diff --git a/specs/bls_signature.md b/specs/bls_signature.md index 14a4f1cb7..beef19df5 100644 --- a/specs/bls_signature.md +++ b/specs/bls_signature.md @@ -88,7 +88,7 @@ def hash_to_G2(message_hash: Bytes32, domain: uint64) -> [uint384]: `modular_squareroot(x)` returns a solution `y` to `y**2 % q == x`, and `None` if none exists. If there are two solutions the one with higher imaginary component is favored; if both solutions have equal imaginary component the one with higher real component is favored (note that this is equivalent to saying that the single solution with either imaginary component > p/2 or imaginary component zero and real component > p/2 is favored). -The following is a sample implementation; implementers are free to implement modular square roots as they wish. Note that `x2 = -x1` is an _additive modular inverse_ so real and imaginary coefficients remain in `[0 .. q-1]`. `coerce_to_int(element: Fq) -> int` is a function that takes Fq element `element` (ie. integers `mod q`) and converts it to a regular integer. +The following is a sample implementation; implementers are free to implement modular square roots as they wish. Note that `x2 = -x1` is an _additive modular inverse_ so real and imaginary coefficients remain in `[0 .. q-1]`. `coerce_to_int(element: Fq) -> int` is a function that takes Fq element `element` (i.e. integers `mod q`) and converts it to a regular integer. ```python Fq2_order = q ** 2 - 1 diff --git a/specs/light_client/merkle_proofs.md b/specs/light_client/merkle_proofs.md index 63c018f2f..b38167bb5 100644 --- a/specs/light_client/merkle_proofs.md +++ b/specs/light_client/merkle_proofs.md @@ -102,7 +102,7 @@ def get_generalized_indices(obj: Any, path: List[int], root: int=1) -> List[int] ## Merkle multiproofs -We define a Merkle multiproof as a minimal subset of nodes in a Merkle tree needed to fully authenticate that a set of nodes actually are part of a Merkle tree with some specified root, at a particular set of generalized indices. For example, here is the Merkle multiproof for positions 0, 1, 6 in an 8-node Merkle tree (ie. generalized indices 8, 9, 14): +We define a Merkle multiproof as a minimal subset of nodes in a Merkle tree needed to fully authenticate that a set of nodes actually are part of a Merkle tree with some specified root, at a particular set of generalized indices. For example, here is the Merkle multiproof for positions 0, 1, 6 in an 8-node Merkle tree (i.e. generalized indices 8, 9, 14): ``` . diff --git a/specs/light_client/sync_protocol.md b/specs/light_client/sync_protocol.md index 900b2e64f..257590f4d 100644 --- a/specs/light_client/sync_protocol.md +++ b/specs/light_client/sync_protocol.md @@ -27,7 +27,7 @@ __NOTICE__: This document is a work-in-progress for researchers and implementers ### Expansions -We define an "expansion" of an object as an object where a field in an object that is meant to represent the `hash_tree_root` of another object is replaced by the object. Note that defining expansions is not a consensus-layer-change; it is merely a "re-interpretation" of the object. Particularly, the `hash_tree_root` of an expansion of an object is identical to that of the original object, and we can define expansions where, given a complete history, it is always possible to compute the expansion of any object in the history. The opposite of an expansion is a "summary" (eg. `BeaconBlockHeader` is a summary of `BeaconBlock`). +We define an "expansion" of an object as an object where a field in an object that is meant to represent the `hash_tree_root` of another object is replaced by the object. Note that defining expansions is not a consensus-layer-change; it is merely a "re-interpretation" of the object. Particularly, the `hash_tree_root` of an expansion of an object is identical to that of the original object, and we can define expansions where, given a complete history, it is always possible to compute the expansion of any object in the history. The opposite of an expansion is a "summary" (e.g. `BeaconBlockHeader` is a summary of `BeaconBlock`). We define two expansions: diff --git a/specs/validator/0_beacon-chain-validator.md b/specs/validator/0_beacon-chain-validator.md index 632bf2b62..cb19097dd 100644 --- a/specs/validator/0_beacon-chain-validator.md +++ b/specs/validator/0_beacon-chain-validator.md @@ -60,7 +60,7 @@ __NOTICE__: This document is a work-in-progress for researchers and implementers ## Introduction -This document represents the expected behavior of an "honest validator" with respect to Phase 0 of the Ethereum 2.0 protocol. This document does not distinguish between a "node" (ie. the functionality of following and reading the beacon chain) and a "validator client" (ie. the functionality of actively participating in consensus). The separation of concerns between these (potentially) two pieces of software is left as a design decision that is out of scope. +This document represents the expected behavior of an "honest validator" with respect to Phase 0 of the Ethereum 2.0 protocol. This document does not distinguish between a "node" (i.e. the functionality of following and reading the beacon chain) and a "validator client" (i.e. the functionality of actively participating in consensus). The separation of concerns between these (potentially) two pieces of software is left as a design decision that is out of scope. A validator is an entity that participates in the consensus of the Ethereum 2.0 protocol. This is an optional role for users in which they can post ETH as collateral and verify and attest to the validity of blocks to seek financial returns in exchange for building and securing the protocol. This is similar to proof of work networks in which a miner provides collateral in the form of hardware/hash-power to seek returns in exchange for building and securing the protocol. @@ -141,7 +141,7 @@ A validator has two primary responsibilities to the beacon chain -- [proposing b A validator is expected to propose a [`BeaconBlock`](../core/0_beacon-chain.md#beaconblock) at the beginning of any slot during which `get_beacon_proposer_index(state, slot)` returns the validator's `validator_index`. To propose, the validator selects the `BeaconBlock`, `parent`, that in their view of the fork choice is the head of the chain during `slot - 1`. The validator is to create, sign, and broadcast a `block` that is a child of `parent` and that executes a valid [beacon chain state transition](../core/0_beacon-chain.md#beacon-chain-state-transition-function). -There is one proposer per slot, so if there are N active validators any individual validator will on average be assigned to propose once per N slots (eg. at 312500 validators = 10 million ETH, that's once per ~3 weeks). +There is one proposer per slot, so if there are N active validators any individual validator will on average be assigned to propose once per N slots (e.g. at 312500 validators = 10 million ETH, that's once per ~3 weeks). #### Block header