial` ```python def blob_to_polynomial(blob: Blob) -> Polynomial: """ Convert a blob to list of BLS field scalars. """ polynomial = Polynomial() for i in range(FIELD_ELEMENTS_PER_BLOB): value = bytes_to_bls_field(blob[i * BYTES_PER_FIELD_ELEMENT: (i + 1) * BYTES_PER_FIELD_ELEMENT]) polynomial[i] = value return polynomial ``` #### `compute_challenge` ```python def compute_challenge(blob: Blob, commitment: KZGCommitment) -> BLSFieldElement: """ Return the Fiat-Shamir challenge required by the rest of the protocol. """ # Append the degree of the polynomial as a domain separator degree_poly = int.to_bytes(FIELD_ELEMENTS_PER_BLOB, 16, KZG_ENDIANNESS) data = FIAT_SHAMIR_PROTOCOL_DOMAIN + degree_poly data += blob data += commitment # Transcript has been prepared: time to create the challenge return hash_to_bls_field(data) ``` #### `bls_modular_inverse` ```python def bls_modular_inverse(x: BLSFieldElement) -> BLSFieldElement: """ Compute the modular inverse of x (for x != 0) i.e. return y such that x * y % BLS_MODULUS == 1 """ assert (int(x) % BLS_MODULUS) != 0 return BLSFieldElement(pow(x, -1, BLS_MODULUS)) ``` #### `div` ```python def div(x: BLSFieldElement, y: BLSFieldElement) -> BLSFieldElement: """ Divide two field elements: ``x`` by `y``. """ return BLSFieldElement((int(x) * int(bls_modular_inverse(y))) % BLS_MODULUS) ``` #### `g1_lincomb` ```python def g1_lincomb(points: Sequence[KZGCommitment], scalars: Sequence[BLSFieldElement]) -> KZGCommitment: """ BLS multiscalar multiplication. This function can be optimized using Pippenger's algorithm and variants. """ assert len(points) == len(scalars) result = bls.Z1() for x, a in zip(points, scalars): result = bls.add(result, bls.multiply(bls.bytes48_to_G1(x), a)) return KZGCommitment(bls.G1_to_bytes48(result)) ``` #### `compute_powers` ```python def compute_powers(x: BLSFieldElement, n: uint64) -> Sequence[BLSFieldElement]: """ Return ``x`` to power of [0, n-1], if n > 0. When n==0, an empty array is returned. """ current_power = 1 powers = [] for _ in range(n): powers.append(BLSFieldElement(current_power)) current_power = current_power * int(x) % BLS_MODULUS return powers ``` #### `compute_roots_of_unity` ```python def compute_roots_of_unity(order: uint64) -> Sequence[BLSFieldElement]: """ Return roots of unity of ``order``. """ assert (BLS_MODULUS - 1) % int(order) == 0 root_of_unity = BLSFieldElement(pow(PRIMITIVE_ROOT_OF_UNITY, (BLS_MODULUS - 1) // int(order), BLS_MODULUS)) return compute_powers(root_of_unity, order) ``` ### Polynomials #### `evaluate_polynomial_in_evaluation_form` ```python def evaluate_polynomial_in_evaluation_form(polynomial: Polynomial, z: BLSFieldElement) -> BLSFieldElement: """ Evaluate a polynomial (in evaluation form) at an arbitrary point ``z``. - When ``z`` is in the domain, the evaluation can be found by indexing the polynomial at the position that ``z`` is in the domain. - When ``z`` is not in the domain, the barycentric formula is used: f(z) = (z**WIDTH - 1) / WIDTH * sum_(i=0)^WIDTH (f(DOMAIN[i]) * DOMAIN[i]) / (z - DOMAIN[i]) """ width = len(polynomial) assert width == FIELD_ELEMENTS_PER_BLOB inverse_width = bls_modular_inverse(BLSFieldElement(width)) roots_of_unity_brp = bit_reversal_permutation(compute_roots_of_unity(FIELD_ELEMENTS_PER_BLOB)) # If we are asked to evaluate within the domain, we already know the answer if z in roots_of_unity_brp: eval_index = roots_of_unity_brp.index(z) return BLSFieldElement(polynomial[eval_index]) result = 0 for i in range(width): a = BLSFieldElement(int(polynomial[i]) * int(roots_of_unity_brp[i]) % BLS_MODULUS) b = BLSFieldElement((int(BLS_MODULUS) + int(z) - int(roots_of_unity_brp[i])) % BLS_MODULUS) result += int(div(a, b) % BLS_MODULUS) result = result * int(BLS_MODULUS + pow(z, width, BLS_MODULUS) - 1) * int(inverse_width) return BLSFieldElement(result % BLS_MODULUS) ``` ### KZG KZG core functions. These are also defined in Deneb execution specs. #### `blob_to_kzg_commitment` ```python def blob_to_kzg_commitment(blob: Blob) -> KZGCommitment: """ Public method. """ assert len(blob) == BYTES_PER_BLOB return g1_lincomb(bit_reversal_permutation(KZG_SETUP_G1_LAGRANGE), blob_to_polynomial(blob)) ``` #### `verify_kzg_proof` ```python def verify_kzg_proof(commitment_bytes: Bytes48, z_bytes: Bytes32, y_bytes: Bytes32, proof_bytes: Bytes48) -> bool: """ Verify KZG proof that ``p(z) == y`` where ``p(z)`` is the polynomial represented by ``polynomial_kzg``. Receives inputs as bytes. Public method. """ assert len(commitment_bytes) == BYTES_PER_COMMITMENT assert len(z_bytes) == BYTES_PER_FIELD_ELEMENT assert len(y_bytes) == BYTES_PER_FIELD_ELEMENT assert len(proof_bytes) == BYTES_PER_PROOF return verify_kzg_proof_impl(bytes_to_kzg_commitment(commitment_bytes), bytes_to_bls_field(z_bytes), bytes_to_bls_field(y_bytes), bytes_to_kzg_proof(proof_bytes)) ``` #### `verify_kzg_proof_impl` ```python def verify_kzg_proof_impl(commitment: KZGCommitment, z: BLSFieldElement, y: BLSFieldElement, proof: KZGProof) -> bool: """ Verify KZG proof that ``p(z) == y`` where ``p(z)`` is the polynomial represented by ``polynomial_kzg``. """ # Verify: P - y = Q * (X - z) X_minus_z = bls.add( bls.bytes96_to_G2(KZG_SETUP_G2_MONOMIAL[1]), bls.multiply(bls.G2(), (BLS_MODULUS - z) % BLS_MODULUS), ) P_minus_y = bls.add(bls.bytes48_to_G1(commitment), bls.multiply(bls.G1(), (BLS_MODULUS - y) % BLS_MODULUS)) return bls.pairing_check([ [P_minus_y, bls.neg(bls.G2())], [bls.bytes48_to_G1(proof), X_minus_z] ]) ``` #### `verify_kzg_proof_batch` ```python def verify_kzg_proof_batch(commitments: Sequence[KZGCommitment], zs: Sequence[BLSFieldElement], ys: Sequence[BLSFieldElement], proofs: Sequence[KZGProof]) -> bool: """ Verify multiple KZG proofs efficiently. """ assert len(commitments) == len(zs) == len(ys) == len(proofs) # Compute a random challenge. Note that it does not have to be computed from a hash, # r just has to be random. degree_poly = int.to_bytes(FIELD_ELEMENTS_PER_BLOB, 8, KZG_ENDIANNESS) num_commitments = int.to_bytes(len(commitments), 8, KZG_ENDIANNESS) data = RANDOM_CHALLENGE_KZG_BATCH_DOMAIN + degree_poly + num_commitments # Append all inputs to the transcript before we hash for commitment, z, y, proof in zip(commitments, zs, ys, proofs): data += commitment \ + int.to_bytes(z, BYTES_PER_FIELD_ELEMENT, KZG_ENDIANNESS) \ + int.to_bytes(y, BYTES_PER_FIELD_ELEMENT, KZG_ENDIANNESS) \ + proof r = hash_to_bls_field(data) r_powers = compute_powers(r, len(commitments)) # Verify: e(sum r^i proof_i, [s]) == # e(sum r^i (commitment_i - [y_i]) + sum r^i z_i proof_i, [1]) proof_lincomb = g1_lincomb(proofs, r_powers) proof_z_lincomb = g1_lincomb( proofs, [BLSFieldElement((int(z) * int(r_power)) % BLS_MODULUS) for z, r_power in zip(zs, r_powers)], ) C_minus_ys = [bls.add(bls.bytes48_to_G1(commitment), bls.multiply(bls.G1(), (BLS_MODULUS - y) % BLS_MODULUS)) for commitment, y in zip(commitments, ys)] C_minus_y_as_KZGCommitments = [KZGCommitment(bls.G1_to_bytes48(x)) for x in C_minus_ys] C_minus_y_lincomb = g1_lincomb(C_minus_y_as_KZGCommitments, r_powers) return bls.pairing_check([ [bls.bytes48_to_G1(proof_lincomb), bls.neg(bls.bytes96_to_G2(KZG_SETUP_G2_MONOMIAL[1]))], [bls.add(bls.bytes48_to_G1(C_minus_y_lincomb), bls.bytes48_to_G1(proof_z_lincomb)), bls.G2()] ]) ``` #### `compute_kzg_proof` ```python def compute_kzg_proof(blob: Blob, z_bytes: Bytes32) -> Tuple[KZGProof, Bytes32]: """ Compute KZG proof at point `z` for the polynomial represented by `blob`. Do this by computing the quotient polynomial in evaluation form: q(x) = (p(x) - p(z)) / (x - z). Public method. """ assert len(blob) == BYTES_PER_BLOB assert len(z_bytes) == BYTES_PER_FIELD_ELEMENT polynomial = blob_to_polynomial(blob) proof, y = compute_kzg_proof_impl(polynomial, bytes_to_bls_field(z_bytes)) return proof, y.to_bytes(BYTES_PER_FIELD_ELEMENT, KZG_ENDIANNESS) ``` #### `compute_quotient_eval_within_domain` ```python def compute_quotient_eval_within_domain(z: BLSFieldElement, polynomial: Polynomial, y: BLSFieldElement ) -> BLSFieldElement: """ Given `y == p(z)` for a polynomial `p(x)`, compute `q(z)`: the KZG quotient polynomial evaluated at `z` for the special case where `z` is in roots of unity. For more details, read https://dankradfeist.de/ethereum/2021/06/18/pcs-multiproofs.html section "Dividing when one of the points is zero". The code below computes q(x_m) for the roots of unity special case. """ roots_of_unity_brp = bit_reversal_permutation(compute_roots_of_unity(FIELD_ELEMENTS_PER_BLOB)) result = 0 for i, omega_i in enumerate(roots_of_unity_brp): if omega_i == z: # skip the evaluation point in the sum continue f_i = int(BLS_MODULUS) + int(polynomial[i]) - int(y) % BLS_MODULUS numerator = f_i * int(omega_i) % BLS_MODULUS denominator = int(z) * (int(BLS_MODULUS) + int(z) - int(omega_i)) % BLS_MODULUS result += int(div(BLSFieldElement(numerator), BLSFieldElement(denominator))) return BLSFieldElement(result % BLS_MODULUS) ``` #### `compute_kzg_proof_impl` ```python def compute_kzg_proof_impl(polynomial: Polynomial, z: BLSFieldElement) -> Tuple[KZGProof, BLSFieldElement]: """ Helper function for `compute_kzg_proof()` and `compute_blob_kzg_proof()`. """ roots_of_unity_brp = bit_reversal_permutation(compute_roots_of_unity(FIELD_ELEMENTS_PER_BLOB)) # For all x_i, compute p(x_i) - p(z) y = evaluate_polynomial_in_evaluation_form(polynomial, z) polynomial_shifted = [BLSFieldElement((int(p) - int(y)) % BLS_MODULUS) for p in polynomial] # For all x_i, compute (x_i - z) denominator_poly = [BLSFieldElement((int(x) - int(z)) % BLS_MODULUS) for x in roots_of_unity_brp] # Compute the quotient polynomial directly in evaluation form quotient_polynomial = [BLSFieldElement(0)] * FIELD_ELEMENTS_PER_BLOB for i, (a, b) in enumerate(zip(polynomial_shifted, denominator_poly)): if b == 0: # The denominator is zero hence `z` is a root of unity: we must handle it as a special case quotient_polynomial[i] = compute_quotient_eval_within_domain(roots_of_unity_brp[i], polynomial, y) else: # Compute: q(x_i) = (p(x_i) - p(z)) / (x_i - z). quotient_polynomial[i] = div(a, b) return KZGProof(g1_lincomb(bit_reversal_permutation(KZG_SETUP_G1_LAGRANGE), quotient_polynomial)), y ``` #### `compute_blob_kzg_proof` ```python def compute_blob_kzg_proof(blob: Blob, commitment_bytes: Bytes48) -> KZGProof: """ Given a blob, return the KZG proof that is used to verify it against the commitment. This method does not verify that the commitment is correct with respect to `blob`. Public method. """ assert len(blob) == BYTES_PER_BLOB assert len(commitment_bytes) == BYTES_PER_COMMITMENT commitment = bytes_to_kzg_commitment(commitment_bytes) polynomial = blob_to_polynomial(blob) evaluation_challenge = compute_challenge(blob, commitment) proof, _ = compute_kzg_proof_impl(polynomial, evaluation_challenge) return proof ``` #### `verify_blob_kzg_proof` ```python def verify_blob_kzg_proof(blob: Blob, commitment_bytes: Bytes48, proof_bytes: Bytes48) -> bool: """ Given a blob and a KZG proof, verify that the blob data corresponds to the provided commitment. Public method. """ assert len(blob) == BYTES_PER_BLOB assert len(commitment_bytes) == BYTES_PER_COMMITMENT assert len(proof_bytes) == BYTES_PER_PROOF commitment = bytes_to_kzg_commitment(commitment_bytes) polynomial = blob_to_polynomial(blob) evaluation_challenge = compute_challenge(blob, commitment) # Evaluate polynomial at `evaluation_challenge` y = evaluate_polynomial_in_evaluation_form(polynomial, evaluation_challenge) # Verify proof proof = bytes_to_kzg_proof(proof_bytes) return verify_kzg_proof_impl(commitment, evaluation_challenge, y, proof) ``` #### `verify_blob_kzg_proof_batch` ```python def verify_blob_kzg_proof_batch(blobs: Sequence[Blob], commitments_bytes: Sequence[Bytes48], proofs_bytes: Sequence[Bytes48]) -> bool: """ Given a list of blobs and blob KZG proofs, verify that they correspond to the provided commitments. Will return True if there are zero blobs/commitments/proofs. Public method. """ assert len(blobs) == len(commitments_bytes) == len(proofs_bytes) commitments, evaluation_challenges, ys, proofs = [], [], [], [] for blob, commitment_bytes, proof_bytes in zip(blobs, commitments_bytes, proofs_bytes): assert len(blob) == BYTES_PER_BLOB assert len(commitment_bytes) == BYTES_PER_COMMITMENT assert len(proof_bytes) == BYTES_PER_PROOF commitment = bytes_to_kzg_commitment(commitment_bytes) commitments.append(commitment) polynomial = blob_to_polynomial(blob) evaluation_challenge = compute_challenge(blob, commitment) evaluation_challenges.append(evaluation_challenge) ys.append(evaluate_polynomial_in_evaluation_form(polynomial, evaluation_challenge)) proofs.append(bytes_to_kzg_proof(proof_bytes)) return verify_kzg_proof_batch(commitments, evaluation_challenges, ys, proofs) ```