diff --git a/js/build/embark.bundle.js b/js/build/embark.bundle.js index f33568a1..403c6785 100644 --- a/js/build/embark.bundle.js +++ b/js/build/embark.bundle.js @@ -372,6 +372,8 @@ var EmbarkJS = web3.version.getWhisper(function(err, res) { if (err) { console.log("whisper not available"); + } else if (web3.version.whisper >= 5) { + console.log("this version of whisper is not supported yet; try a version of geth bellow 1.6.1"); } else { self.currentMessages.identity = web3.shh.newIdentity(); } diff --git a/js/embark.js b/js/embark.js index b44548fb..3acaab72 100644 --- a/js/embark.js +++ b/js/embark.js @@ -325,6 +325,8 @@ EmbarkJS.Messages.setProvider = function(provider, options) { web3.version.getWhisper(function(err, res) { if (err) { console.log("whisper not available"); + } else if (web3.version.whisper >= 5) { + console.log("this version of whisper is not supported yet; try a version of geth bellow 1.6.1"); } else { self.currentMessages.identity = web3.shh.newIdentity(); } diff --git a/js/web3.js b/js/web3.js index b576349a..416e7971 100644 --- a/js/web3.js +++ b/js/web3.js @@ -1842,7 +1842,7 @@ module.exports = function (value, options) { }; -},{"crypto-js":59,"crypto-js/sha3":80}],20:[function(require,module,exports){ +},{"crypto-js":58,"crypto-js/sha3":79}],20:[function(require,module,exports){ /* This file is part of web3.js. @@ -1884,7 +1884,7 @@ var sha3 = require('./sha3.js'); var utf8 = require('utf8'); var unitMap = { - 'noether': '0', + 'noether': '0', 'wei': '1', 'kwei': '1000', 'Kwei': '1000', @@ -2104,7 +2104,7 @@ var toHex = function (val) { if (isBigNumber(val)) return fromDecimal(val); - if (isObject(val)) + if (typeof val === 'object') return fromUtf8(JSON.stringify(val)); // if its a negative number, pass it through fromDecimal @@ -2258,8 +2258,6 @@ var isAddress = function (address) { } }; - - /** * Checks if the given string is a checksummed address * @@ -2267,18 +2265,18 @@ var isAddress = function (address) { * @param {String} address the given HEX adress * @return {Boolean} */ -var isChecksumAddress = function (address) { +var isChecksumAddress = function (address) { // Check each case address = address.replace('0x',''); var addressHash = sha3(address.toLowerCase()); - for (var i = 0; i < 40; i++ ) { + for (var i = 0; i < 40; i++ ) { // the nth letter should be uppercase if the nth digit of casemap is 1 if ((parseInt(addressHash[i], 16) > 7 && address[i].toUpperCase() !== address[i]) || (parseInt(addressHash[i], 16) <= 7 && address[i].toLowerCase() !== address[i])) { return false; } } - return true; + return true; }; @@ -2290,15 +2288,15 @@ var isChecksumAddress = function (address) { * @param {String} address the given HEX adress * @return {String} */ -var toChecksumAddress = function (address) { +var toChecksumAddress = function (address) { if (typeof address === 'undefined') return ''; address = address.toLowerCase().replace('0x',''); var addressHash = sha3(address); var checksumAddress = '0x'; - for (var i = 0; i < address.length; i++ ) { - // If ith character is 9 to f then make it uppercase + for (var i = 0; i < address.length; i++ ) { + // If ith character is 9 to f then make it uppercase if (parseInt(addressHash[i], 16) > 7) { checksumAddress += address[i].toUpperCase(); } else { @@ -2370,7 +2368,7 @@ var isFunction = function (object) { * @return {Boolean} */ var isObject = function (object) { - return typeof object === 'object'; + return object !== null && !(object instanceof Array) && typeof object === 'object'; }; /** @@ -2410,6 +2408,38 @@ var isJson = function (str) { } }; +/** + * Returns true if given string is a valid Ethereum block header bloom. + * + * @method isBloom + * @param {String} hex encoded bloom filter + * @return {Boolean} + */ +var isBloom = function (bloom) { + if (!/^(0x)?[0-9a-f]{512}$/i.test(bloom)) { + return false; + } else if (/^(0x)?[0-9a-f]{512}$/.test(bloom) || /^(0x)?[0-9A-F]{512}$/.test(bloom)) { + return true; + } + return false; +}; + +/** + * Returns true if given string is a valid log topic. + * + * @method isTopic + * @param {String} hex encoded topic + * @return {Boolean} + */ +var isTopic = function (topic) { + if (!/^(0x)?[0-9a-f]{64}$/i.test(topic)) { + return false; + } else if (/^(0x)?[0-9a-f]{64}$/.test(topic) || /^(0x)?[0-9A-F]{64}$/.test(topic)) { + return true; + } + return false; +}; + module.exports = { padLeft: padLeft, padRight: padRight, @@ -2438,12 +2468,14 @@ module.exports = { isObject: isObject, isBoolean: isBoolean, isArray: isArray, - isJson: isJson + isJson: isJson, + isBloom: isBloom, + isTopic: isTopic, }; -},{"./sha3.js":19,"bignumber.js":"bignumber.js","utf8":85}],21:[function(require,module,exports){ +},{"./sha3.js":19,"bignumber.js":"bignumber.js","utf8":84}],21:[function(require,module,exports){ module.exports={ - "version": "0.18.2" + "version": "0.19.0" } },{}],22:[function(require,module,exports){ @@ -2549,6 +2581,8 @@ Web3.prototype.isAddress = utils.isAddress; Web3.prototype.isChecksumAddress = utils.isChecksumAddress; Web3.prototype.toChecksumAddress = utils.toChecksumAddress; Web3.prototype.isIBAN = utils.isIBAN; +Web3.prototype.padLeft = utils.padLeft; +Web3.prototype.padRight = utils.padRight; Web3.prototype.sha3 = function(string, options) { @@ -2957,7 +2991,7 @@ var ContractFactory = function (eth, abi) { if (options.value > 0) { var constructorAbi = abi.filter(function (json) { return json.type === 'constructor' && json.inputs.length === args.length; - })[0] || {}; + })[0] || {}; if (!constructorAbi.payable) { throw new Error('Cannot send value to non-payable constructor'); @@ -3092,8 +3126,11 @@ module.exports = ContractFactory; */ module.exports = { - InvalidNumberOfParams: function () { - return new Error('Invalid number of input parameters'); + InvalidNumberOfSolidityArgs: function () { + return new Error('Invalid number of arguments to Solidity function'); + }, + InvalidNumberOfRPCParams: function () { + return new Error('Invalid number of input parameters to RPC method'); }, InvalidConnection: function (host){ return new Error('CONNECTION ERROR: Couldn\'t connect to node '+ host +'.'); @@ -3523,7 +3560,9 @@ var Filter = function (requestManager, options, methods, formatter, callback, fi self.callbacks.forEach(function(cb){ cb(error); }); - filterCreationErrorCallback(error); + if (typeof filterCreationErrorCallback === 'function') { + filterCreationErrorCallback(error); + } } else { self.filterId = id; @@ -3937,6 +3976,7 @@ module.exports = { var coder = require('../solidity/coder'); var utils = require('../utils/utils'); +var errors = require('./errors'); var formatters = require('./formatters'); var sha3 = require('../utils/sha3'); @@ -3969,6 +4009,23 @@ SolidityFunction.prototype.extractDefaultBlock = function (args) { } }; +/** + * Should be called to check if the number of arguments is correct + * + * @method validateArgs + * @param {Array} arguments + * @throws {Error} if it is not + */ +SolidityFunction.prototype.validateArgs = function (args) { + var inputArgs = args.filter(function (a) { + // filter the options object but not arguments that are arrays + return !(utils.isObject(a) === true && utils.isArray(a) === false); + }); + if (inputArgs.length !== this._inputTypes.length) { + throw errors.InvalidNumberOfSolidityArgs(); + } +}; + /** * Should be used to create payload from arguments * @@ -3981,6 +4038,7 @@ SolidityFunction.prototype.toPayload = function (args) { if (args.length > this._inputTypes.length && utils.isObject(args[args.length -1])) { options = args[args.length - 1]; } + this.validateArgs(args); options.to = this._address; options.data = '0x' + this.signature() + coder.encodeParams(this._inputTypes, args); return options; @@ -4175,8 +4233,7 @@ SolidityFunction.prototype.attachToContract = function (contract) { module.exports = SolidityFunction; - -},{"../solidity/coder":7,"../utils/sha3":19,"../utils/utils":20,"./formatters":30}],32:[function(require,module,exports){ +},{"../solidity/coder":7,"../utils/sha3":19,"../utils/utils":20,"./errors":26,"./formatters":30}],32:[function(require,module,exports){ /* This file is part of web3.js. @@ -4331,7 +4388,7 @@ HttpProvider.prototype.isConnected = function() { module.exports = HttpProvider; -},{"./errors":26,"xhr2":86,"xmlhttprequest":17}],33:[function(require,module,exports){ +},{"./errors":26,"xhr2":85,"xmlhttprequest":17}],33:[function(require,module,exports){ /* This file is part of web3.js. @@ -4928,7 +4985,7 @@ Method.prototype.extractCallback = function (args) { */ Method.prototype.validateArgs = function (args) { if (args.length !== this.params) { - throw errors.InvalidNumberOfParams(); + throw errors.InvalidNumberOfRPCParams(); } }; @@ -5022,7 +5079,6 @@ Method.prototype.request = function () { module.exports = Method; - },{"../utils/utils":20,"./errors":26}],37:[function(require,module,exports){ /* This file is part of web3.js. @@ -5155,12 +5211,12 @@ function Eth(web3) { var self = this; - methods().forEach(function(method) { + methods().forEach(function(method) { method.attachToObject(self); method.setRequestManager(self._requestManager); }); - properties().forEach(function(p) { + properties().forEach(function(p) { p.attachToObject(self); p.setRequestManager(self._requestManager); }); @@ -5296,6 +5352,13 @@ var methods = function () { inputFormatter: [formatters.inputTransactionFormatter] }); + var signTransaction = new Method({ + name: 'signTransaction', + call: 'eth_signTransaction', + params: 1, + inputFormatter: [formatters.inputTransactionFormatter] + }); + var sign = new Method({ name: 'sign', call: 'eth_sign', @@ -5364,6 +5427,7 @@ var methods = function () { call, estimateGas, sendRawTransaction, + signTransaction, sendTransaction, sign, compileSolidity, @@ -5421,8 +5485,8 @@ Eth.prototype.contract = function (abi) { return factory; }; -Eth.prototype.filter = function (fil, callback) { - return new Filter(this._requestManager, fil, watches.eth(), formatters.outputLogFormatter, callback); +Eth.prototype.filter = function (fil, callback, filterCreationErrorCallback) { + return new Filter(this._requestManager, fil, watches.eth(), formatters.outputLogFormatter, callback, filterCreationErrorCallback); }; Eth.prototype.namereg = function () { @@ -5439,7 +5503,6 @@ Eth.prototype.isSyncing = function (callback) { module.exports = Eth; - },{"../../utils/config":18,"../../utils/utils":20,"../contract":25,"../filter":29,"../formatters":30,"../iban":33,"../method":36,"../namereg":44,"../property":45,"../syncing":48,"../transfer":49,"./watches":43}],39:[function(require,module,exports){ /* This file is part of web3.js. @@ -5548,6 +5611,25 @@ var methods = function () { inputFormatter: [null] }); + var importRawKey = new Method({ + name: 'importRawKey', + call: 'personal_importRawKey', + params: 2 + }); + + var sign = new Method({ + name: 'sign', + call: 'personal_sign', + params: 3, + inputFormatter: [null, formatters.inputAddressFormatter, null] + }); + + var ecRecover = new Method({ + name: 'ecRecover', + call: 'personal_ecRecover', + params: 2 + }); + var unlockAccount = new Method({ name: 'unlockAccount', call: 'personal_unlockAccount', @@ -5571,7 +5653,10 @@ var methods = function () { return [ newAccount, + importRawKey, unlockAccount, + ecRecover, + sign, sendTransaction, lockAccount ]; @@ -6595,8 +6680,6 @@ module.exports = transfer; },{"../contracts/SmartExchange.json":3,"./iban":33}],50:[function(require,module,exports){ - -},{}],51:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -6829,7 +6912,7 @@ module.exports = transfer; return CryptoJS.AES; })); -},{"./cipher-core":52,"./core":53,"./enc-base64":54,"./evpkdf":56,"./md5":61}],52:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52,"./enc-base64":53,"./evpkdf":55,"./md5":60}],51:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS @@ -7705,7 +7788,7 @@ module.exports = transfer; })); -},{"./core":53}],53:[function(require,module,exports){ +},{"./core":52}],52:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS @@ -8466,7 +8549,7 @@ module.exports = transfer; return CryptoJS; })); -},{}],54:[function(require,module,exports){ +},{}],53:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS @@ -8602,7 +8685,7 @@ module.exports = transfer; return CryptoJS.enc.Base64; })); -},{"./core":53}],55:[function(require,module,exports){ +},{"./core":52}],54:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS @@ -8752,7 +8835,7 @@ module.exports = transfer; return CryptoJS.enc.Utf16; })); -},{"./core":53}],56:[function(require,module,exports){ +},{"./core":52}],55:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -8885,7 +8968,7 @@ module.exports = transfer; return CryptoJS.EvpKDF; })); -},{"./core":53,"./hmac":58,"./sha1":77}],57:[function(require,module,exports){ +},{"./core":52,"./hmac":57,"./sha1":76}],56:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -8952,7 +9035,7 @@ module.exports = transfer; return CryptoJS.format.Hex; })); -},{"./cipher-core":52,"./core":53}],58:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52}],57:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS @@ -9096,7 +9179,7 @@ module.exports = transfer; })); -},{"./core":53}],59:[function(require,module,exports){ +},{"./core":52}],58:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -9115,7 +9198,7 @@ module.exports = transfer; return CryptoJS; })); -},{"./aes":51,"./cipher-core":52,"./core":53,"./enc-base64":54,"./enc-utf16":55,"./evpkdf":56,"./format-hex":57,"./hmac":58,"./lib-typedarrays":60,"./md5":61,"./mode-cfb":62,"./mode-ctr":64,"./mode-ctr-gladman":63,"./mode-ecb":65,"./mode-ofb":66,"./pad-ansix923":67,"./pad-iso10126":68,"./pad-iso97971":69,"./pad-nopadding":70,"./pad-zeropadding":71,"./pbkdf2":72,"./rabbit":74,"./rabbit-legacy":73,"./rc4":75,"./ripemd160":76,"./sha1":77,"./sha224":78,"./sha256":79,"./sha3":80,"./sha384":81,"./sha512":82,"./tripledes":83,"./x64-core":84}],60:[function(require,module,exports){ +},{"./aes":50,"./cipher-core":51,"./core":52,"./enc-base64":53,"./enc-utf16":54,"./evpkdf":55,"./format-hex":56,"./hmac":57,"./lib-typedarrays":59,"./md5":60,"./mode-cfb":61,"./mode-ctr":63,"./mode-ctr-gladman":62,"./mode-ecb":64,"./mode-ofb":65,"./pad-ansix923":66,"./pad-iso10126":67,"./pad-iso97971":68,"./pad-nopadding":69,"./pad-zeropadding":70,"./pbkdf2":71,"./rabbit":73,"./rabbit-legacy":72,"./rc4":74,"./ripemd160":75,"./sha1":76,"./sha224":77,"./sha256":78,"./sha3":79,"./sha384":80,"./sha512":81,"./tripledes":82,"./x64-core":83}],59:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS @@ -9192,7 +9275,7 @@ module.exports = transfer; return CryptoJS.lib.WordArray; })); -},{"./core":53}],61:[function(require,module,exports){ +},{"./core":52}],60:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS @@ -9461,7 +9544,7 @@ module.exports = transfer; return CryptoJS.MD5; })); -},{"./core":53}],62:[function(require,module,exports){ +},{"./core":52}],61:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -9540,7 +9623,7 @@ module.exports = transfer; return CryptoJS.mode.CFB; })); -},{"./cipher-core":52,"./core":53}],63:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52}],62:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -9657,7 +9740,7 @@ module.exports = transfer; return CryptoJS.mode.CTRGladman; })); -},{"./cipher-core":52,"./core":53}],64:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52}],63:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -9716,7 +9799,7 @@ module.exports = transfer; return CryptoJS.mode.CTR; })); -},{"./cipher-core":52,"./core":53}],65:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52}],64:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -9757,7 +9840,7 @@ module.exports = transfer; return CryptoJS.mode.ECB; })); -},{"./cipher-core":52,"./core":53}],66:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52}],65:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -9812,7 +9895,7 @@ module.exports = transfer; return CryptoJS.mode.OFB; })); -},{"./cipher-core":52,"./core":53}],67:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52}],66:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -9862,7 +9945,7 @@ module.exports = transfer; return CryptoJS.pad.Ansix923; })); -},{"./cipher-core":52,"./core":53}],68:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52}],67:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -9907,7 +9990,7 @@ module.exports = transfer; return CryptoJS.pad.Iso10126; })); -},{"./cipher-core":52,"./core":53}],69:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52}],68:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -9948,7 +10031,7 @@ module.exports = transfer; return CryptoJS.pad.Iso97971; })); -},{"./cipher-core":52,"./core":53}],70:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52}],69:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -9979,7 +10062,7 @@ module.exports = transfer; return CryptoJS.pad.NoPadding; })); -},{"./cipher-core":52,"./core":53}],71:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52}],70:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -10025,7 +10108,7 @@ module.exports = transfer; return CryptoJS.pad.ZeroPadding; })); -},{"./cipher-core":52,"./core":53}],72:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52}],71:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -10171,7 +10254,7 @@ module.exports = transfer; return CryptoJS.PBKDF2; })); -},{"./core":53,"./hmac":58,"./sha1":77}],73:[function(require,module,exports){ +},{"./core":52,"./hmac":57,"./sha1":76}],72:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -10362,7 +10445,7 @@ module.exports = transfer; return CryptoJS.RabbitLegacy; })); -},{"./cipher-core":52,"./core":53,"./enc-base64":54,"./evpkdf":56,"./md5":61}],74:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52,"./enc-base64":53,"./evpkdf":55,"./md5":60}],73:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -10555,7 +10638,7 @@ module.exports = transfer; return CryptoJS.Rabbit; })); -},{"./cipher-core":52,"./core":53,"./enc-base64":54,"./evpkdf":56,"./md5":61}],75:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52,"./enc-base64":53,"./evpkdf":55,"./md5":60}],74:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -10695,7 +10778,7 @@ module.exports = transfer; return CryptoJS.RC4; })); -},{"./cipher-core":52,"./core":53,"./enc-base64":54,"./evpkdf":56,"./md5":61}],76:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52,"./enc-base64":53,"./evpkdf":55,"./md5":60}],75:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS @@ -10963,7 +11046,7 @@ module.exports = transfer; return CryptoJS.RIPEMD160; })); -},{"./core":53}],77:[function(require,module,exports){ +},{"./core":52}],76:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS @@ -11114,7 +11197,7 @@ module.exports = transfer; return CryptoJS.SHA1; })); -},{"./core":53}],78:[function(require,module,exports){ +},{"./core":52}],77:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -11195,7 +11278,7 @@ module.exports = transfer; return CryptoJS.SHA224; })); -},{"./core":53,"./sha256":79}],79:[function(require,module,exports){ +},{"./core":52,"./sha256":78}],78:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS @@ -11395,7 +11478,7 @@ module.exports = transfer; return CryptoJS.SHA256; })); -},{"./core":53}],80:[function(require,module,exports){ +},{"./core":52}],79:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -11719,7 +11802,7 @@ module.exports = transfer; return CryptoJS.SHA3; })); -},{"./core":53,"./x64-core":84}],81:[function(require,module,exports){ +},{"./core":52,"./x64-core":83}],80:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -11803,7 +11886,7 @@ module.exports = transfer; return CryptoJS.SHA384; })); -},{"./core":53,"./sha512":82,"./x64-core":84}],82:[function(require,module,exports){ +},{"./core":52,"./sha512":81,"./x64-core":83}],81:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -12127,7 +12210,7 @@ module.exports = transfer; return CryptoJS.SHA512; })); -},{"./core":53,"./x64-core":84}],83:[function(require,module,exports){ +},{"./core":52,"./x64-core":83}],82:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS @@ -12898,7 +12981,7 @@ module.exports = transfer; return CryptoJS.TripleDES; })); -},{"./cipher-core":52,"./core":53,"./enc-base64":54,"./evpkdf":56,"./md5":61}],84:[function(require,module,exports){ +},{"./cipher-core":51,"./core":52,"./enc-base64":53,"./evpkdf":55,"./md5":60}],83:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS @@ -13203,7 +13286,7 @@ module.exports = transfer; return CryptoJS; })); -},{"./core":53}],85:[function(require,module,exports){ +},{"./core":52}],84:[function(require,module,exports){ /*! https://mths.be/utf8js v2.1.2 by @mathias */ ;(function(root) { @@ -13449,2695 +13532,2746 @@ module.exports = transfer; }(this)); -},{}],86:[function(require,module,exports){ +},{}],85:[function(require,module,exports){ module.exports = XMLHttpRequest; },{}],"bignumber.js":[function(require,module,exports){ -/*! bignumber.js v2.0.7 https://github.com/MikeMcl/bignumber.js/LICENCE */ - -;(function (global) { - 'use strict'; - - /* - bignumber.js v2.0.7 - A JavaScript library for arbitrary-precision arithmetic. - https://github.com/MikeMcl/bignumber.js - Copyright (c) 2015 Michael Mclaughlin - MIT Expat Licence - */ - - - var BigNumber, crypto, parseNumeric, - isNumeric = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i, - mathceil = Math.ceil, - mathfloor = Math.floor, - notBool = ' not a boolean or binary digit', - roundingMode = 'rounding mode', - tooManyDigits = 'number type has more than 15 significant digits', - ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_', - BASE = 1e14, - LOG_BASE = 14, - MAX_SAFE_INTEGER = 0x1fffffffffffff, // 2^53 - 1 - // MAX_INT32 = 0x7fffffff, // 2^31 - 1 - POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13], - SQRT_BASE = 1e7, - - /* - * The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and - * the arguments to toExponential, toFixed, toFormat, and toPrecision, beyond which an - * exception is thrown (if ERRORS is true). - */ - MAX = 1E9; // 0 to MAX_INT32 - - - /* - * Create and return a BigNumber constructor. - */ - function another(configObj) { - var div, - - // id tracks the caller function, so its name can be included in error messages. - id = 0, - P = BigNumber.prototype, - ONE = new BigNumber(1), - - - /********************************* EDITABLE DEFAULTS **********************************/ - - - /* - * The default values below must be integers within the inclusive ranges stated. - * The values can also be changed at run-time using BigNumber.config. - */ - - // The maximum number of decimal places for operations involving division. - DECIMAL_PLACES = 20, // 0 to MAX - - /* - * The rounding mode used when rounding to the above decimal places, and when using - * toExponential, toFixed, toFormat and toPrecision, and round (default value). - * UP 0 Away from zero. - * DOWN 1 Towards zero. - * CEIL 2 Towards +Infinity. - * FLOOR 3 Towards -Infinity. - * HALF_UP 4 Towards nearest neighbour. If equidistant, up. - * HALF_DOWN 5 Towards nearest neighbour. If equidistant, down. - * HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour. - * HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity. - * HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity. - */ - ROUNDING_MODE = 4, // 0 to 8 - - // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS] - - // The exponent value at and beneath which toString returns exponential notation. - // Number type: -7 - TO_EXP_NEG = -7, // 0 to -MAX - - // The exponent value at and above which toString returns exponential notation. - // Number type: 21 - TO_EXP_POS = 21, // 0 to MAX - - // RANGE : [MIN_EXP, MAX_EXP] - - // The minimum exponent value, beneath which underflow to zero occurs. - // Number type: -324 (5e-324) - MIN_EXP = -1e7, // -1 to -MAX - - // The maximum exponent value, above which overflow to Infinity occurs. - // Number type: 308 (1.7976931348623157e+308) - // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow. - MAX_EXP = 1e7, // 1 to MAX - - // Whether BigNumber Errors are ever thrown. - ERRORS = true, // true or false - - // Change to intValidatorNoErrors if ERRORS is false. - isValidInt = intValidatorWithErrors, // intValidatorWithErrors/intValidatorNoErrors - - // Whether to use cryptographically-secure random number generation, if available. - CRYPTO = false, // true or false - - /* - * The modulo mode used when calculating the modulus: a mod n. - * The quotient (q = a / n) is calculated according to the corresponding rounding mode. - * The remainder (r) is calculated as: r = a - n * q. - * - * UP 0 The remainder is positive if the dividend is negative, else is negative. - * DOWN 1 The remainder has the same sign as the dividend. - * This modulo mode is commonly known as 'truncated division' and is - * equivalent to (a % n) in JavaScript. - * FLOOR 3 The remainder has the same sign as the divisor (Python %). - * HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function. - * EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)). - * The remainder is always positive. - * - * The truncated division, floored division, Euclidian division and IEEE 754 remainder - * modes are commonly used for the modulus operation. - * Although the other rounding modes can also be used, they may not give useful results. - */ - MODULO_MODE = 1, // 0 to 9 - - // The maximum number of significant digits of the result of the toPower operation. - // If POW_PRECISION is 0, there will be unlimited significant digits. - POW_PRECISION = 100, // 0 to MAX - - // The format specification used by the BigNumber.prototype.toFormat method. - FORMAT = { - decimalSeparator: '.', - groupSeparator: ',', - groupSize: 3, - secondaryGroupSize: 0, - fractionGroupSeparator: '\xA0', // non-breaking space - fractionGroupSize: 0 - }; - - - /******************************************************************************************/ - - - // CONSTRUCTOR - - - /* - * The BigNumber constructor and exported function. - * Create and return a new instance of a BigNumber object. - * - * n {number|string|BigNumber} A numeric value. - * [b] {number} The base of n. Integer, 2 to 64 inclusive. - */ - function BigNumber( n, b ) { - var c, e, i, num, len, str, - x = this; - - // Enable constructor usage without new. - if ( !( x instanceof BigNumber ) ) { - - // 'BigNumber() constructor call without new: {n}' - if (ERRORS) raise( 26, 'constructor call without new', n ); - return new BigNumber( n, b ); - } - - // 'new BigNumber() base not an integer: {b}' - // 'new BigNumber() base out of range: {b}' - if ( b == null || !isValidInt( b, 2, 64, id, 'base' ) ) { - - // Duplicate. - if ( n instanceof BigNumber ) { - x.s = n.s; - x.e = n.e; - x.c = ( n = n.c ) ? n.slice() : n; - id = 0; - return; - } - - if ( ( num = typeof n == 'number' ) && n * 0 == 0 ) { - x.s = 1 / n < 0 ? ( n = -n, -1 ) : 1; - - // Fast path for integers. - if ( n === ~~n ) { - for ( e = 0, i = n; i >= 10; i /= 10, e++ ); - x.e = e; - x.c = [n]; - id = 0; - return; - } - - str = n + ''; - } else { - if ( !isNumeric.test( str = n + '' ) ) return parseNumeric( x, str, num ); - x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1; - } - } else { - b = b | 0; - str = n + ''; - - // Ensure return value is rounded to DECIMAL_PLACES as with other bases. - // Allow exponential notation to be used with base 10 argument. - if ( b == 10 ) { - x = new BigNumber( n instanceof BigNumber ? n : str ); - return round( x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE ); - } - - // Avoid potential interpretation of Infinity and NaN as base 44+ values. - // Any number in exponential form will fail due to the [Ee][+-]. - if ( ( num = typeof n == 'number' ) && n * 0 != 0 || - !( new RegExp( '^-?' + ( c = '[' + ALPHABET.slice( 0, b ) + ']+' ) + - '(?:\\.' + c + ')?$',b < 37 ? 'i' : '' ) ).test(str) ) { - return parseNumeric( x, str, num, b ); - } - - if (num) { - x.s = 1 / n < 0 ? ( str = str.slice(1), -1 ) : 1; - - if ( ERRORS && str.replace( /^0\.0*|\./, '' ).length > 15 ) { - - // 'new BigNumber() number type has more than 15 significant digits: {n}' - raise( id, tooManyDigits, n ); - } - - // Prevent later check for length on converted number. - num = false; - } else { - x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1; - } - - str = convertBase( str, 10, b, x.s ); - } - - // Decimal point? - if ( ( e = str.indexOf('.') ) > -1 ) str = str.replace( '.', '' ); - - // Exponential form? - if ( ( i = str.search( /e/i ) ) > 0 ) { - - // Determine exponent. - if ( e < 0 ) e = i; - e += +str.slice( i + 1 ); - str = str.substring( 0, i ); - } else if ( e < 0 ) { - - // Integer. - e = str.length; - } - - // Determine leading zeros. - for ( i = 0; str.charCodeAt(i) === 48; i++ ); - - // Determine trailing zeros. - for ( len = str.length; str.charCodeAt(--len) === 48; ); - str = str.slice( i, len + 1 ); - - if (str) { - len = str.length; - - // Disallow numbers with over 15 significant digits if number type. - // 'new BigNumber() number type has more than 15 significant digits: {n}' - if ( num && ERRORS && len > 15 ) raise( id, tooManyDigits, x.s * n ); - - e = e - i - 1; - - // Overflow? - if ( e > MAX_EXP ) { - - // Infinity. - x.c = x.e = null; - - // Underflow? - } else if ( e < MIN_EXP ) { - - // Zero. - x.c = [ x.e = 0 ]; - } else { - x.e = e; - x.c = []; - - // Transform base - - // e is the base 10 exponent. - // i is where to slice str to get the first element of the coefficient array. - i = ( e + 1 ) % LOG_BASE; - if ( e < 0 ) i += LOG_BASE; - - if ( i < len ) { - if (i) x.c.push( +str.slice( 0, i ) ); - - for ( len -= LOG_BASE; i < len; ) { - x.c.push( +str.slice( i, i += LOG_BASE ) ); - } - - str = str.slice(i); - i = LOG_BASE - str.length; - } else { - i -= len; - } - - for ( ; i--; str += '0' ); - x.c.push( +str ); - } - } else { - - // Zero. - x.c = [ x.e = 0 ]; - } - - id = 0; - } - - - // CONSTRUCTOR PROPERTIES - - - BigNumber.another = another; - - BigNumber.ROUND_UP = 0; - BigNumber.ROUND_DOWN = 1; - BigNumber.ROUND_CEIL = 2; - BigNumber.ROUND_FLOOR = 3; - BigNumber.ROUND_HALF_UP = 4; - BigNumber.ROUND_HALF_DOWN = 5; - BigNumber.ROUND_HALF_EVEN = 6; - BigNumber.ROUND_HALF_CEIL = 7; - BigNumber.ROUND_HALF_FLOOR = 8; - BigNumber.EUCLID = 9; - - - /* - * Configure infrequently-changing library-wide settings. - * - * Accept an object or an argument list, with one or many of the following properties or - * parameters respectively: - * - * DECIMAL_PLACES {number} Integer, 0 to MAX inclusive - * ROUNDING_MODE {number} Integer, 0 to 8 inclusive - * EXPONENTIAL_AT {number|number[]} Integer, -MAX to MAX inclusive or - * [integer -MAX to 0 incl., 0 to MAX incl.] - * RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or - * [integer -MAX to -1 incl., integer 1 to MAX incl.] - * ERRORS {boolean|number} true, false, 1 or 0 - * CRYPTO {boolean|number} true, false, 1 or 0 - * MODULO_MODE {number} 0 to 9 inclusive - * POW_PRECISION {number} 0 to MAX inclusive - * FORMAT {object} See BigNumber.prototype.toFormat - * decimalSeparator {string} - * groupSeparator {string} - * groupSize {number} - * secondaryGroupSize {number} - * fractionGroupSeparator {string} - * fractionGroupSize {number} - * - * (The values assigned to the above FORMAT object properties are not checked for validity.) - * - * E.g. - * BigNumber.config(20, 4) is equivalent to - * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 }) - * - * Ignore properties/parameters set to null or undefined. - * Return an object with the properties current values. - */ - BigNumber.config = function () { - var v, p, - i = 0, - r = {}, - a = arguments, - o = a[0], - has = o && typeof o == 'object' - ? function () { if ( o.hasOwnProperty(p) ) return ( v = o[p] ) != null; } - : function () { if ( a.length > i ) return ( v = a[i++] ) != null; }; - - // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive. - // 'config() DECIMAL_PLACES not an integer: {v}' - // 'config() DECIMAL_PLACES out of range: {v}' - if ( has( p = 'DECIMAL_PLACES' ) && isValidInt( v, 0, MAX, 2, p ) ) { - DECIMAL_PLACES = v | 0; - } - r[p] = DECIMAL_PLACES; - - // ROUNDING_MODE {number} Integer, 0 to 8 inclusive. - // 'config() ROUNDING_MODE not an integer: {v}' - // 'config() ROUNDING_MODE out of range: {v}' - if ( has( p = 'ROUNDING_MODE' ) && isValidInt( v, 0, 8, 2, p ) ) { - ROUNDING_MODE = v | 0; - } - r[p] = ROUNDING_MODE; - - // EXPONENTIAL_AT {number|number[]} - // Integer, -MAX to MAX inclusive or [integer -MAX to 0 inclusive, 0 to MAX inclusive]. - // 'config() EXPONENTIAL_AT not an integer: {v}' - // 'config() EXPONENTIAL_AT out of range: {v}' - if ( has( p = 'EXPONENTIAL_AT' ) ) { - - if ( isArray(v) ) { - if ( isValidInt( v[0], -MAX, 0, 2, p ) && isValidInt( v[1], 0, MAX, 2, p ) ) { - TO_EXP_NEG = v[0] | 0; - TO_EXP_POS = v[1] | 0; - } - } else if ( isValidInt( v, -MAX, MAX, 2, p ) ) { - TO_EXP_NEG = -( TO_EXP_POS = ( v < 0 ? -v : v ) | 0 ); - } - } - r[p] = [ TO_EXP_NEG, TO_EXP_POS ]; - - // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or - // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive]. - // 'config() RANGE not an integer: {v}' - // 'config() RANGE cannot be zero: {v}' - // 'config() RANGE out of range: {v}' - if ( has( p = 'RANGE' ) ) { - - if ( isArray(v) ) { - if ( isValidInt( v[0], -MAX, -1, 2, p ) && isValidInt( v[1], 1, MAX, 2, p ) ) { - MIN_EXP = v[0] | 0; - MAX_EXP = v[1] | 0; - } - } else if ( isValidInt( v, -MAX, MAX, 2, p ) ) { - if ( v | 0 ) MIN_EXP = -( MAX_EXP = ( v < 0 ? -v : v ) | 0 ); - else if (ERRORS) raise( 2, p + ' cannot be zero', v ); - } - } - r[p] = [ MIN_EXP, MAX_EXP ]; - - // ERRORS {boolean|number} true, false, 1 or 0. - // 'config() ERRORS not a boolean or binary digit: {v}' - if ( has( p = 'ERRORS' ) ) { - - if ( v === !!v || v === 1 || v === 0 ) { - id = 0; - isValidInt = ( ERRORS = !!v ) ? intValidatorWithErrors : intValidatorNoErrors; - } else if (ERRORS) { - raise( 2, p + notBool, v ); - } - } - r[p] = ERRORS; - - // CRYPTO {boolean|number} true, false, 1 or 0. - // 'config() CRYPTO not a boolean or binary digit: {v}' - // 'config() crypto unavailable: {crypto}' - if ( has( p = 'CRYPTO' ) ) { - - if ( v === !!v || v === 1 || v === 0 ) { - CRYPTO = !!( v && crypto && typeof crypto == 'object' ); - if ( v && !CRYPTO && ERRORS ) raise( 2, 'crypto unavailable', crypto ); - } else if (ERRORS) { - raise( 2, p + notBool, v ); - } - } - r[p] = CRYPTO; - - // MODULO_MODE {number} Integer, 0 to 9 inclusive. - // 'config() MODULO_MODE not an integer: {v}' - // 'config() MODULO_MODE out of range: {v}' - if ( has( p = 'MODULO_MODE' ) && isValidInt( v, 0, 9, 2, p ) ) { - MODULO_MODE = v | 0; - } - r[p] = MODULO_MODE; - - // POW_PRECISION {number} Integer, 0 to MAX inclusive. - // 'config() POW_PRECISION not an integer: {v}' - // 'config() POW_PRECISION out of range: {v}' - if ( has( p = 'POW_PRECISION' ) && isValidInt( v, 0, MAX, 2, p ) ) { - POW_PRECISION = v | 0; - } - r[p] = POW_PRECISION; - - // FORMAT {object} - // 'config() FORMAT not an object: {v}' - if ( has( p = 'FORMAT' ) ) { - - if ( typeof v == 'object' ) { - FORMAT = v; - } else if (ERRORS) { - raise( 2, p + ' not an object', v ); - } - } - r[p] = FORMAT; - - return r; - }; - - - /* - * Return a new BigNumber whose value is the maximum of the arguments. - * - * arguments {number|string|BigNumber} - */ - BigNumber.max = function () { return maxOrMin( arguments, P.lt ); }; - - - /* - * Return a new BigNumber whose value is the minimum of the arguments. - * - * arguments {number|string|BigNumber} - */ - BigNumber.min = function () { return maxOrMin( arguments, P.gt ); }; - - - /* - * Return a new BigNumber with a random value equal to or greater than 0 and less than 1, - * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing - * zeros are produced). - * - * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. - * - * 'random() decimal places not an integer: {dp}' - * 'random() decimal places out of range: {dp}' - * 'random() crypto unavailable: {crypto}' - */ - BigNumber.random = (function () { - var pow2_53 = 0x20000000000000; - - // Return a 53 bit integer n, where 0 <= n < 9007199254740992. - // Check if Math.random() produces more than 32 bits of randomness. - // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits. - // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1. - var random53bitInt = (Math.random() * pow2_53) & 0x1fffff - ? function () { return mathfloor( Math.random() * pow2_53 ); } - : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) + - (Math.random() * 0x800000 | 0); }; - - return function (dp) { - var a, b, e, k, v, - i = 0, - c = [], - rand = new BigNumber(ONE); - - dp = dp == null || !isValidInt( dp, 0, MAX, 14 ) ? DECIMAL_PLACES : dp | 0; - k = mathceil( dp / LOG_BASE ); - - if (CRYPTO) { - - // Browsers supporting crypto.getRandomValues. - if ( crypto && crypto.getRandomValues ) { - - a = crypto.getRandomValues( new Uint32Array( k *= 2 ) ); - - for ( ; i < k; ) { - - // 53 bits: - // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2) - // 11111 11111111 11111111 11111111 11100000 00000000 00000000 - // ((Math.pow(2, 32) - 1) >>> 11).toString(2) - // 11111 11111111 11111111 - // 0x20000 is 2^21. - v = a[i] * 0x20000 + (a[i + 1] >>> 11); - - // Rejection sampling: - // 0 <= v < 9007199254740992 - // Probability that v >= 9e15, is - // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251 - if ( v >= 9e15 ) { - b = crypto.getRandomValues( new Uint32Array(2) ); - a[i] = b[0]; - a[i + 1] = b[1]; - } else { - - // 0 <= v <= 8999999999999999 - // 0 <= (v % 1e14) <= 99999999999999 - c.push( v % 1e14 ); - i += 2; - } - } - i = k / 2; - - // Node.js supporting crypto.randomBytes. - } else if ( crypto && crypto.randomBytes ) { - - // buffer - a = crypto.randomBytes( k *= 7 ); - - for ( ; i < k; ) { - - // 0x1000000000000 is 2^48, 0x10000000000 is 2^40 - // 0x100000000 is 2^32, 0x1000000 is 2^24 - // 11111 11111111 11111111 11111111 11111111 11111111 11111111 - // 0 <= v < 9007199254740992 - v = ( ( a[i] & 31 ) * 0x1000000000000 ) + ( a[i + 1] * 0x10000000000 ) + - ( a[i + 2] * 0x100000000 ) + ( a[i + 3] * 0x1000000 ) + - ( a[i + 4] << 16 ) + ( a[i + 5] << 8 ) + a[i + 6]; - - if ( v >= 9e15 ) { - crypto.randomBytes(7).copy( a, i ); - } else { - - // 0 <= (v % 1e14) <= 99999999999999 - c.push( v % 1e14 ); - i += 7; - } - } - i = k / 7; - } else if (ERRORS) { - raise( 14, 'crypto unavailable', crypto ); - } - } - - // Use Math.random: CRYPTO is false or crypto is unavailable and ERRORS is false. - if (!i) { - - for ( ; i < k; ) { - v = random53bitInt(); - if ( v < 9e15 ) c[i++] = v % 1e14; - } - } - - k = c[--i]; - dp %= LOG_BASE; - - // Convert trailing digits to zeros according to dp. - if ( k && dp ) { - v = POWS_TEN[LOG_BASE - dp]; - c[i] = mathfloor( k / v ) * v; - } - - // Remove trailing elements which are zero. - for ( ; c[i] === 0; c.pop(), i-- ); - - // Zero? - if ( i < 0 ) { - c = [ e = 0 ]; - } else { - - // Remove leading elements which are zero and adjust exponent accordingly. - for ( e = -1 ; c[0] === 0; c.shift(), e -= LOG_BASE); - - // Count the digits of the first element of c to determine leading zeros, and... - for ( i = 1, v = c[0]; v >= 10; v /= 10, i++); - - // adjust the exponent accordingly. - if ( i < LOG_BASE ) e -= LOG_BASE - i; - } - - rand.e = e; - rand.c = c; - return rand; - }; - })(); - - - // PRIVATE FUNCTIONS - - - // Convert a numeric string of baseIn to a numeric string of baseOut. - function convertBase( str, baseOut, baseIn, sign ) { - var d, e, k, r, x, xc, y, - i = str.indexOf( '.' ), - dp = DECIMAL_PLACES, - rm = ROUNDING_MODE; - - if ( baseIn < 37 ) str = str.toLowerCase(); - - // Non-integer. - if ( i >= 0 ) { - k = POW_PRECISION; - - // Unlimited precision. - POW_PRECISION = 0; - str = str.replace( '.', '' ); - y = new BigNumber(baseIn); - x = y.pow( str.length - i ); - POW_PRECISION = k; - - // Convert str as if an integer, then restore the fraction part by dividing the - // result by its base raised to a power. - y.c = toBaseOut( toFixedPoint( coeffToString( x.c ), x.e ), 10, baseOut ); - y.e = y.c.length; - } - - // Convert the number as integer. - xc = toBaseOut( str, baseIn, baseOut ); - e = k = xc.length; - - // Remove trailing zeros. - for ( ; xc[--k] == 0; xc.pop() ); - if ( !xc[0] ) return '0'; - - if ( i < 0 ) { - --e; - } else { - x.c = xc; - x.e = e; - - // sign is needed for correct rounding. - x.s = sign; - x = div( x, y, dp, rm, baseOut ); - xc = x.c; - r = x.r; - e = x.e; - } - - d = e + dp + 1; - - // The rounding digit, i.e. the digit to the right of the digit that may be rounded up. - i = xc[d]; - k = baseOut / 2; - r = r || d < 0 || xc[d + 1] != null; - - r = rm < 4 ? ( i != null || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) ) - : i > k || i == k &&( rm == 4 || r || rm == 6 && xc[d - 1] & 1 || - rm == ( x.s < 0 ? 8 : 7 ) ); - - if ( d < 1 || !xc[0] ) { - - // 1^-dp or 0. - str = r ? toFixedPoint( '1', -dp ) : '0'; - } else { - xc.length = d; - - if (r) { - - // Rounding up may mean the previous digit has to be rounded up and so on. - for ( --baseOut; ++xc[--d] > baseOut; ) { - xc[d] = 0; - - if ( !d ) { - ++e; - xc.unshift(1); - } - } - } - - // Determine trailing zeros. - for ( k = xc.length; !xc[--k]; ); - - // E.g. [4, 11, 15] becomes 4bf. - for ( i = 0, str = ''; i <= k; str += ALPHABET.charAt( xc[i++] ) ); - str = toFixedPoint( str, e ); - } - - // The caller will add the sign. - return str; - } - - - // Perform division in the specified base. Called by div and convertBase. - div = (function () { - - // Assume non-zero x and k. - function multiply( x, k, base ) { - var m, temp, xlo, xhi, - carry = 0, - i = x.length, - klo = k % SQRT_BASE, - khi = k / SQRT_BASE | 0; - - for ( x = x.slice(); i--; ) { - xlo = x[i] % SQRT_BASE; - xhi = x[i] / SQRT_BASE | 0; - m = khi * xlo + xhi * klo; - temp = klo * xlo + ( ( m % SQRT_BASE ) * SQRT_BASE ) + carry; - carry = ( temp / base | 0 ) + ( m / SQRT_BASE | 0 ) + khi * xhi; - x[i] = temp % base; - } - - if (carry) x.unshift(carry); - - return x; - } - - function compare( a, b, aL, bL ) { - var i, cmp; - - if ( aL != bL ) { - cmp = aL > bL ? 1 : -1; - } else { - - for ( i = cmp = 0; i < aL; i++ ) { - - if ( a[i] != b[i] ) { - cmp = a[i] > b[i] ? 1 : -1; - break; - } - } - } - return cmp; - } - - function subtract( a, b, aL, base ) { - var i = 0; - - // Subtract b from a. - for ( ; aL--; ) { - a[aL] -= i; - i = a[aL] < b[aL] ? 1 : 0; - a[aL] = i * base + a[aL] - b[aL]; - } - - // Remove leading zeros. - for ( ; !a[0] && a.length > 1; a.shift() ); - } - - // x: dividend, y: divisor. - return function ( x, y, dp, rm, base ) { - var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0, - yL, yz, - s = x.s == y.s ? 1 : -1, - xc = x.c, - yc = y.c; - - // Either NaN, Infinity or 0? - if ( !xc || !xc[0] || !yc || !yc[0] ) { - - return new BigNumber( - - // Return NaN if either NaN, or both Infinity or 0. - !x.s || !y.s || ( xc ? yc && xc[0] == yc[0] : !yc ) ? NaN : - - // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0. - xc && xc[0] == 0 || !yc ? s * 0 : s / 0 - ); - } - - q = new BigNumber(s); - qc = q.c = []; - e = x.e - y.e; - s = dp + e + 1; - - if ( !base ) { - base = BASE; - e = bitFloor( x.e / LOG_BASE ) - bitFloor( y.e / LOG_BASE ); - s = s / LOG_BASE | 0; - } - - // Result exponent may be one less then the current value of e. - // The coefficients of the BigNumbers from convertBase may have trailing zeros. - for ( i = 0; yc[i] == ( xc[i] || 0 ); i++ ); - if ( yc[i] > ( xc[i] || 0 ) ) e--; - - if ( s < 0 ) { - qc.push(1); - more = true; - } else { - xL = xc.length; - yL = yc.length; - i = 0; - s += 2; - - // Normalise xc and yc so highest order digit of yc is >= base / 2. - - n = mathfloor( base / ( yc[0] + 1 ) ); - - // Not necessary, but to handle odd bases where yc[0] == ( base / 2 ) - 1. - // if ( n > 1 || n++ == 1 && yc[0] < base / 2 ) { - if ( n > 1 ) { - yc = multiply( yc, n, base ); - xc = multiply( xc, n, base ); - yL = yc.length; - xL = xc.length; - } - - xi = yL; - rem = xc.slice( 0, yL ); - remL = rem.length; - - // Add zeros to make remainder as long as divisor. - for ( ; remL < yL; rem[remL++] = 0 ); - yz = yc.slice(); - yz.unshift(0); - yc0 = yc[0]; - if ( yc[1] >= base / 2 ) yc0++; - // Not necessary, but to prevent trial digit n > base, when using base 3. - // else if ( base == 3 && yc0 == 1 ) yc0 = 1 + 1e-15; - - do { - n = 0; - - // Compare divisor and remainder. - cmp = compare( yc, rem, yL, remL ); - - // If divisor < remainder. - if ( cmp < 0 ) { - - // Calculate trial digit, n. - - rem0 = rem[0]; - if ( yL != remL ) rem0 = rem0 * base + ( rem[1] || 0 ); - - // n is how many times the divisor goes into the current remainder. - n = mathfloor( rem0 / yc0 ); - - // Algorithm: - // 1. product = divisor * trial digit (n) - // 2. if product > remainder: product -= divisor, n-- - // 3. remainder -= product - // 4. if product was < remainder at 2: - // 5. compare new remainder and divisor - // 6. If remainder > divisor: remainder -= divisor, n++ - - if ( n > 1 ) { - - // n may be > base only when base is 3. - if (n >= base) n = base - 1; - - // product = divisor * trial digit. - prod = multiply( yc, n, base ); - prodL = prod.length; - remL = rem.length; - - // Compare product and remainder. - // If product > remainder. - // Trial digit n too high. - // n is 1 too high about 5% of the time, and is not known to have - // ever been more than 1 too high. - while ( compare( prod, rem, prodL, remL ) == 1 ) { - n--; - - // Subtract divisor from product. - subtract( prod, yL < prodL ? yz : yc, prodL, base ); - prodL = prod.length; - cmp = 1; - } - } else { - - // n is 0 or 1, cmp is -1. - // If n is 0, there is no need to compare yc and rem again below, - // so change cmp to 1 to avoid it. - // If n is 1, leave cmp as -1, so yc and rem are compared again. - if ( n == 0 ) { - - // divisor < remainder, so n must be at least 1. - cmp = n = 1; - } - - // product = divisor - prod = yc.slice(); - prodL = prod.length; - } - - if ( prodL < remL ) prod.unshift(0); - - // Subtract product from remainder. - subtract( rem, prod, remL, base ); - remL = rem.length; - - // If product was < remainder. - if ( cmp == -1 ) { - - // Compare divisor and new remainder. - // If divisor < new remainder, subtract divisor from remainder. - // Trial digit n too low. - // n is 1 too low about 5% of the time, and very rarely 2 too low. - while ( compare( yc, rem, yL, remL ) < 1 ) { - n++; - - // Subtract divisor from remainder. - subtract( rem, yL < remL ? yz : yc, remL, base ); - remL = rem.length; - } - } - } else if ( cmp === 0 ) { - n++; - rem = [0]; - } // else cmp === 1 and n will be 0 - - // Add the next digit, n, to the result array. - qc[i++] = n; - - // Update the remainder. - if ( rem[0] ) { - rem[remL++] = xc[xi] || 0; - } else { - rem = [ xc[xi] ]; - remL = 1; - } - } while ( ( xi++ < xL || rem[0] != null ) && s-- ); - - more = rem[0] != null; - - // Leading zero? - if ( !qc[0] ) qc.shift(); - } - - if ( base == BASE ) { - - // To calculate q.e, first get the number of digits of qc[0]. - for ( i = 1, s = qc[0]; s >= 10; s /= 10, i++ ); - round( q, dp + ( q.e = i + e * LOG_BASE - 1 ) + 1, rm, more ); - - // Caller is convertBase. - } else { - q.e = e; - q.r = +more; - } - - return q; - }; - })(); - - - /* - * Return a string representing the value of BigNumber n in fixed-point or exponential - * notation rounded to the specified decimal places or significant digits. - * - * n is a BigNumber. - * i is the index of the last digit required (i.e. the digit that may be rounded up). - * rm is the rounding mode. - * caller is caller id: toExponential 19, toFixed 20, toFormat 21, toPrecision 24. - */ - function format( n, i, rm, caller ) { - var c0, e, ne, len, str; - - rm = rm != null && isValidInt( rm, 0, 8, caller, roundingMode ) - ? rm | 0 : ROUNDING_MODE; - - if ( !n.c ) return n.toString(); - c0 = n.c[0]; - ne = n.e; - - if ( i == null ) { - str = coeffToString( n.c ); - str = caller == 19 || caller == 24 && ne <= TO_EXP_NEG - ? toExponential( str, ne ) - : toFixedPoint( str, ne ); - } else { - n = round( new BigNumber(n), i, rm ); - - // n.e may have changed if the value was rounded up. - e = n.e; - - str = coeffToString( n.c ); - len = str.length; - - // toPrecision returns exponential notation if the number of significant digits - // specified is less than the number of digits necessary to represent the integer - // part of the value in fixed-point notation. - - // Exponential notation. - if ( caller == 19 || caller == 24 && ( i <= e || e <= TO_EXP_NEG ) ) { - - // Append zeros? - for ( ; len < i; str += '0', len++ ); - str = toExponential( str, e ); - - // Fixed-point notation. - } else { - i -= ne; - str = toFixedPoint( str, e ); - - // Append zeros? - if ( e + 1 > len ) { - if ( --i > 0 ) for ( str += '.'; i--; str += '0' ); - } else { - i += e - len; - if ( i > 0 ) { - if ( e + 1 == len ) str += '.'; - for ( ; i--; str += '0' ); - } - } - } - } - - return n.s < 0 && c0 ? '-' + str : str; - } - - - // Handle BigNumber.max and BigNumber.min. - function maxOrMin( args, method ) { - var m, n, - i = 0; - - if ( isArray( args[0] ) ) args = args[0]; - m = new BigNumber( args[0] ); - - for ( ; ++i < args.length; ) { - n = new BigNumber( args[i] ); - - // If any number is NaN, return NaN. - if ( !n.s ) { - m = n; - break; - } else if ( method.call( m, n ) ) { - m = n; - } - } - - return m; - } - - - /* - * Return true if n is an integer in range, otherwise throw. - * Use for argument validation when ERRORS is true. - */ - function intValidatorWithErrors( n, min, max, caller, name ) { - if ( n < min || n > max || n != truncate(n) ) { - raise( caller, ( name || 'decimal places' ) + - ( n < min || n > max ? ' out of range' : ' not an integer' ), n ); - } - - return true; - } - - - /* - * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP. - * Called by minus, plus and times. - */ - function normalise( n, c, e ) { - var i = 1, - j = c.length; - - // Remove trailing zeros. - for ( ; !c[--j]; c.pop() ); - - // Calculate the base 10 exponent. First get the number of digits of c[0]. - for ( j = c[0]; j >= 10; j /= 10, i++ ); - - // Overflow? - if ( ( e = i + e * LOG_BASE - 1 ) > MAX_EXP ) { - - // Infinity. - n.c = n.e = null; - - // Underflow? - } else if ( e < MIN_EXP ) { - - // Zero. - n.c = [ n.e = 0 ]; - } else { - n.e = e; - n.c = c; - } - - return n; - } - - - // Handle values that fail the validity test in BigNumber. - parseNumeric = (function () { - var basePrefix = /^(-?)0([xbo])/i, - dotAfter = /^([^.]+)\.$/, - dotBefore = /^\.([^.]+)$/, - isInfinityOrNaN = /^-?(Infinity|NaN)$/, - whitespaceOrPlus = /^\s*\+|^\s+|\s+$/g; - - return function ( x, str, num, b ) { - var base, - s = num ? str : str.replace( whitespaceOrPlus, '' ); - - // No exception on ±Infinity or NaN. - if ( isInfinityOrNaN.test(s) ) { - x.s = isNaN(s) ? null : s < 0 ? -1 : 1; - } else { - if ( !num ) { - - // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i - s = s.replace( basePrefix, function ( m, p1, p2 ) { - base = ( p2 = p2.toLowerCase() ) == 'x' ? 16 : p2 == 'b' ? 2 : 8; - return !b || b == base ? p1 : m; - }); - - if (b) { - base = b; - - // E.g. '1.' to '1', '.1' to '0.1' - s = s.replace( dotAfter, '$1' ).replace( dotBefore, '0.$1' ); - } - - if ( str != s ) return new BigNumber( s, base ); - } - - // 'new BigNumber() not a number: {n}' - // 'new BigNumber() not a base {b} number: {n}' - if (ERRORS) raise( id, 'not a' + ( b ? ' base ' + b : '' ) + ' number', str ); - x.s = null; - } - - x.c = x.e = null; - id = 0; - } - })(); - - - // Throw a BigNumber Error. - function raise( caller, msg, val ) { - var error = new Error( [ - 'new BigNumber', // 0 - 'cmp', // 1 - 'config', // 2 - 'div', // 3 - 'divToInt', // 4 - 'eq', // 5 - 'gt', // 6 - 'gte', // 7 - 'lt', // 8 - 'lte', // 9 - 'minus', // 10 - 'mod', // 11 - 'plus', // 12 - 'precision', // 13 - 'random', // 14 - 'round', // 15 - 'shift', // 16 - 'times', // 17 - 'toDigits', // 18 - 'toExponential', // 19 - 'toFixed', // 20 - 'toFormat', // 21 - 'toFraction', // 22 - 'pow', // 23 - 'toPrecision', // 24 - 'toString', // 25 - 'BigNumber' // 26 - ][caller] + '() ' + msg + ': ' + val ); - - error.name = 'BigNumber Error'; - id = 0; - throw error; - } - - - /* - * Round x to sd significant digits using rounding mode rm. Check for over/under-flow. - * If r is truthy, it is known that there are more digits after the rounding digit. - */ - function round( x, sd, rm, r ) { - var d, i, j, k, n, ni, rd, - xc = x.c, - pows10 = POWS_TEN; - - // if x is not Infinity or NaN... - if (xc) { - - // rd is the rounding digit, i.e. the digit after the digit that may be rounded up. - // n is a base 1e14 number, the value of the element of array x.c containing rd. - // ni is the index of n within x.c. - // d is the number of digits of n. - // i is the index of rd within n including leading zeros. - // j is the actual index of rd within n (if < 0, rd is a leading zero). - out: { - - // Get the number of digits of the first element of xc. - for ( d = 1, k = xc[0]; k >= 10; k /= 10, d++ ); - i = sd - d; - - // If the rounding digit is in the first element of xc... - if ( i < 0 ) { - i += LOG_BASE; - j = sd; - n = xc[ ni = 0 ]; - - // Get the rounding digit at index j of n. - rd = n / pows10[ d - j - 1 ] % 10 | 0; - } else { - ni = mathceil( ( i + 1 ) / LOG_BASE ); - - if ( ni >= xc.length ) { - - if (r) { - - // Needed by sqrt. - for ( ; xc.length <= ni; xc.push(0) ); - n = rd = 0; - d = 1; - i %= LOG_BASE; - j = i - LOG_BASE + 1; - } else { - break out; - } - } else { - n = k = xc[ni]; - - // Get the number of digits of n. - for ( d = 1; k >= 10; k /= 10, d++ ); - - // Get the index of rd within n. - i %= LOG_BASE; - - // Get the index of rd within n, adjusted for leading zeros. - // The number of leading zeros of n is given by LOG_BASE - d. - j = i - LOG_BASE + d; - - // Get the rounding digit at index j of n. - rd = j < 0 ? 0 : n / pows10[ d - j - 1 ] % 10 | 0; - } - } - - r = r || sd < 0 || - - // Are there any non-zero digits after the rounding digit? - // The expression n % pows10[ d - j - 1 ] returns all digits of n to the right - // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714. - xc[ni + 1] != null || ( j < 0 ? n : n % pows10[ d - j - 1 ] ); - - r = rm < 4 - ? ( rd || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) ) - : rd > 5 || rd == 5 && ( rm == 4 || r || rm == 6 && - - // Check whether the digit to the left of the rounding digit is odd. - ( ( i > 0 ? j > 0 ? n / pows10[ d - j ] : 0 : xc[ni - 1] ) % 10 ) & 1 || - rm == ( x.s < 0 ? 8 : 7 ) ); - - if ( sd < 1 || !xc[0] ) { - xc.length = 0; - - if (r) { - - // Convert sd to decimal places. - sd -= x.e + 1; - - // 1, 0.1, 0.01, 0.001, 0.0001 etc. - xc[0] = pows10[ sd % LOG_BASE ]; - x.e = -sd || 0; - } else { - - // Zero. - xc[0] = x.e = 0; - } - - return x; - } - - // Remove excess digits. - if ( i == 0 ) { - xc.length = ni; - k = 1; - ni--; - } else { - xc.length = ni + 1; - k = pows10[ LOG_BASE - i ]; - - // E.g. 56700 becomes 56000 if 7 is the rounding digit. - // j > 0 means i > number of leading zeros of n. - xc[ni] = j > 0 ? mathfloor( n / pows10[ d - j ] % pows10[j] ) * k : 0; - } - - // Round up? - if (r) { - - for ( ; ; ) { - - // If the digit to be rounded up is in the first element of xc... - if ( ni == 0 ) { - - // i will be the length of xc[0] before k is added. - for ( i = 1, j = xc[0]; j >= 10; j /= 10, i++ ); - j = xc[0] += k; - for ( k = 1; j >= 10; j /= 10, k++ ); - - // if i != k the length has increased. - if ( i != k ) { - x.e++; - if ( xc[0] == BASE ) xc[0] = 1; - } - - break; - } else { - xc[ni] += k; - if ( xc[ni] != BASE ) break; - xc[ni--] = 0; - k = 1; - } - } - } - - // Remove trailing zeros. - for ( i = xc.length; xc[--i] === 0; xc.pop() ); - } - - // Overflow? Infinity. - if ( x.e > MAX_EXP ) { - x.c = x.e = null; - - // Underflow? Zero. - } else if ( x.e < MIN_EXP ) { - x.c = [ x.e = 0 ]; - } - } - - return x; - } - - - // PROTOTYPE/INSTANCE METHODS - - - /* - * Return a new BigNumber whose value is the absolute value of this BigNumber. - */ - P.absoluteValue = P.abs = function () { - var x = new BigNumber(this); - if ( x.s < 0 ) x.s = 1; - return x; - }; - - - /* - * Return a new BigNumber whose value is the value of this BigNumber rounded to a whole - * number in the direction of Infinity. - */ - P.ceil = function () { - return round( new BigNumber(this), this.e + 1, 2 ); - }; - - - /* - * Return - * 1 if the value of this BigNumber is greater than the value of BigNumber(y, b), - * -1 if the value of this BigNumber is less than the value of BigNumber(y, b), - * 0 if they have the same value, - * or null if the value of either is NaN. - */ - P.comparedTo = P.cmp = function ( y, b ) { - id = 1; - return compare( this, new BigNumber( y, b ) ); - }; - - - /* - * Return the number of decimal places of the value of this BigNumber, or null if the value - * of this BigNumber is ±Infinity or NaN. - */ - P.decimalPlaces = P.dp = function () { - var n, v, - c = this.c; - - if ( !c ) return null; - n = ( ( v = c.length - 1 ) - bitFloor( this.e / LOG_BASE ) ) * LOG_BASE; - - // Subtract the number of trailing zeros of the last number. - if ( v = c[v] ) for ( ; v % 10 == 0; v /= 10, n-- ); - if ( n < 0 ) n = 0; - - return n; - }; - - - /* - * n / 0 = I - * n / N = N - * n / I = 0 - * 0 / n = 0 - * 0 / 0 = N - * 0 / N = N - * 0 / I = 0 - * N / n = N - * N / 0 = N - * N / N = N - * N / I = N - * I / n = I - * I / 0 = I - * I / N = N - * I / I = N - * - * Return a new BigNumber whose value is the value of this BigNumber divided by the value of - * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE. - */ - P.dividedBy = P.div = function ( y, b ) { - id = 3; - return div( this, new BigNumber( y, b ), DECIMAL_PLACES, ROUNDING_MODE ); - }; - - - /* - * Return a new BigNumber whose value is the integer part of dividing the value of this - * BigNumber by the value of BigNumber(y, b). - */ - P.dividedToIntegerBy = P.divToInt = function ( y, b ) { - id = 4; - return div( this, new BigNumber( y, b ), 0, 1 ); - }; - - - /* - * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b), - * otherwise returns false. - */ - P.equals = P.eq = function ( y, b ) { - id = 5; - return compare( this, new BigNumber( y, b ) ) === 0; - }; - - - /* - * Return a new BigNumber whose value is the value of this BigNumber rounded to a whole - * number in the direction of -Infinity. - */ - P.floor = function () { - return round( new BigNumber(this), this.e + 1, 3 ); - }; - - - /* - * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b), - * otherwise returns false. - */ - P.greaterThan = P.gt = function ( y, b ) { - id = 6; - return compare( this, new BigNumber( y, b ) ) > 0; - }; - - - /* - * Return true if the value of this BigNumber is greater than or equal to the value of - * BigNumber(y, b), otherwise returns false. - */ - P.greaterThanOrEqualTo = P.gte = function ( y, b ) { - id = 7; - return ( b = compare( this, new BigNumber( y, b ) ) ) === 1 || b === 0; - - }; - - - /* - * Return true if the value of this BigNumber is a finite number, otherwise returns false. - */ - P.isFinite = function () { - return !!this.c; - }; - - - /* - * Return true if the value of this BigNumber is an integer, otherwise return false. - */ - P.isInteger = P.isInt = function () { - return !!this.c && bitFloor( this.e / LOG_BASE ) > this.c.length - 2; - }; - - - /* - * Return true if the value of this BigNumber is NaN, otherwise returns false. - */ - P.isNaN = function () { - return !this.s; - }; - - - /* - * Return true if the value of this BigNumber is negative, otherwise returns false. - */ - P.isNegative = P.isNeg = function () { - return this.s < 0; - }; - - - /* - * Return true if the value of this BigNumber is 0 or -0, otherwise returns false. - */ - P.isZero = function () { - return !!this.c && this.c[0] == 0; - }; - - - /* - * Return true if the value of this BigNumber is less than the value of BigNumber(y, b), - * otherwise returns false. - */ - P.lessThan = P.lt = function ( y, b ) { - id = 8; - return compare( this, new BigNumber( y, b ) ) < 0; - }; - - - /* - * Return true if the value of this BigNumber is less than or equal to the value of - * BigNumber(y, b), otherwise returns false. - */ - P.lessThanOrEqualTo = P.lte = function ( y, b ) { - id = 9; - return ( b = compare( this, new BigNumber( y, b ) ) ) === -1 || b === 0; - }; - - - /* - * n - 0 = n - * n - N = N - * n - I = -I - * 0 - n = -n - * 0 - 0 = 0 - * 0 - N = N - * 0 - I = -I - * N - n = N - * N - 0 = N - * N - N = N - * N - I = N - * I - n = I - * I - 0 = I - * I - N = N - * I - I = N - * - * Return a new BigNumber whose value is the value of this BigNumber minus the value of - * BigNumber(y, b). - */ - P.minus = P.sub = function ( y, b ) { - var i, j, t, xLTy, - x = this, - a = x.s; - - id = 10; - y = new BigNumber( y, b ); - b = y.s; - - // Either NaN? - if ( !a || !b ) return new BigNumber(NaN); - - // Signs differ? - if ( a != b ) { - y.s = -b; - return x.plus(y); - } - - var xe = x.e / LOG_BASE, - ye = y.e / LOG_BASE, - xc = x.c, - yc = y.c; - - if ( !xe || !ye ) { - - // Either Infinity? - if ( !xc || !yc ) return xc ? ( y.s = -b, y ) : new BigNumber( yc ? x : NaN ); - - // Either zero? - if ( !xc[0] || !yc[0] ) { - - // Return y if y is non-zero, x if x is non-zero, or zero if both are zero. - return yc[0] ? ( y.s = -b, y ) : new BigNumber( xc[0] ? x : - - // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity - ROUNDING_MODE == 3 ? -0 : 0 ); - } - } - - xe = bitFloor(xe); - ye = bitFloor(ye); - xc = xc.slice(); - - // Determine which is the bigger number. - if ( a = xe - ye ) { - - if ( xLTy = a < 0 ) { - a = -a; - t = xc; - } else { - ye = xe; - t = yc; - } - - t.reverse(); - - // Prepend zeros to equalise exponents. - for ( b = a; b--; t.push(0) ); - t.reverse(); - } else { - - // Exponents equal. Check digit by digit. - j = ( xLTy = ( a = xc.length ) < ( b = yc.length ) ) ? a : b; - - for ( a = b = 0; b < j; b++ ) { - - if ( xc[b] != yc[b] ) { - xLTy = xc[b] < yc[b]; - break; - } - } - } - - // x < y? Point xc to the array of the bigger number. - if (xLTy) t = xc, xc = yc, yc = t, y.s = -y.s; - - b = ( j = yc.length ) - ( i = xc.length ); - - // Append zeros to xc if shorter. - // No need to add zeros to yc if shorter as subtract only needs to start at yc.length. - if ( b > 0 ) for ( ; b--; xc[i++] = 0 ); - b = BASE - 1; - - // Subtract yc from xc. - for ( ; j > a; ) { - - if ( xc[--j] < yc[j] ) { - for ( i = j; i && !xc[--i]; xc[i] = b ); - --xc[i]; - xc[j] += BASE; - } - - xc[j] -= yc[j]; - } - - // Remove leading zeros and adjust exponent accordingly. - for ( ; xc[0] == 0; xc.shift(), --ye ); - - // Zero? - if ( !xc[0] ) { - - // Following IEEE 754 (2008) 6.3, - // n - n = +0 but n - n = -0 when rounding towards -Infinity. - y.s = ROUNDING_MODE == 3 ? -1 : 1; - y.c = [ y.e = 0 ]; - return y; - } - - // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity - // for finite x and y. - return normalise( y, xc, ye ); - }; - - - /* - * n % 0 = N - * n % N = N - * n % I = n - * 0 % n = 0 - * -0 % n = -0 - * 0 % 0 = N - * 0 % N = N - * 0 % I = 0 - * N % n = N - * N % 0 = N - * N % N = N - * N % I = N - * I % n = N - * I % 0 = N - * I % N = N - * I % I = N - * - * Return a new BigNumber whose value is the value of this BigNumber modulo the value of - * BigNumber(y, b). The result depends on the value of MODULO_MODE. - */ - P.modulo = P.mod = function ( y, b ) { - var q, s, - x = this; - - id = 11; - y = new BigNumber( y, b ); - - // Return NaN if x is Infinity or NaN, or y is NaN or zero. - if ( !x.c || !y.s || y.c && !y.c[0] ) { - return new BigNumber(NaN); - - // Return x if y is Infinity or x is zero. - } else if ( !y.c || x.c && !x.c[0] ) { - return new BigNumber(x); - } - - if ( MODULO_MODE == 9 ) { - - // Euclidian division: q = sign(y) * floor(x / abs(y)) - // r = x - qy where 0 <= r < abs(y) - s = y.s; - y.s = 1; - q = div( x, y, 0, 3 ); - y.s = s; - q.s *= s; - } else { - q = div( x, y, 0, MODULO_MODE ); - } - - return x.minus( q.times(y) ); - }; - - - /* - * Return a new BigNumber whose value is the value of this BigNumber negated, - * i.e. multiplied by -1. - */ - P.negated = P.neg = function () { - var x = new BigNumber(this); - x.s = -x.s || null; - return x; - }; - - - /* - * n + 0 = n - * n + N = N - * n + I = I - * 0 + n = n - * 0 + 0 = 0 - * 0 + N = N - * 0 + I = I - * N + n = N - * N + 0 = N - * N + N = N - * N + I = N - * I + n = I - * I + 0 = I - * I + N = N - * I + I = I - * - * Return a new BigNumber whose value is the value of this BigNumber plus the value of - * BigNumber(y, b). - */ - P.plus = P.add = function ( y, b ) { - var t, - x = this, - a = x.s; - - id = 12; - y = new BigNumber( y, b ); - b = y.s; - - // Either NaN? - if ( !a || !b ) return new BigNumber(NaN); - - // Signs differ? - if ( a != b ) { - y.s = -b; - return x.minus(y); - } - - var xe = x.e / LOG_BASE, - ye = y.e / LOG_BASE, - xc = x.c, - yc = y.c; - - if ( !xe || !ye ) { - - // Return ±Infinity if either ±Infinity. - if ( !xc || !yc ) return new BigNumber( a / 0 ); - - // Either zero? - // Return y if y is non-zero, x if x is non-zero, or zero if both are zero. - if ( !xc[0] || !yc[0] ) return yc[0] ? y : new BigNumber( xc[0] ? x : a * 0 ); - } - - xe = bitFloor(xe); - ye = bitFloor(ye); - xc = xc.slice(); - - // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts. - if ( a = xe - ye ) { - if ( a > 0 ) { - ye = xe; - t = yc; - } else { - a = -a; - t = xc; - } - - t.reverse(); - for ( ; a--; t.push(0) ); - t.reverse(); - } - - a = xc.length; - b = yc.length; - - // Point xc to the longer array, and b to the shorter length. - if ( a - b < 0 ) t = yc, yc = xc, xc = t, b = a; - - // Only start adding at yc.length - 1 as the further digits of xc can be ignored. - for ( a = 0; b; ) { - a = ( xc[--b] = xc[b] + yc[b] + a ) / BASE | 0; - xc[b] %= BASE; - } - - if (a) { - xc.unshift(a); - ++ye; - } - - // No need to check for zero, as +x + +y != 0 && -x + -y != 0 - // ye = MAX_EXP + 1 possible - return normalise( y, xc, ye ); - }; - - - /* - * Return the number of significant digits of the value of this BigNumber. - * - * [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0. - */ - P.precision = P.sd = function (z) { - var n, v, - x = this, - c = x.c; - - // 'precision() argument not a boolean or binary digit: {z}' - if ( z != null && z !== !!z && z !== 1 && z !== 0 ) { - if (ERRORS) raise( 13, 'argument' + notBool, z ); - if ( z != !!z ) z = null; - } - - if ( !c ) return null; - v = c.length - 1; - n = v * LOG_BASE + 1; - - if ( v = c[v] ) { - - // Subtract the number of trailing zeros of the last element. - for ( ; v % 10 == 0; v /= 10, n-- ); - - // Add the number of digits of the first element. - for ( v = c[0]; v >= 10; v /= 10, n++ ); - } - - if ( z && x.e + 1 > n ) n = x.e + 1; - - return n; - }; - - - /* - * Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of - * dp decimal places using rounding mode rm, or to 0 and ROUNDING_MODE respectively if - * omitted. - * - * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. - * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. - * - * 'round() decimal places out of range: {dp}' - * 'round() decimal places not an integer: {dp}' - * 'round() rounding mode not an integer: {rm}' - * 'round() rounding mode out of range: {rm}' - */ - P.round = function ( dp, rm ) { - var n = new BigNumber(this); - - if ( dp == null || isValidInt( dp, 0, MAX, 15 ) ) { - round( n, ~~dp + this.e + 1, rm == null || - !isValidInt( rm, 0, 8, 15, roundingMode ) ? ROUNDING_MODE : rm | 0 ); - } - - return n; - }; - - - /* - * Return a new BigNumber whose value is the value of this BigNumber shifted by k places - * (powers of 10). Shift to the right if n > 0, and to the left if n < 0. - * - * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive. - * - * If k is out of range and ERRORS is false, the result will be ±0 if k < 0, or ±Infinity - * otherwise. - * - * 'shift() argument not an integer: {k}' - * 'shift() argument out of range: {k}' - */ - P.shift = function (k) { - var n = this; - return isValidInt( k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 16, 'argument' ) - - // k < 1e+21, or truncate(k) will produce exponential notation. - ? n.times( '1e' + truncate(k) ) - : new BigNumber( n.c && n.c[0] && ( k < -MAX_SAFE_INTEGER || k > MAX_SAFE_INTEGER ) - ? n.s * ( k < 0 ? 0 : 1 / 0 ) - : n ); - }; - - - /* - * sqrt(-n) = N - * sqrt( N) = N - * sqrt(-I) = N - * sqrt( I) = I - * sqrt( 0) = 0 - * sqrt(-0) = -0 - * - * Return a new BigNumber whose value is the square root of the value of this BigNumber, - * rounded according to DECIMAL_PLACES and ROUNDING_MODE. - */ - P.squareRoot = P.sqrt = function () { - var m, n, r, rep, t, - x = this, - c = x.c, - s = x.s, - e = x.e, - dp = DECIMAL_PLACES + 4, - half = new BigNumber('0.5'); - - // Negative/NaN/Infinity/zero? - if ( s !== 1 || !c || !c[0] ) { - return new BigNumber( !s || s < 0 && ( !c || c[0] ) ? NaN : c ? x : 1 / 0 ); - } - - // Initial estimate. - s = Math.sqrt( +x ); - - // Math.sqrt underflow/overflow? - // Pass x to Math.sqrt as integer, then adjust the exponent of the result. - if ( s == 0 || s == 1 / 0 ) { - n = coeffToString(c); - if ( ( n.length + e ) % 2 == 0 ) n += '0'; - s = Math.sqrt(n); - e = bitFloor( ( e + 1 ) / 2 ) - ( e < 0 || e % 2 ); - - if ( s == 1 / 0 ) { - n = '1e' + e; - } else { - n = s.toExponential(); - n = n.slice( 0, n.indexOf('e') + 1 ) + e; - } - - r = new BigNumber(n); - } else { - r = new BigNumber( s + '' ); - } - - // Check for zero. - // r could be zero if MIN_EXP is changed after the this value was created. - // This would cause a division by zero (x/t) and hence Infinity below, which would cause - // coeffToString to throw. - if ( r.c[0] ) { - e = r.e; - s = e + dp; - if ( s < 3 ) s = 0; - - // Newton-Raphson iteration. - for ( ; ; ) { - t = r; - r = half.times( t.plus( div( x, t, dp, 1 ) ) ); - - if ( coeffToString( t.c ).slice( 0, s ) === ( n = - coeffToString( r.c ) ).slice( 0, s ) ) { - - // The exponent of r may here be one less than the final result exponent, - // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits - // are indexed correctly. - if ( r.e < e ) --s; - n = n.slice( s - 3, s + 1 ); - - // The 4th rounding digit may be in error by -1 so if the 4 rounding digits - // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the - // iteration. - if ( n == '9999' || !rep && n == '4999' ) { - - // On the first iteration only, check to see if rounding up gives the - // exact result as the nines may infinitely repeat. - if ( !rep ) { - round( t, t.e + DECIMAL_PLACES + 2, 0 ); - - if ( t.times(t).eq(x) ) { - r = t; - break; - } - } - - dp += 4; - s += 4; - rep = 1; - } else { - - // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact - // result. If not, then there are further digits and m will be truthy. - if ( !+n || !+n.slice(1) && n.charAt(0) == '5' ) { - - // Truncate to the first rounding digit. - round( r, r.e + DECIMAL_PLACES + 2, 1 ); - m = !r.times(r).eq(x); - } - - break; - } - } - } - } - - return round( r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m ); - }; - - - /* - * n * 0 = 0 - * n * N = N - * n * I = I - * 0 * n = 0 - * 0 * 0 = 0 - * 0 * N = N - * 0 * I = N - * N * n = N - * N * 0 = N - * N * N = N - * N * I = N - * I * n = I - * I * 0 = N - * I * N = N - * I * I = I - * - * Return a new BigNumber whose value is the value of this BigNumber times the value of - * BigNumber(y, b). - */ - P.times = P.mul = function ( y, b ) { - var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc, - base, sqrtBase, - x = this, - xc = x.c, - yc = ( id = 17, y = new BigNumber( y, b ) ).c; - - // Either NaN, ±Infinity or ±0? - if ( !xc || !yc || !xc[0] || !yc[0] ) { - - // Return NaN if either is NaN, or one is 0 and the other is Infinity. - if ( !x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc ) { - y.c = y.e = y.s = null; - } else { - y.s *= x.s; - - // Return ±Infinity if either is ±Infinity. - if ( !xc || !yc ) { - y.c = y.e = null; - - // Return ±0 if either is ±0. - } else { - y.c = [0]; - y.e = 0; - } - } - - return y; - } - - e = bitFloor( x.e / LOG_BASE ) + bitFloor( y.e / LOG_BASE ); - y.s *= x.s; - xcL = xc.length; - ycL = yc.length; - - // Ensure xc points to longer array and xcL to its length. - if ( xcL < ycL ) zc = xc, xc = yc, yc = zc, i = xcL, xcL = ycL, ycL = i; - - // Initialise the result array with zeros. - for ( i = xcL + ycL, zc = []; i--; zc.push(0) ); - - base = BASE; - sqrtBase = SQRT_BASE; - - for ( i = ycL; --i >= 0; ) { - c = 0; - ylo = yc[i] % sqrtBase; - yhi = yc[i] / sqrtBase | 0; - - for ( k = xcL, j = i + k; j > i; ) { - xlo = xc[--k] % sqrtBase; - xhi = xc[k] / sqrtBase | 0; - m = yhi * xlo + xhi * ylo; - xlo = ylo * xlo + ( ( m % sqrtBase ) * sqrtBase ) + zc[j] + c; - c = ( xlo / base | 0 ) + ( m / sqrtBase | 0 ) + yhi * xhi; - zc[j--] = xlo % base; - } - - zc[j] = c; - } - - if (c) { - ++e; - } else { - zc.shift(); - } - - return normalise( y, zc, e ); - }; - - - /* - * Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of - * sd significant digits using rounding mode rm, or ROUNDING_MODE if rm is omitted. - * - * [sd] {number} Significant digits. Integer, 1 to MAX inclusive. - * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. - * - * 'toDigits() precision out of range: {sd}' - * 'toDigits() precision not an integer: {sd}' - * 'toDigits() rounding mode not an integer: {rm}' - * 'toDigits() rounding mode out of range: {rm}' - */ - P.toDigits = function ( sd, rm ) { - var n = new BigNumber(this); - sd = sd == null || !isValidInt( sd, 1, MAX, 18, 'precision' ) ? null : sd | 0; - rm = rm == null || !isValidInt( rm, 0, 8, 18, roundingMode ) ? ROUNDING_MODE : rm | 0; - return sd ? round( n, sd, rm ) : n; - }; - - - /* - * Return a string representing the value of this BigNumber in exponential notation and - * rounded using ROUNDING_MODE to dp fixed decimal places. - * - * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. - * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. - * - * 'toExponential() decimal places not an integer: {dp}' - * 'toExponential() decimal places out of range: {dp}' - * 'toExponential() rounding mode not an integer: {rm}' - * 'toExponential() rounding mode out of range: {rm}' - */ - P.toExponential = function ( dp, rm ) { - return format( this, - dp != null && isValidInt( dp, 0, MAX, 19 ) ? ~~dp + 1 : null, rm, 19 ); - }; - - - /* - * Return a string representing the value of this BigNumber in fixed-point notation rounding - * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted. - * - * Note: as with JavaScript's number type, (-0).toFixed(0) is '0', - * but e.g. (-0.00001).toFixed(0) is '-0'. - * - * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. - * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. - * - * 'toFixed() decimal places not an integer: {dp}' - * 'toFixed() decimal places out of range: {dp}' - * 'toFixed() rounding mode not an integer: {rm}' - * 'toFixed() rounding mode out of range: {rm}' - */ - P.toFixed = function ( dp, rm ) { - return format( this, dp != null && isValidInt( dp, 0, MAX, 20 ) - ? ~~dp + this.e + 1 : null, rm, 20 ); - }; - - - /* - * Return a string representing the value of this BigNumber in fixed-point notation rounded - * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties - * of the FORMAT object (see BigNumber.config). - * - * FORMAT = { - * decimalSeparator : '.', - * groupSeparator : ',', - * groupSize : 3, - * secondaryGroupSize : 0, - * fractionGroupSeparator : '\xA0', // non-breaking space - * fractionGroupSize : 0 - * }; - * - * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. - * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. - * - * 'toFormat() decimal places not an integer: {dp}' - * 'toFormat() decimal places out of range: {dp}' - * 'toFormat() rounding mode not an integer: {rm}' - * 'toFormat() rounding mode out of range: {rm}' - */ - P.toFormat = function ( dp, rm ) { - var str = format( this, dp != null && isValidInt( dp, 0, MAX, 21 ) - ? ~~dp + this.e + 1 : null, rm, 21 ); - - if ( this.c ) { - var i, - arr = str.split('.'), - g1 = +FORMAT.groupSize, - g2 = +FORMAT.secondaryGroupSize, - groupSeparator = FORMAT.groupSeparator, - intPart = arr[0], - fractionPart = arr[1], - isNeg = this.s < 0, - intDigits = isNeg ? intPart.slice(1) : intPart, - len = intDigits.length; - - if (g2) i = g1, g1 = g2, g2 = i, len -= i; - - if ( g1 > 0 && len > 0 ) { - i = len % g1 || g1; - intPart = intDigits.substr( 0, i ); - - for ( ; i < len; i += g1 ) { - intPart += groupSeparator + intDigits.substr( i, g1 ); - } - - if ( g2 > 0 ) intPart += groupSeparator + intDigits.slice(i); - if (isNeg) intPart = '-' + intPart; - } - - str = fractionPart - ? intPart + FORMAT.decimalSeparator + ( ( g2 = +FORMAT.fractionGroupSize ) - ? fractionPart.replace( new RegExp( '\\d{' + g2 + '}\\B', 'g' ), - '$&' + FORMAT.fractionGroupSeparator ) - : fractionPart ) - : intPart; - } - - return str; - }; - - - /* - * Return a string array representing the value of this BigNumber as a simple fraction with - * an integer numerator and an integer denominator. The denominator will be a positive - * non-zero value less than or equal to the specified maximum denominator. If a maximum - * denominator is not specified, the denominator will be the lowest value necessary to - * represent the number exactly. - * - * [md] {number|string|BigNumber} Integer >= 1 and < Infinity. The maximum denominator. - * - * 'toFraction() max denominator not an integer: {md}' - * 'toFraction() max denominator out of range: {md}' - */ - P.toFraction = function (md) { - var arr, d0, d2, e, exp, n, n0, q, s, - k = ERRORS, - x = this, - xc = x.c, - d = new BigNumber(ONE), - n1 = d0 = new BigNumber(ONE), - d1 = n0 = new BigNumber(ONE); - - if ( md != null ) { - ERRORS = false; - n = new BigNumber(md); - ERRORS = k; - - if ( !( k = n.isInt() ) || n.lt(ONE) ) { - - if (ERRORS) { - raise( 22, - 'max denominator ' + ( k ? 'out of range' : 'not an integer' ), md ); - } - - // ERRORS is false: - // If md is a finite non-integer >= 1, round it to an integer and use it. - md = !k && n.c && round( n, n.e + 1, 1 ).gte(ONE) ? n : null; - } - } - - if ( !xc ) return x.toString(); - s = coeffToString(xc); - - // Determine initial denominator. - // d is a power of 10 and the minimum max denominator that specifies the value exactly. - e = d.e = s.length - x.e - 1; - d.c[0] = POWS_TEN[ ( exp = e % LOG_BASE ) < 0 ? LOG_BASE + exp : exp ]; - md = !md || n.cmp(d) > 0 ? ( e > 0 ? d : n1 ) : n; - - exp = MAX_EXP; - MAX_EXP = 1 / 0; - n = new BigNumber(s); - - // n0 = d1 = 0 - n0.c[0] = 0; - - for ( ; ; ) { - q = div( n, d, 0, 1 ); - d2 = d0.plus( q.times(d1) ); - if ( d2.cmp(md) == 1 ) break; - d0 = d1; - d1 = d2; - n1 = n0.plus( q.times( d2 = n1 ) ); - n0 = d2; - d = n.minus( q.times( d2 = d ) ); - n = d2; - } - - d2 = div( md.minus(d0), d1, 0, 1 ); - n0 = n0.plus( d2.times(n1) ); - d0 = d0.plus( d2.times(d1) ); - n0.s = n1.s = x.s; - e *= 2; - - // Determine which fraction is closer to x, n0/d0 or n1/d1 - arr = div( n1, d1, e, ROUNDING_MODE ).minus(x).abs().cmp( - div( n0, d0, e, ROUNDING_MODE ).minus(x).abs() ) < 1 - ? [ n1.toString(), d1.toString() ] - : [ n0.toString(), d0.toString() ]; - - MAX_EXP = exp; - return arr; - }; - - - /* - * Return the value of this BigNumber converted to a number primitive. - */ - P.toNumber = function () { - var x = this; - - // Ensure zero has correct sign. - return +x || ( x.s ? x.s * 0 : NaN ); - }; - - - /* - * Return a BigNumber whose value is the value of this BigNumber raised to the power n. - * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE. - * If POW_PRECISION is not 0, round to POW_PRECISION using ROUNDING_MODE. - * - * n {number} Integer, -9007199254740992 to 9007199254740992 inclusive. - * (Performs 54 loop iterations for n of 9007199254740992.) - * - * 'pow() exponent not an integer: {n}' - * 'pow() exponent out of range: {n}' - */ - P.toPower = P.pow = function (n) { - var k, y, - i = mathfloor( n < 0 ? -n : +n ), - x = this; - - // Pass ±Infinity to Math.pow if exponent is out of range. - if ( !isValidInt( n, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 23, 'exponent' ) && - ( !isFinite(n) || i > MAX_SAFE_INTEGER && ( n /= 0 ) || - parseFloat(n) != n && !( n = NaN ) ) ) { - return new BigNumber( Math.pow( +x, n ) ); - } - - // Truncating each coefficient array to a length of k after each multiplication equates - // to truncating significant digits to POW_PRECISION + [28, 41], i.e. there will be a - // minimum of 28 guard digits retained. (Using + 1.5 would give [9, 21] guard digits.) - k = POW_PRECISION ? mathceil( POW_PRECISION / LOG_BASE + 2 ) : 0; - y = new BigNumber(ONE); - - for ( ; ; ) { - - if ( i % 2 ) { - y = y.times(x); - if ( !y.c ) break; - if ( k && y.c.length > k ) y.c.length = k; - } - - i = mathfloor( i / 2 ); - if ( !i ) break; - - x = x.times(x); - if ( k && x.c && x.c.length > k ) x.c.length = k; - } - - if ( n < 0 ) y = ONE.div(y); - return k ? round( y, POW_PRECISION, ROUNDING_MODE ) : y; - }; - - - /* - * Return a string representing the value of this BigNumber rounded to sd significant digits - * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits - * necessary to represent the integer part of the value in fixed-point notation, then use - * exponential notation. - * - * [sd] {number} Significant digits. Integer, 1 to MAX inclusive. - * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. - * - * 'toPrecision() precision not an integer: {sd}' - * 'toPrecision() precision out of range: {sd}' - * 'toPrecision() rounding mode not an integer: {rm}' - * 'toPrecision() rounding mode out of range: {rm}' - */ - P.toPrecision = function ( sd, rm ) { - return format( this, sd != null && isValidInt( sd, 1, MAX, 24, 'precision' ) - ? sd | 0 : null, rm, 24 ); - }; - - - /* - * Return a string representing the value of this BigNumber in base b, or base 10 if b is - * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and - * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent - * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than - * TO_EXP_NEG, return exponential notation. - * - * [b] {number} Integer, 2 to 64 inclusive. - * - * 'toString() base not an integer: {b}' - * 'toString() base out of range: {b}' - */ - P.toString = function (b) { - var str, - n = this, - s = n.s, - e = n.e; - - // Infinity or NaN? - if ( e === null ) { - - if (s) { - str = 'Infinity'; - if ( s < 0 ) str = '-' + str; - } else { - str = 'NaN'; - } - } else { - str = coeffToString( n.c ); - - if ( b == null || !isValidInt( b, 2, 64, 25, 'base' ) ) { - str = e <= TO_EXP_NEG || e >= TO_EXP_POS - ? toExponential( str, e ) - : toFixedPoint( str, e ); - } else { - str = convertBase( toFixedPoint( str, e ), b | 0, 10, s ); - } - - if ( s < 0 && n.c[0] ) str = '-' + str; - } - - return str; - }; - - - /* - * Return a new BigNumber whose value is the value of this BigNumber truncated to a whole - * number. - */ - P.truncated = P.trunc = function () { - return round( new BigNumber(this), this.e + 1, 1 ); - }; - - - - /* - * Return as toString, but do not accept a base argument. - */ - P.valueOf = P.toJSON = function () { - return this.toString(); - }; - - - // Aliases for BigDecimal methods. - //P.add = P.plus; // P.add included above - //P.subtract = P.minus; // P.sub included above - //P.multiply = P.times; // P.mul included above - //P.divide = P.div; - //P.remainder = P.mod; - //P.compareTo = P.cmp; - //P.negate = P.neg; - - - if ( configObj != null ) BigNumber.config(configObj); - - return BigNumber; - } - - - // PRIVATE HELPER FUNCTIONS - - - function bitFloor(n) { - var i = n | 0; - return n > 0 || n === i ? i : i - 1; - } - - - // Return a coefficient array as a string of base 10 digits. - function coeffToString(a) { - var s, z, - i = 1, - j = a.length, - r = a[0] + ''; - - for ( ; i < j; ) { - s = a[i++] + ''; - z = LOG_BASE - s.length; - for ( ; z--; s = '0' + s ); - r += s; - } - - // Determine trailing zeros. - for ( j = r.length; r.charCodeAt(--j) === 48; ); - return r.slice( 0, j + 1 || 1 ); - } - - - // Compare the value of BigNumbers x and y. - function compare( x, y ) { - var a, b, - xc = x.c, - yc = y.c, - i = x.s, - j = y.s, - k = x.e, - l = y.e; - - // Either NaN? - if ( !i || !j ) return null; - - a = xc && !xc[0]; - b = yc && !yc[0]; - - // Either zero? - if ( a || b ) return a ? b ? 0 : -j : i; - - // Signs differ? - if ( i != j ) return i; - - a = i < 0; - b = k == l; - - // Either Infinity? - if ( !xc || !yc ) return b ? 0 : !xc ^ a ? 1 : -1; - - // Compare exponents. - if ( !b ) return k > l ^ a ? 1 : -1; - - j = ( k = xc.length ) < ( l = yc.length ) ? k : l; - - // Compare digit by digit. - for ( i = 0; i < j; i++ ) if ( xc[i] != yc[i] ) return xc[i] > yc[i] ^ a ? 1 : -1; - - // Compare lengths. - return k == l ? 0 : k > l ^ a ? 1 : -1; - } - - - /* - * Return true if n is a valid number in range, otherwise false. - * Use for argument validation when ERRORS is false. - * Note: parseInt('1e+1') == 1 but parseFloat('1e+1') == 10. - */ - function intValidatorNoErrors( n, min, max ) { - return ( n = truncate(n) ) >= min && n <= max; - } - - - function isArray(obj) { - return Object.prototype.toString.call(obj) == '[object Array]'; - } - - - /* - * Convert string of baseIn to an array of numbers of baseOut. - * Eg. convertBase('255', 10, 16) returns [15, 15]. - * Eg. convertBase('ff', 16, 10) returns [2, 5, 5]. - */ - function toBaseOut( str, baseIn, baseOut ) { - var j, - arr = [0], - arrL, - i = 0, - len = str.length; - - for ( ; i < len; ) { - for ( arrL = arr.length; arrL--; arr[arrL] *= baseIn ); - arr[ j = 0 ] += ALPHABET.indexOf( str.charAt( i++ ) ); - - for ( ; j < arr.length; j++ ) { - - if ( arr[j] > baseOut - 1 ) { - if ( arr[j + 1] == null ) arr[j + 1] = 0; - arr[j + 1] += arr[j] / baseOut | 0; - arr[j] %= baseOut; - } - } - } - - return arr.reverse(); - } - - - function toExponential( str, e ) { - return ( str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str ) + - ( e < 0 ? 'e' : 'e+' ) + e; - } - - - function toFixedPoint( str, e ) { - var len, z; - - // Negative exponent? - if ( e < 0 ) { - - // Prepend zeros. - for ( z = '0.'; ++e; z += '0' ); - str = z + str; - - // Positive exponent - } else { - len = str.length; - - // Append zeros. - if ( ++e > len ) { - for ( z = '0', e -= len; --e; z += '0' ); - str += z; - } else if ( e < len ) { - str = str.slice( 0, e ) + '.' + str.slice(e); - } - } - - return str; - } - - - function truncate(n) { - n = parseFloat(n); - return n < 0 ? mathceil(n) : mathfloor(n); - } - - - // EXPORT - - - BigNumber = another(); - - // AMD. - if ( typeof define == 'function' && define.amd ) { - define( function () { return BigNumber; } ); - - // Node and other environments that support module.exports. - } else if ( typeof module != 'undefined' && module.exports ) { - module.exports = BigNumber; - if ( !crypto ) try { crypto = require('crypto'); } catch (e) {} - - // Browser. - } else { - global.BigNumber = BigNumber; - } -})(this); - -},{"crypto":50}],"web3":[function(require,module,exports){ +/*! bignumber.js v4.0.2 https://github.com/MikeMcl/bignumber.js/LICENCE */ + +;(function (globalObj) { + 'use strict'; + + /* + bignumber.js v4.0.2 + A JavaScript library for arbitrary-precision arithmetic. + https://github.com/MikeMcl/bignumber.js + Copyright (c) 2017 Michael Mclaughlin + MIT Expat Licence + */ + + + var BigNumber, + isNumeric = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i, + mathceil = Math.ceil, + mathfloor = Math.floor, + notBool = ' not a boolean or binary digit', + roundingMode = 'rounding mode', + tooManyDigits = 'number type has more than 15 significant digits', + ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_', + BASE = 1e14, + LOG_BASE = 14, + MAX_SAFE_INTEGER = 0x1fffffffffffff, // 2^53 - 1 + // MAX_INT32 = 0x7fffffff, // 2^31 - 1 + POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13], + SQRT_BASE = 1e7, + + /* + * The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and + * the arguments to toExponential, toFixed, toFormat, and toPrecision, beyond which an + * exception is thrown (if ERRORS is true). + */ + MAX = 1E9; // 0 to MAX_INT32 + + + /* + * Create and return a BigNumber constructor. + */ + function constructorFactory(config) { + var div, parseNumeric, + + // id tracks the caller function, so its name can be included in error messages. + id = 0, + P = BigNumber.prototype, + ONE = new BigNumber(1), + + + /********************************* EDITABLE DEFAULTS **********************************/ + + + /* + * The default values below must be integers within the inclusive ranges stated. + * The values can also be changed at run-time using BigNumber.config. + */ + + // The maximum number of decimal places for operations involving division. + DECIMAL_PLACES = 20, // 0 to MAX + + /* + * The rounding mode used when rounding to the above decimal places, and when using + * toExponential, toFixed, toFormat and toPrecision, and round (default value). + * UP 0 Away from zero. + * DOWN 1 Towards zero. + * CEIL 2 Towards +Infinity. + * FLOOR 3 Towards -Infinity. + * HALF_UP 4 Towards nearest neighbour. If equidistant, up. + * HALF_DOWN 5 Towards nearest neighbour. If equidistant, down. + * HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour. + * HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity. + * HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity. + */ + ROUNDING_MODE = 4, // 0 to 8 + + // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS] + + // The exponent value at and beneath which toString returns exponential notation. + // Number type: -7 + TO_EXP_NEG = -7, // 0 to -MAX + + // The exponent value at and above which toString returns exponential notation. + // Number type: 21 + TO_EXP_POS = 21, // 0 to MAX + + // RANGE : [MIN_EXP, MAX_EXP] + + // The minimum exponent value, beneath which underflow to zero occurs. + // Number type: -324 (5e-324) + MIN_EXP = -1e7, // -1 to -MAX + + // The maximum exponent value, above which overflow to Infinity occurs. + // Number type: 308 (1.7976931348623157e+308) + // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow. + MAX_EXP = 1e7, // 1 to MAX + + // Whether BigNumber Errors are ever thrown. + ERRORS = true, // true or false + + // Change to intValidatorNoErrors if ERRORS is false. + isValidInt = intValidatorWithErrors, // intValidatorWithErrors/intValidatorNoErrors + + // Whether to use cryptographically-secure random number generation, if available. + CRYPTO = false, // true or false + + /* + * The modulo mode used when calculating the modulus: a mod n. + * The quotient (q = a / n) is calculated according to the corresponding rounding mode. + * The remainder (r) is calculated as: r = a - n * q. + * + * UP 0 The remainder is positive if the dividend is negative, else is negative. + * DOWN 1 The remainder has the same sign as the dividend. + * This modulo mode is commonly known as 'truncated division' and is + * equivalent to (a % n) in JavaScript. + * FLOOR 3 The remainder has the same sign as the divisor (Python %). + * HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function. + * EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)). + * The remainder is always positive. + * + * The truncated division, floored division, Euclidian division and IEEE 754 remainder + * modes are commonly used for the modulus operation. + * Although the other rounding modes can also be used, they may not give useful results. + */ + MODULO_MODE = 1, // 0 to 9 + + // The maximum number of significant digits of the result of the toPower operation. + // If POW_PRECISION is 0, there will be unlimited significant digits. + POW_PRECISION = 0, // 0 to MAX + + // The format specification used by the BigNumber.prototype.toFormat method. + FORMAT = { + decimalSeparator: '.', + groupSeparator: ',', + groupSize: 3, + secondaryGroupSize: 0, + fractionGroupSeparator: '\xA0', // non-breaking space + fractionGroupSize: 0 + }; + + + /******************************************************************************************/ + + + // CONSTRUCTOR + + + /* + * The BigNumber constructor and exported function. + * Create and return a new instance of a BigNumber object. + * + * n {number|string|BigNumber} A numeric value. + * [b] {number} The base of n. Integer, 2 to 64 inclusive. + */ + function BigNumber( n, b ) { + var c, e, i, num, len, str, + x = this; + + // Enable constructor usage without new. + if ( !( x instanceof BigNumber ) ) { + + // 'BigNumber() constructor call without new: {n}' + if (ERRORS) raise( 26, 'constructor call without new', n ); + return new BigNumber( n, b ); + } + + // 'new BigNumber() base not an integer: {b}' + // 'new BigNumber() base out of range: {b}' + if ( b == null || !isValidInt( b, 2, 64, id, 'base' ) ) { + + // Duplicate. + if ( n instanceof BigNumber ) { + x.s = n.s; + x.e = n.e; + x.c = ( n = n.c ) ? n.slice() : n; + id = 0; + return; + } + + if ( ( num = typeof n == 'number' ) && n * 0 == 0 ) { + x.s = 1 / n < 0 ? ( n = -n, -1 ) : 1; + + // Fast path for integers. + if ( n === ~~n ) { + for ( e = 0, i = n; i >= 10; i /= 10, e++ ); + x.e = e; + x.c = [n]; + id = 0; + return; + } + + str = n + ''; + } else { + if ( !isNumeric.test( str = n + '' ) ) return parseNumeric( x, str, num ); + x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1; + } + } else { + b = b | 0; + str = n + ''; + + // Ensure return value is rounded to DECIMAL_PLACES as with other bases. + // Allow exponential notation to be used with base 10 argument. + if ( b == 10 ) { + x = new BigNumber( n instanceof BigNumber ? n : str ); + return round( x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE ); + } + + // Avoid potential interpretation of Infinity and NaN as base 44+ values. + // Any number in exponential form will fail due to the [Ee][+-]. + if ( ( num = typeof n == 'number' ) && n * 0 != 0 || + !( new RegExp( '^-?' + ( c = '[' + ALPHABET.slice( 0, b ) + ']+' ) + + '(?:\\.' + c + ')?$',b < 37 ? 'i' : '' ) ).test(str) ) { + return parseNumeric( x, str, num, b ); + } + + if (num) { + x.s = 1 / n < 0 ? ( str = str.slice(1), -1 ) : 1; + + if ( ERRORS && str.replace( /^0\.0*|\./, '' ).length > 15 ) { + + // 'new BigNumber() number type has more than 15 significant digits: {n}' + raise( id, tooManyDigits, n ); + } + + // Prevent later check for length on converted number. + num = false; + } else { + x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1; + } + + str = convertBase( str, 10, b, x.s ); + } + + // Decimal point? + if ( ( e = str.indexOf('.') ) > -1 ) str = str.replace( '.', '' ); + + // Exponential form? + if ( ( i = str.search( /e/i ) ) > 0 ) { + + // Determine exponent. + if ( e < 0 ) e = i; + e += +str.slice( i + 1 ); + str = str.substring( 0, i ); + } else if ( e < 0 ) { + + // Integer. + e = str.length; + } + + // Determine leading zeros. + for ( i = 0; str.charCodeAt(i) === 48; i++ ); + + // Determine trailing zeros. + for ( len = str.length; str.charCodeAt(--len) === 48; ); + str = str.slice( i, len + 1 ); + + if (str) { + len = str.length; + + // Disallow numbers with over 15 significant digits if number type. + // 'new BigNumber() number type has more than 15 significant digits: {n}' + if ( num && ERRORS && len > 15 && ( n > MAX_SAFE_INTEGER || n !== mathfloor(n) ) ) { + raise( id, tooManyDigits, x.s * n ); + } + + e = e - i - 1; + + // Overflow? + if ( e > MAX_EXP ) { + + // Infinity. + x.c = x.e = null; + + // Underflow? + } else if ( e < MIN_EXP ) { + + // Zero. + x.c = [ x.e = 0 ]; + } else { + x.e = e; + x.c = []; + + // Transform base + + // e is the base 10 exponent. + // i is where to slice str to get the first element of the coefficient array. + i = ( e + 1 ) % LOG_BASE; + if ( e < 0 ) i += LOG_BASE; + + if ( i < len ) { + if (i) x.c.push( +str.slice( 0, i ) ); + + for ( len -= LOG_BASE; i < len; ) { + x.c.push( +str.slice( i, i += LOG_BASE ) ); + } + + str = str.slice(i); + i = LOG_BASE - str.length; + } else { + i -= len; + } + + for ( ; i--; str += '0' ); + x.c.push( +str ); + } + } else { + + // Zero. + x.c = [ x.e = 0 ]; + } + + id = 0; + } + + + // CONSTRUCTOR PROPERTIES + + + BigNumber.another = constructorFactory; + + BigNumber.ROUND_UP = 0; + BigNumber.ROUND_DOWN = 1; + BigNumber.ROUND_CEIL = 2; + BigNumber.ROUND_FLOOR = 3; + BigNumber.ROUND_HALF_UP = 4; + BigNumber.ROUND_HALF_DOWN = 5; + BigNumber.ROUND_HALF_EVEN = 6; + BigNumber.ROUND_HALF_CEIL = 7; + BigNumber.ROUND_HALF_FLOOR = 8; + BigNumber.EUCLID = 9; + + + /* + * Configure infrequently-changing library-wide settings. + * + * Accept an object or an argument list, with one or many of the following properties or + * parameters respectively: + * + * DECIMAL_PLACES {number} Integer, 0 to MAX inclusive + * ROUNDING_MODE {number} Integer, 0 to 8 inclusive + * EXPONENTIAL_AT {number|number[]} Integer, -MAX to MAX inclusive or + * [integer -MAX to 0 incl., 0 to MAX incl.] + * RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or + * [integer -MAX to -1 incl., integer 1 to MAX incl.] + * ERRORS {boolean|number} true, false, 1 or 0 + * CRYPTO {boolean|number} true, false, 1 or 0 + * MODULO_MODE {number} 0 to 9 inclusive + * POW_PRECISION {number} 0 to MAX inclusive + * FORMAT {object} See BigNumber.prototype.toFormat + * decimalSeparator {string} + * groupSeparator {string} + * groupSize {number} + * secondaryGroupSize {number} + * fractionGroupSeparator {string} + * fractionGroupSize {number} + * + * (The values assigned to the above FORMAT object properties are not checked for validity.) + * + * E.g. + * BigNumber.config(20, 4) is equivalent to + * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 }) + * + * Ignore properties/parameters set to null or undefined. + * Return an object with the properties current values. + */ + BigNumber.config = BigNumber.set = function () { + var v, p, + i = 0, + r = {}, + a = arguments, + o = a[0], + has = o && typeof o == 'object' + ? function () { if ( o.hasOwnProperty(p) ) return ( v = o[p] ) != null; } + : function () { if ( a.length > i ) return ( v = a[i++] ) != null; }; + + // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive. + // 'config() DECIMAL_PLACES not an integer: {v}' + // 'config() DECIMAL_PLACES out of range: {v}' + if ( has( p = 'DECIMAL_PLACES' ) && isValidInt( v, 0, MAX, 2, p ) ) { + DECIMAL_PLACES = v | 0; + } + r[p] = DECIMAL_PLACES; + + // ROUNDING_MODE {number} Integer, 0 to 8 inclusive. + // 'config() ROUNDING_MODE not an integer: {v}' + // 'config() ROUNDING_MODE out of range: {v}' + if ( has( p = 'ROUNDING_MODE' ) && isValidInt( v, 0, 8, 2, p ) ) { + ROUNDING_MODE = v | 0; + } + r[p] = ROUNDING_MODE; + + // EXPONENTIAL_AT {number|number[]} + // Integer, -MAX to MAX inclusive or [integer -MAX to 0 inclusive, 0 to MAX inclusive]. + // 'config() EXPONENTIAL_AT not an integer: {v}' + // 'config() EXPONENTIAL_AT out of range: {v}' + if ( has( p = 'EXPONENTIAL_AT' ) ) { + + if ( isArray(v) ) { + if ( isValidInt( v[0], -MAX, 0, 2, p ) && isValidInt( v[1], 0, MAX, 2, p ) ) { + TO_EXP_NEG = v[0] | 0; + TO_EXP_POS = v[1] | 0; + } + } else if ( isValidInt( v, -MAX, MAX, 2, p ) ) { + TO_EXP_NEG = -( TO_EXP_POS = ( v < 0 ? -v : v ) | 0 ); + } + } + r[p] = [ TO_EXP_NEG, TO_EXP_POS ]; + + // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or + // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive]. + // 'config() RANGE not an integer: {v}' + // 'config() RANGE cannot be zero: {v}' + // 'config() RANGE out of range: {v}' + if ( has( p = 'RANGE' ) ) { + + if ( isArray(v) ) { + if ( isValidInt( v[0], -MAX, -1, 2, p ) && isValidInt( v[1], 1, MAX, 2, p ) ) { + MIN_EXP = v[0] | 0; + MAX_EXP = v[1] | 0; + } + } else if ( isValidInt( v, -MAX, MAX, 2, p ) ) { + if ( v | 0 ) MIN_EXP = -( MAX_EXP = ( v < 0 ? -v : v ) | 0 ); + else if (ERRORS) raise( 2, p + ' cannot be zero', v ); + } + } + r[p] = [ MIN_EXP, MAX_EXP ]; + + // ERRORS {boolean|number} true, false, 1 or 0. + // 'config() ERRORS not a boolean or binary digit: {v}' + if ( has( p = 'ERRORS' ) ) { + + if ( v === !!v || v === 1 || v === 0 ) { + id = 0; + isValidInt = ( ERRORS = !!v ) ? intValidatorWithErrors : intValidatorNoErrors; + } else if (ERRORS) { + raise( 2, p + notBool, v ); + } + } + r[p] = ERRORS; + + // CRYPTO {boolean|number} true, false, 1 or 0. + // 'config() CRYPTO not a boolean or binary digit: {v}' + // 'config() crypto unavailable: {crypto}' + if ( has( p = 'CRYPTO' ) ) { + + if ( v === true || v === false || v === 1 || v === 0 ) { + if (v) { + v = typeof crypto == 'undefined'; + if ( !v && crypto && (crypto.getRandomValues || crypto.randomBytes)) { + CRYPTO = true; + } else if (ERRORS) { + raise( 2, 'crypto unavailable', v ? void 0 : crypto ); + } else { + CRYPTO = false; + } + } else { + CRYPTO = false; + } + } else if (ERRORS) { + raise( 2, p + notBool, v ); + } + } + r[p] = CRYPTO; + + // MODULO_MODE {number} Integer, 0 to 9 inclusive. + // 'config() MODULO_MODE not an integer: {v}' + // 'config() MODULO_MODE out of range: {v}' + if ( has( p = 'MODULO_MODE' ) && isValidInt( v, 0, 9, 2, p ) ) { + MODULO_MODE = v | 0; + } + r[p] = MODULO_MODE; + + // POW_PRECISION {number} Integer, 0 to MAX inclusive. + // 'config() POW_PRECISION not an integer: {v}' + // 'config() POW_PRECISION out of range: {v}' + if ( has( p = 'POW_PRECISION' ) && isValidInt( v, 0, MAX, 2, p ) ) { + POW_PRECISION = v | 0; + } + r[p] = POW_PRECISION; + + // FORMAT {object} + // 'config() FORMAT not an object: {v}' + if ( has( p = 'FORMAT' ) ) { + + if ( typeof v == 'object' ) { + FORMAT = v; + } else if (ERRORS) { + raise( 2, p + ' not an object', v ); + } + } + r[p] = FORMAT; + + return r; + }; + + + /* + * Return a new BigNumber whose value is the maximum of the arguments. + * + * arguments {number|string|BigNumber} + */ + BigNumber.max = function () { return maxOrMin( arguments, P.lt ); }; + + + /* + * Return a new BigNumber whose value is the minimum of the arguments. + * + * arguments {number|string|BigNumber} + */ + BigNumber.min = function () { return maxOrMin( arguments, P.gt ); }; + + + /* + * Return a new BigNumber with a random value equal to or greater than 0 and less than 1, + * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing + * zeros are produced). + * + * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. + * + * 'random() decimal places not an integer: {dp}' + * 'random() decimal places out of range: {dp}' + * 'random() crypto unavailable: {crypto}' + */ + BigNumber.random = (function () { + var pow2_53 = 0x20000000000000; + + // Return a 53 bit integer n, where 0 <= n < 9007199254740992. + // Check if Math.random() produces more than 32 bits of randomness. + // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits. + // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1. + var random53bitInt = (Math.random() * pow2_53) & 0x1fffff + ? function () { return mathfloor( Math.random() * pow2_53 ); } + : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) + + (Math.random() * 0x800000 | 0); }; + + return function (dp) { + var a, b, e, k, v, + i = 0, + c = [], + rand = new BigNumber(ONE); + + dp = dp == null || !isValidInt( dp, 0, MAX, 14 ) ? DECIMAL_PLACES : dp | 0; + k = mathceil( dp / LOG_BASE ); + + if (CRYPTO) { + + // Browsers supporting crypto.getRandomValues. + if (crypto.getRandomValues) { + + a = crypto.getRandomValues( new Uint32Array( k *= 2 ) ); + + for ( ; i < k; ) { + + // 53 bits: + // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2) + // 11111 11111111 11111111 11111111 11100000 00000000 00000000 + // ((Math.pow(2, 32) - 1) >>> 11).toString(2) + // 11111 11111111 11111111 + // 0x20000 is 2^21. + v = a[i] * 0x20000 + (a[i + 1] >>> 11); + + // Rejection sampling: + // 0 <= v < 9007199254740992 + // Probability that v >= 9e15, is + // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251 + if ( v >= 9e15 ) { + b = crypto.getRandomValues( new Uint32Array(2) ); + a[i] = b[0]; + a[i + 1] = b[1]; + } else { + + // 0 <= v <= 8999999999999999 + // 0 <= (v % 1e14) <= 99999999999999 + c.push( v % 1e14 ); + i += 2; + } + } + i = k / 2; + + // Node.js supporting crypto.randomBytes. + } else if (crypto.randomBytes) { + + // buffer + a = crypto.randomBytes( k *= 7 ); + + for ( ; i < k; ) { + + // 0x1000000000000 is 2^48, 0x10000000000 is 2^40 + // 0x100000000 is 2^32, 0x1000000 is 2^24 + // 11111 11111111 11111111 11111111 11111111 11111111 11111111 + // 0 <= v < 9007199254740992 + v = ( ( a[i] & 31 ) * 0x1000000000000 ) + ( a[i + 1] * 0x10000000000 ) + + ( a[i + 2] * 0x100000000 ) + ( a[i + 3] * 0x1000000 ) + + ( a[i + 4] << 16 ) + ( a[i + 5] << 8 ) + a[i + 6]; + + if ( v >= 9e15 ) { + crypto.randomBytes(7).copy( a, i ); + } else { + + // 0 <= (v % 1e14) <= 99999999999999 + c.push( v % 1e14 ); + i += 7; + } + } + i = k / 7; + } else { + CRYPTO = false; + if (ERRORS) raise( 14, 'crypto unavailable', crypto ); + } + } + + // Use Math.random. + if (!CRYPTO) { + + for ( ; i < k; ) { + v = random53bitInt(); + if ( v < 9e15 ) c[i++] = v % 1e14; + } + } + + k = c[--i]; + dp %= LOG_BASE; + + // Convert trailing digits to zeros according to dp. + if ( k && dp ) { + v = POWS_TEN[LOG_BASE - dp]; + c[i] = mathfloor( k / v ) * v; + } + + // Remove trailing elements which are zero. + for ( ; c[i] === 0; c.pop(), i-- ); + + // Zero? + if ( i < 0 ) { + c = [ e = 0 ]; + } else { + + // Remove leading elements which are zero and adjust exponent accordingly. + for ( e = -1 ; c[0] === 0; c.splice(0, 1), e -= LOG_BASE); + + // Count the digits of the first element of c to determine leading zeros, and... + for ( i = 1, v = c[0]; v >= 10; v /= 10, i++); + + // adjust the exponent accordingly. + if ( i < LOG_BASE ) e -= LOG_BASE - i; + } + + rand.e = e; + rand.c = c; + return rand; + }; + })(); + + + // PRIVATE FUNCTIONS + + + // Convert a numeric string of baseIn to a numeric string of baseOut. + function convertBase( str, baseOut, baseIn, sign ) { + var d, e, k, r, x, xc, y, + i = str.indexOf( '.' ), + dp = DECIMAL_PLACES, + rm = ROUNDING_MODE; + + if ( baseIn < 37 ) str = str.toLowerCase(); + + // Non-integer. + if ( i >= 0 ) { + k = POW_PRECISION; + + // Unlimited precision. + POW_PRECISION = 0; + str = str.replace( '.', '' ); + y = new BigNumber(baseIn); + x = y.pow( str.length - i ); + POW_PRECISION = k; + + // Convert str as if an integer, then restore the fraction part by dividing the + // result by its base raised to a power. + y.c = toBaseOut( toFixedPoint( coeffToString( x.c ), x.e ), 10, baseOut ); + y.e = y.c.length; + } + + // Convert the number as integer. + xc = toBaseOut( str, baseIn, baseOut ); + e = k = xc.length; + + // Remove trailing zeros. + for ( ; xc[--k] == 0; xc.pop() ); + if ( !xc[0] ) return '0'; + + if ( i < 0 ) { + --e; + } else { + x.c = xc; + x.e = e; + + // sign is needed for correct rounding. + x.s = sign; + x = div( x, y, dp, rm, baseOut ); + xc = x.c; + r = x.r; + e = x.e; + } + + d = e + dp + 1; + + // The rounding digit, i.e. the digit to the right of the digit that may be rounded up. + i = xc[d]; + k = baseOut / 2; + r = r || d < 0 || xc[d + 1] != null; + + r = rm < 4 ? ( i != null || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) ) + : i > k || i == k &&( rm == 4 || r || rm == 6 && xc[d - 1] & 1 || + rm == ( x.s < 0 ? 8 : 7 ) ); + + if ( d < 1 || !xc[0] ) { + + // 1^-dp or 0. + str = r ? toFixedPoint( '1', -dp ) : '0'; + } else { + xc.length = d; + + if (r) { + + // Rounding up may mean the previous digit has to be rounded up and so on. + for ( --baseOut; ++xc[--d] > baseOut; ) { + xc[d] = 0; + + if ( !d ) { + ++e; + xc = [1].concat(xc); + } + } + } + + // Determine trailing zeros. + for ( k = xc.length; !xc[--k]; ); + + // E.g. [4, 11, 15] becomes 4bf. + for ( i = 0, str = ''; i <= k; str += ALPHABET.charAt( xc[i++] ) ); + str = toFixedPoint( str, e ); + } + + // The caller will add the sign. + return str; + } + + + // Perform division in the specified base. Called by div and convertBase. + div = (function () { + + // Assume non-zero x and k. + function multiply( x, k, base ) { + var m, temp, xlo, xhi, + carry = 0, + i = x.length, + klo = k % SQRT_BASE, + khi = k / SQRT_BASE | 0; + + for ( x = x.slice(); i--; ) { + xlo = x[i] % SQRT_BASE; + xhi = x[i] / SQRT_BASE | 0; + m = khi * xlo + xhi * klo; + temp = klo * xlo + ( ( m % SQRT_BASE ) * SQRT_BASE ) + carry; + carry = ( temp / base | 0 ) + ( m / SQRT_BASE | 0 ) + khi * xhi; + x[i] = temp % base; + } + + if (carry) x = [carry].concat(x); + + return x; + } + + function compare( a, b, aL, bL ) { + var i, cmp; + + if ( aL != bL ) { + cmp = aL > bL ? 1 : -1; + } else { + + for ( i = cmp = 0; i < aL; i++ ) { + + if ( a[i] != b[i] ) { + cmp = a[i] > b[i] ? 1 : -1; + break; + } + } + } + return cmp; + } + + function subtract( a, b, aL, base ) { + var i = 0; + + // Subtract b from a. + for ( ; aL--; ) { + a[aL] -= i; + i = a[aL] < b[aL] ? 1 : 0; + a[aL] = i * base + a[aL] - b[aL]; + } + + // Remove leading zeros. + for ( ; !a[0] && a.length > 1; a.splice(0, 1) ); + } + + // x: dividend, y: divisor. + return function ( x, y, dp, rm, base ) { + var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0, + yL, yz, + s = x.s == y.s ? 1 : -1, + xc = x.c, + yc = y.c; + + // Either NaN, Infinity or 0? + if ( !xc || !xc[0] || !yc || !yc[0] ) { + + return new BigNumber( + + // Return NaN if either NaN, or both Infinity or 0. + !x.s || !y.s || ( xc ? yc && xc[0] == yc[0] : !yc ) ? NaN : + + // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0. + xc && xc[0] == 0 || !yc ? s * 0 : s / 0 + ); + } + + q = new BigNumber(s); + qc = q.c = []; + e = x.e - y.e; + s = dp + e + 1; + + if ( !base ) { + base = BASE; + e = bitFloor( x.e / LOG_BASE ) - bitFloor( y.e / LOG_BASE ); + s = s / LOG_BASE | 0; + } + + // Result exponent may be one less then the current value of e. + // The coefficients of the BigNumbers from convertBase may have trailing zeros. + for ( i = 0; yc[i] == ( xc[i] || 0 ); i++ ); + if ( yc[i] > ( xc[i] || 0 ) ) e--; + + if ( s < 0 ) { + qc.push(1); + more = true; + } else { + xL = xc.length; + yL = yc.length; + i = 0; + s += 2; + + // Normalise xc and yc so highest order digit of yc is >= base / 2. + + n = mathfloor( base / ( yc[0] + 1 ) ); + + // Not necessary, but to handle odd bases where yc[0] == ( base / 2 ) - 1. + // if ( n > 1 || n++ == 1 && yc[0] < base / 2 ) { + if ( n > 1 ) { + yc = multiply( yc, n, base ); + xc = multiply( xc, n, base ); + yL = yc.length; + xL = xc.length; + } + + xi = yL; + rem = xc.slice( 0, yL ); + remL = rem.length; + + // Add zeros to make remainder as long as divisor. + for ( ; remL < yL; rem[remL++] = 0 ); + yz = yc.slice(); + yz = [0].concat(yz); + yc0 = yc[0]; + if ( yc[1] >= base / 2 ) yc0++; + // Not necessary, but to prevent trial digit n > base, when using base 3. + // else if ( base == 3 && yc0 == 1 ) yc0 = 1 + 1e-15; + + do { + n = 0; + + // Compare divisor and remainder. + cmp = compare( yc, rem, yL, remL ); + + // If divisor < remainder. + if ( cmp < 0 ) { + + // Calculate trial digit, n. + + rem0 = rem[0]; + if ( yL != remL ) rem0 = rem0 * base + ( rem[1] || 0 ); + + // n is how many times the divisor goes into the current remainder. + n = mathfloor( rem0 / yc0 ); + + // Algorithm: + // 1. product = divisor * trial digit (n) + // 2. if product > remainder: product -= divisor, n-- + // 3. remainder -= product + // 4. if product was < remainder at 2: + // 5. compare new remainder and divisor + // 6. If remainder > divisor: remainder -= divisor, n++ + + if ( n > 1 ) { + + // n may be > base only when base is 3. + if (n >= base) n = base - 1; + + // product = divisor * trial digit. + prod = multiply( yc, n, base ); + prodL = prod.length; + remL = rem.length; + + // Compare product and remainder. + // If product > remainder. + // Trial digit n too high. + // n is 1 too high about 5% of the time, and is not known to have + // ever been more than 1 too high. + while ( compare( prod, rem, prodL, remL ) == 1 ) { + n--; + + // Subtract divisor from product. + subtract( prod, yL < prodL ? yz : yc, prodL, base ); + prodL = prod.length; + cmp = 1; + } + } else { + + // n is 0 or 1, cmp is -1. + // If n is 0, there is no need to compare yc and rem again below, + // so change cmp to 1 to avoid it. + // If n is 1, leave cmp as -1, so yc and rem are compared again. + if ( n == 0 ) { + + // divisor < remainder, so n must be at least 1. + cmp = n = 1; + } + + // product = divisor + prod = yc.slice(); + prodL = prod.length; + } + + if ( prodL < remL ) prod = [0].concat(prod); + + // Subtract product from remainder. + subtract( rem, prod, remL, base ); + remL = rem.length; + + // If product was < remainder. + if ( cmp == -1 ) { + + // Compare divisor and new remainder. + // If divisor < new remainder, subtract divisor from remainder. + // Trial digit n too low. + // n is 1 too low about 5% of the time, and very rarely 2 too low. + while ( compare( yc, rem, yL, remL ) < 1 ) { + n++; + + // Subtract divisor from remainder. + subtract( rem, yL < remL ? yz : yc, remL, base ); + remL = rem.length; + } + } + } else if ( cmp === 0 ) { + n++; + rem = [0]; + } // else cmp === 1 and n will be 0 + + // Add the next digit, n, to the result array. + qc[i++] = n; + + // Update the remainder. + if ( rem[0] ) { + rem[remL++] = xc[xi] || 0; + } else { + rem = [ xc[xi] ]; + remL = 1; + } + } while ( ( xi++ < xL || rem[0] != null ) && s-- ); + + more = rem[0] != null; + + // Leading zero? + if ( !qc[0] ) qc.splice(0, 1); + } + + if ( base == BASE ) { + + // To calculate q.e, first get the number of digits of qc[0]. + for ( i = 1, s = qc[0]; s >= 10; s /= 10, i++ ); + round( q, dp + ( q.e = i + e * LOG_BASE - 1 ) + 1, rm, more ); + + // Caller is convertBase. + } else { + q.e = e; + q.r = +more; + } + + return q; + }; + })(); + + + /* + * Return a string representing the value of BigNumber n in fixed-point or exponential + * notation rounded to the specified decimal places or significant digits. + * + * n is a BigNumber. + * i is the index of the last digit required (i.e. the digit that may be rounded up). + * rm is the rounding mode. + * caller is caller id: toExponential 19, toFixed 20, toFormat 21, toPrecision 24. + */ + function format( n, i, rm, caller ) { + var c0, e, ne, len, str; + + rm = rm != null && isValidInt( rm, 0, 8, caller, roundingMode ) + ? rm | 0 : ROUNDING_MODE; + + if ( !n.c ) return n.toString(); + c0 = n.c[0]; + ne = n.e; + + if ( i == null ) { + str = coeffToString( n.c ); + str = caller == 19 || caller == 24 && ne <= TO_EXP_NEG + ? toExponential( str, ne ) + : toFixedPoint( str, ne ); + } else { + n = round( new BigNumber(n), i, rm ); + + // n.e may have changed if the value was rounded up. + e = n.e; + + str = coeffToString( n.c ); + len = str.length; + + // toPrecision returns exponential notation if the number of significant digits + // specified is less than the number of digits necessary to represent the integer + // part of the value in fixed-point notation. + + // Exponential notation. + if ( caller == 19 || caller == 24 && ( i <= e || e <= TO_EXP_NEG ) ) { + + // Append zeros? + for ( ; len < i; str += '0', len++ ); + str = toExponential( str, e ); + + // Fixed-point notation. + } else { + i -= ne; + str = toFixedPoint( str, e ); + + // Append zeros? + if ( e + 1 > len ) { + if ( --i > 0 ) for ( str += '.'; i--; str += '0' ); + } else { + i += e - len; + if ( i > 0 ) { + if ( e + 1 == len ) str += '.'; + for ( ; i--; str += '0' ); + } + } + } + } + + return n.s < 0 && c0 ? '-' + str : str; + } + + + // Handle BigNumber.max and BigNumber.min. + function maxOrMin( args, method ) { + var m, n, + i = 0; + + if ( isArray( args[0] ) ) args = args[0]; + m = new BigNumber( args[0] ); + + for ( ; ++i < args.length; ) { + n = new BigNumber( args[i] ); + + // If any number is NaN, return NaN. + if ( !n.s ) { + m = n; + break; + } else if ( method.call( m, n ) ) { + m = n; + } + } + + return m; + } + + + /* + * Return true if n is an integer in range, otherwise throw. + * Use for argument validation when ERRORS is true. + */ + function intValidatorWithErrors( n, min, max, caller, name ) { + if ( n < min || n > max || n != truncate(n) ) { + raise( caller, ( name || 'decimal places' ) + + ( n < min || n > max ? ' out of range' : ' not an integer' ), n ); + } + + return true; + } + + + /* + * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP. + * Called by minus, plus and times. + */ + function normalise( n, c, e ) { + var i = 1, + j = c.length; + + // Remove trailing zeros. + for ( ; !c[--j]; c.pop() ); + + // Calculate the base 10 exponent. First get the number of digits of c[0]. + for ( j = c[0]; j >= 10; j /= 10, i++ ); + + // Overflow? + if ( ( e = i + e * LOG_BASE - 1 ) > MAX_EXP ) { + + // Infinity. + n.c = n.e = null; + + // Underflow? + } else if ( e < MIN_EXP ) { + + // Zero. + n.c = [ n.e = 0 ]; + } else { + n.e = e; + n.c = c; + } + + return n; + } + + + // Handle values that fail the validity test in BigNumber. + parseNumeric = (function () { + var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i, + dotAfter = /^([^.]+)\.$/, + dotBefore = /^\.([^.]+)$/, + isInfinityOrNaN = /^-?(Infinity|NaN)$/, + whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g; + + return function ( x, str, num, b ) { + var base, + s = num ? str : str.replace( whitespaceOrPlus, '' ); + + // No exception on ±Infinity or NaN. + if ( isInfinityOrNaN.test(s) ) { + x.s = isNaN(s) ? null : s < 0 ? -1 : 1; + } else { + if ( !num ) { + + // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i + s = s.replace( basePrefix, function ( m, p1, p2 ) { + base = ( p2 = p2.toLowerCase() ) == 'x' ? 16 : p2 == 'b' ? 2 : 8; + return !b || b == base ? p1 : m; + }); + + if (b) { + base = b; + + // E.g. '1.' to '1', '.1' to '0.1' + s = s.replace( dotAfter, '$1' ).replace( dotBefore, '0.$1' ); + } + + if ( str != s ) return new BigNumber( s, base ); + } + + // 'new BigNumber() not a number: {n}' + // 'new BigNumber() not a base {b} number: {n}' + if (ERRORS) raise( id, 'not a' + ( b ? ' base ' + b : '' ) + ' number', str ); + x.s = null; + } + + x.c = x.e = null; + id = 0; + } + })(); + + + // Throw a BigNumber Error. + function raise( caller, msg, val ) { + var error = new Error( [ + 'new BigNumber', // 0 + 'cmp', // 1 + 'config', // 2 + 'div', // 3 + 'divToInt', // 4 + 'eq', // 5 + 'gt', // 6 + 'gte', // 7 + 'lt', // 8 + 'lte', // 9 + 'minus', // 10 + 'mod', // 11 + 'plus', // 12 + 'precision', // 13 + 'random', // 14 + 'round', // 15 + 'shift', // 16 + 'times', // 17 + 'toDigits', // 18 + 'toExponential', // 19 + 'toFixed', // 20 + 'toFormat', // 21 + 'toFraction', // 22 + 'pow', // 23 + 'toPrecision', // 24 + 'toString', // 25 + 'BigNumber' // 26 + ][caller] + '() ' + msg + ': ' + val ); + + error.name = 'BigNumber Error'; + id = 0; + throw error; + } + + + /* + * Round x to sd significant digits using rounding mode rm. Check for over/under-flow. + * If r is truthy, it is known that there are more digits after the rounding digit. + */ + function round( x, sd, rm, r ) { + var d, i, j, k, n, ni, rd, + xc = x.c, + pows10 = POWS_TEN; + + // if x is not Infinity or NaN... + if (xc) { + + // rd is the rounding digit, i.e. the digit after the digit that may be rounded up. + // n is a base 1e14 number, the value of the element of array x.c containing rd. + // ni is the index of n within x.c. + // d is the number of digits of n. + // i is the index of rd within n including leading zeros. + // j is the actual index of rd within n (if < 0, rd is a leading zero). + out: { + + // Get the number of digits of the first element of xc. + for ( d = 1, k = xc[0]; k >= 10; k /= 10, d++ ); + i = sd - d; + + // If the rounding digit is in the first element of xc... + if ( i < 0 ) { + i += LOG_BASE; + j = sd; + n = xc[ ni = 0 ]; + + // Get the rounding digit at index j of n. + rd = n / pows10[ d - j - 1 ] % 10 | 0; + } else { + ni = mathceil( ( i + 1 ) / LOG_BASE ); + + if ( ni >= xc.length ) { + + if (r) { + + // Needed by sqrt. + for ( ; xc.length <= ni; xc.push(0) ); + n = rd = 0; + d = 1; + i %= LOG_BASE; + j = i - LOG_BASE + 1; + } else { + break out; + } + } else { + n = k = xc[ni]; + + // Get the number of digits of n. + for ( d = 1; k >= 10; k /= 10, d++ ); + + // Get the index of rd within n. + i %= LOG_BASE; + + // Get the index of rd within n, adjusted for leading zeros. + // The number of leading zeros of n is given by LOG_BASE - d. + j = i - LOG_BASE + d; + + // Get the rounding digit at index j of n. + rd = j < 0 ? 0 : n / pows10[ d - j - 1 ] % 10 | 0; + } + } + + r = r || sd < 0 || + + // Are there any non-zero digits after the rounding digit? + // The expression n % pows10[ d - j - 1 ] returns all digits of n to the right + // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714. + xc[ni + 1] != null || ( j < 0 ? n : n % pows10[ d - j - 1 ] ); + + r = rm < 4 + ? ( rd || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) ) + : rd > 5 || rd == 5 && ( rm == 4 || r || rm == 6 && + + // Check whether the digit to the left of the rounding digit is odd. + ( ( i > 0 ? j > 0 ? n / pows10[ d - j ] : 0 : xc[ni - 1] ) % 10 ) & 1 || + rm == ( x.s < 0 ? 8 : 7 ) ); + + if ( sd < 1 || !xc[0] ) { + xc.length = 0; + + if (r) { + + // Convert sd to decimal places. + sd -= x.e + 1; + + // 1, 0.1, 0.01, 0.001, 0.0001 etc. + xc[0] = pows10[ ( LOG_BASE - sd % LOG_BASE ) % LOG_BASE ]; + x.e = -sd || 0; + } else { + + // Zero. + xc[0] = x.e = 0; + } + + return x; + } + + // Remove excess digits. + if ( i == 0 ) { + xc.length = ni; + k = 1; + ni--; + } else { + xc.length = ni + 1; + k = pows10[ LOG_BASE - i ]; + + // E.g. 56700 becomes 56000 if 7 is the rounding digit. + // j > 0 means i > number of leading zeros of n. + xc[ni] = j > 0 ? mathfloor( n / pows10[ d - j ] % pows10[j] ) * k : 0; + } + + // Round up? + if (r) { + + for ( ; ; ) { + + // If the digit to be rounded up is in the first element of xc... + if ( ni == 0 ) { + + // i will be the length of xc[0] before k is added. + for ( i = 1, j = xc[0]; j >= 10; j /= 10, i++ ); + j = xc[0] += k; + for ( k = 1; j >= 10; j /= 10, k++ ); + + // if i != k the length has increased. + if ( i != k ) { + x.e++; + if ( xc[0] == BASE ) xc[0] = 1; + } + + break; + } else { + xc[ni] += k; + if ( xc[ni] != BASE ) break; + xc[ni--] = 0; + k = 1; + } + } + } + + // Remove trailing zeros. + for ( i = xc.length; xc[--i] === 0; xc.pop() ); + } + + // Overflow? Infinity. + if ( x.e > MAX_EXP ) { + x.c = x.e = null; + + // Underflow? Zero. + } else if ( x.e < MIN_EXP ) { + x.c = [ x.e = 0 ]; + } + } + + return x; + } + + + // PROTOTYPE/INSTANCE METHODS + + + /* + * Return a new BigNumber whose value is the absolute value of this BigNumber. + */ + P.absoluteValue = P.abs = function () { + var x = new BigNumber(this); + if ( x.s < 0 ) x.s = 1; + return x; + }; + + + /* + * Return a new BigNumber whose value is the value of this BigNumber rounded to a whole + * number in the direction of Infinity. + */ + P.ceil = function () { + return round( new BigNumber(this), this.e + 1, 2 ); + }; + + + /* + * Return + * 1 if the value of this BigNumber is greater than the value of BigNumber(y, b), + * -1 if the value of this BigNumber is less than the value of BigNumber(y, b), + * 0 if they have the same value, + * or null if the value of either is NaN. + */ + P.comparedTo = P.cmp = function ( y, b ) { + id = 1; + return compare( this, new BigNumber( y, b ) ); + }; + + + /* + * Return the number of decimal places of the value of this BigNumber, or null if the value + * of this BigNumber is ±Infinity or NaN. + */ + P.decimalPlaces = P.dp = function () { + var n, v, + c = this.c; + + if ( !c ) return null; + n = ( ( v = c.length - 1 ) - bitFloor( this.e / LOG_BASE ) ) * LOG_BASE; + + // Subtract the number of trailing zeros of the last number. + if ( v = c[v] ) for ( ; v % 10 == 0; v /= 10, n-- ); + if ( n < 0 ) n = 0; + + return n; + }; + + + /* + * n / 0 = I + * n / N = N + * n / I = 0 + * 0 / n = 0 + * 0 / 0 = N + * 0 / N = N + * 0 / I = 0 + * N / n = N + * N / 0 = N + * N / N = N + * N / I = N + * I / n = I + * I / 0 = I + * I / N = N + * I / I = N + * + * Return a new BigNumber whose value is the value of this BigNumber divided by the value of + * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE. + */ + P.dividedBy = P.div = function ( y, b ) { + id = 3; + return div( this, new BigNumber( y, b ), DECIMAL_PLACES, ROUNDING_MODE ); + }; + + + /* + * Return a new BigNumber whose value is the integer part of dividing the value of this + * BigNumber by the value of BigNumber(y, b). + */ + P.dividedToIntegerBy = P.divToInt = function ( y, b ) { + id = 4; + return div( this, new BigNumber( y, b ), 0, 1 ); + }; + + + /* + * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b), + * otherwise returns false. + */ + P.equals = P.eq = function ( y, b ) { + id = 5; + return compare( this, new BigNumber( y, b ) ) === 0; + }; + + + /* + * Return a new BigNumber whose value is the value of this BigNumber rounded to a whole + * number in the direction of -Infinity. + */ + P.floor = function () { + return round( new BigNumber(this), this.e + 1, 3 ); + }; + + + /* + * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b), + * otherwise returns false. + */ + P.greaterThan = P.gt = function ( y, b ) { + id = 6; + return compare( this, new BigNumber( y, b ) ) > 0; + }; + + + /* + * Return true if the value of this BigNumber is greater than or equal to the value of + * BigNumber(y, b), otherwise returns false. + */ + P.greaterThanOrEqualTo = P.gte = function ( y, b ) { + id = 7; + return ( b = compare( this, new BigNumber( y, b ) ) ) === 1 || b === 0; + + }; + + + /* + * Return true if the value of this BigNumber is a finite number, otherwise returns false. + */ + P.isFinite = function () { + return !!this.c; + }; + + + /* + * Return true if the value of this BigNumber is an integer, otherwise return false. + */ + P.isInteger = P.isInt = function () { + return !!this.c && bitFloor( this.e / LOG_BASE ) > this.c.length - 2; + }; + + + /* + * Return true if the value of this BigNumber is NaN, otherwise returns false. + */ + P.isNaN = function () { + return !this.s; + }; + + + /* + * Return true if the value of this BigNumber is negative, otherwise returns false. + */ + P.isNegative = P.isNeg = function () { + return this.s < 0; + }; + + + /* + * Return true if the value of this BigNumber is 0 or -0, otherwise returns false. + */ + P.isZero = function () { + return !!this.c && this.c[0] == 0; + }; + + + /* + * Return true if the value of this BigNumber is less than the value of BigNumber(y, b), + * otherwise returns false. + */ + P.lessThan = P.lt = function ( y, b ) { + id = 8; + return compare( this, new BigNumber( y, b ) ) < 0; + }; + + + /* + * Return true if the value of this BigNumber is less than or equal to the value of + * BigNumber(y, b), otherwise returns false. + */ + P.lessThanOrEqualTo = P.lte = function ( y, b ) { + id = 9; + return ( b = compare( this, new BigNumber( y, b ) ) ) === -1 || b === 0; + }; + + + /* + * n - 0 = n + * n - N = N + * n - I = -I + * 0 - n = -n + * 0 - 0 = 0 + * 0 - N = N + * 0 - I = -I + * N - n = N + * N - 0 = N + * N - N = N + * N - I = N + * I - n = I + * I - 0 = I + * I - N = N + * I - I = N + * + * Return a new BigNumber whose value is the value of this BigNumber minus the value of + * BigNumber(y, b). + */ + P.minus = P.sub = function ( y, b ) { + var i, j, t, xLTy, + x = this, + a = x.s; + + id = 10; + y = new BigNumber( y, b ); + b = y.s; + + // Either NaN? + if ( !a || !b ) return new BigNumber(NaN); + + // Signs differ? + if ( a != b ) { + y.s = -b; + return x.plus(y); + } + + var xe = x.e / LOG_BASE, + ye = y.e / LOG_BASE, + xc = x.c, + yc = y.c; + + if ( !xe || !ye ) { + + // Either Infinity? + if ( !xc || !yc ) return xc ? ( y.s = -b, y ) : new BigNumber( yc ? x : NaN ); + + // Either zero? + if ( !xc[0] || !yc[0] ) { + + // Return y if y is non-zero, x if x is non-zero, or zero if both are zero. + return yc[0] ? ( y.s = -b, y ) : new BigNumber( xc[0] ? x : + + // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity + ROUNDING_MODE == 3 ? -0 : 0 ); + } + } + + xe = bitFloor(xe); + ye = bitFloor(ye); + xc = xc.slice(); + + // Determine which is the bigger number. + if ( a = xe - ye ) { + + if ( xLTy = a < 0 ) { + a = -a; + t = xc; + } else { + ye = xe; + t = yc; + } + + t.reverse(); + + // Prepend zeros to equalise exponents. + for ( b = a; b--; t.push(0) ); + t.reverse(); + } else { + + // Exponents equal. Check digit by digit. + j = ( xLTy = ( a = xc.length ) < ( b = yc.length ) ) ? a : b; + + for ( a = b = 0; b < j; b++ ) { + + if ( xc[b] != yc[b] ) { + xLTy = xc[b] < yc[b]; + break; + } + } + } + + // x < y? Point xc to the array of the bigger number. + if (xLTy) t = xc, xc = yc, yc = t, y.s = -y.s; + + b = ( j = yc.length ) - ( i = xc.length ); + + // Append zeros to xc if shorter. + // No need to add zeros to yc if shorter as subtract only needs to start at yc.length. + if ( b > 0 ) for ( ; b--; xc[i++] = 0 ); + b = BASE - 1; + + // Subtract yc from xc. + for ( ; j > a; ) { + + if ( xc[--j] < yc[j] ) { + for ( i = j; i && !xc[--i]; xc[i] = b ); + --xc[i]; + xc[j] += BASE; + } + + xc[j] -= yc[j]; + } + + // Remove leading zeros and adjust exponent accordingly. + for ( ; xc[0] == 0; xc.splice(0, 1), --ye ); + + // Zero? + if ( !xc[0] ) { + + // Following IEEE 754 (2008) 6.3, + // n - n = +0 but n - n = -0 when rounding towards -Infinity. + y.s = ROUNDING_MODE == 3 ? -1 : 1; + y.c = [ y.e = 0 ]; + return y; + } + + // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity + // for finite x and y. + return normalise( y, xc, ye ); + }; + + + /* + * n % 0 = N + * n % N = N + * n % I = n + * 0 % n = 0 + * -0 % n = -0 + * 0 % 0 = N + * 0 % N = N + * 0 % I = 0 + * N % n = N + * N % 0 = N + * N % N = N + * N % I = N + * I % n = N + * I % 0 = N + * I % N = N + * I % I = N + * + * Return a new BigNumber whose value is the value of this BigNumber modulo the value of + * BigNumber(y, b). The result depends on the value of MODULO_MODE. + */ + P.modulo = P.mod = function ( y, b ) { + var q, s, + x = this; + + id = 11; + y = new BigNumber( y, b ); + + // Return NaN if x is Infinity or NaN, or y is NaN or zero. + if ( !x.c || !y.s || y.c && !y.c[0] ) { + return new BigNumber(NaN); + + // Return x if y is Infinity or x is zero. + } else if ( !y.c || x.c && !x.c[0] ) { + return new BigNumber(x); + } + + if ( MODULO_MODE == 9 ) { + + // Euclidian division: q = sign(y) * floor(x / abs(y)) + // r = x - qy where 0 <= r < abs(y) + s = y.s; + y.s = 1; + q = div( x, y, 0, 3 ); + y.s = s; + q.s *= s; + } else { + q = div( x, y, 0, MODULO_MODE ); + } + + return x.minus( q.times(y) ); + }; + + + /* + * Return a new BigNumber whose value is the value of this BigNumber negated, + * i.e. multiplied by -1. + */ + P.negated = P.neg = function () { + var x = new BigNumber(this); + x.s = -x.s || null; + return x; + }; + + + /* + * n + 0 = n + * n + N = N + * n + I = I + * 0 + n = n + * 0 + 0 = 0 + * 0 + N = N + * 0 + I = I + * N + n = N + * N + 0 = N + * N + N = N + * N + I = N + * I + n = I + * I + 0 = I + * I + N = N + * I + I = I + * + * Return a new BigNumber whose value is the value of this BigNumber plus the value of + * BigNumber(y, b). + */ + P.plus = P.add = function ( y, b ) { + var t, + x = this, + a = x.s; + + id = 12; + y = new BigNumber( y, b ); + b = y.s; + + // Either NaN? + if ( !a || !b ) return new BigNumber(NaN); + + // Signs differ? + if ( a != b ) { + y.s = -b; + return x.minus(y); + } + + var xe = x.e / LOG_BASE, + ye = y.e / LOG_BASE, + xc = x.c, + yc = y.c; + + if ( !xe || !ye ) { + + // Return ±Infinity if either ±Infinity. + if ( !xc || !yc ) return new BigNumber( a / 0 ); + + // Either zero? + // Return y if y is non-zero, x if x is non-zero, or zero if both are zero. + if ( !xc[0] || !yc[0] ) return yc[0] ? y : new BigNumber( xc[0] ? x : a * 0 ); + } + + xe = bitFloor(xe); + ye = bitFloor(ye); + xc = xc.slice(); + + // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts. + if ( a = xe - ye ) { + if ( a > 0 ) { + ye = xe; + t = yc; + } else { + a = -a; + t = xc; + } + + t.reverse(); + for ( ; a--; t.push(0) ); + t.reverse(); + } + + a = xc.length; + b = yc.length; + + // Point xc to the longer array, and b to the shorter length. + if ( a - b < 0 ) t = yc, yc = xc, xc = t, b = a; + + // Only start adding at yc.length - 1 as the further digits of xc can be ignored. + for ( a = 0; b; ) { + a = ( xc[--b] = xc[b] + yc[b] + a ) / BASE | 0; + xc[b] = BASE === xc[b] ? 0 : xc[b] % BASE; + } + + if (a) { + xc = [a].concat(xc); + ++ye; + } + + // No need to check for zero, as +x + +y != 0 && -x + -y != 0 + // ye = MAX_EXP + 1 possible + return normalise( y, xc, ye ); + }; + + + /* + * Return the number of significant digits of the value of this BigNumber. + * + * [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0. + */ + P.precision = P.sd = function (z) { + var n, v, + x = this, + c = x.c; + + // 'precision() argument not a boolean or binary digit: {z}' + if ( z != null && z !== !!z && z !== 1 && z !== 0 ) { + if (ERRORS) raise( 13, 'argument' + notBool, z ); + if ( z != !!z ) z = null; + } + + if ( !c ) return null; + v = c.length - 1; + n = v * LOG_BASE + 1; + + if ( v = c[v] ) { + + // Subtract the number of trailing zeros of the last element. + for ( ; v % 10 == 0; v /= 10, n-- ); + + // Add the number of digits of the first element. + for ( v = c[0]; v >= 10; v /= 10, n++ ); + } + + if ( z && x.e + 1 > n ) n = x.e + 1; + + return n; + }; + + + /* + * Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of + * dp decimal places using rounding mode rm, or to 0 and ROUNDING_MODE respectively if + * omitted. + * + * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. + * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. + * + * 'round() decimal places out of range: {dp}' + * 'round() decimal places not an integer: {dp}' + * 'round() rounding mode not an integer: {rm}' + * 'round() rounding mode out of range: {rm}' + */ + P.round = function ( dp, rm ) { + var n = new BigNumber(this); + + if ( dp == null || isValidInt( dp, 0, MAX, 15 ) ) { + round( n, ~~dp + this.e + 1, rm == null || + !isValidInt( rm, 0, 8, 15, roundingMode ) ? ROUNDING_MODE : rm | 0 ); + } + + return n; + }; + + + /* + * Return a new BigNumber whose value is the value of this BigNumber shifted by k places + * (powers of 10). Shift to the right if n > 0, and to the left if n < 0. + * + * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive. + * + * If k is out of range and ERRORS is false, the result will be ±0 if k < 0, or ±Infinity + * otherwise. + * + * 'shift() argument not an integer: {k}' + * 'shift() argument out of range: {k}' + */ + P.shift = function (k) { + var n = this; + return isValidInt( k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 16, 'argument' ) + + // k < 1e+21, or truncate(k) will produce exponential notation. + ? n.times( '1e' + truncate(k) ) + : new BigNumber( n.c && n.c[0] && ( k < -MAX_SAFE_INTEGER || k > MAX_SAFE_INTEGER ) + ? n.s * ( k < 0 ? 0 : 1 / 0 ) + : n ); + }; + + + /* + * sqrt(-n) = N + * sqrt( N) = N + * sqrt(-I) = N + * sqrt( I) = I + * sqrt( 0) = 0 + * sqrt(-0) = -0 + * + * Return a new BigNumber whose value is the square root of the value of this BigNumber, + * rounded according to DECIMAL_PLACES and ROUNDING_MODE. + */ + P.squareRoot = P.sqrt = function () { + var m, n, r, rep, t, + x = this, + c = x.c, + s = x.s, + e = x.e, + dp = DECIMAL_PLACES + 4, + half = new BigNumber('0.5'); + + // Negative/NaN/Infinity/zero? + if ( s !== 1 || !c || !c[0] ) { + return new BigNumber( !s || s < 0 && ( !c || c[0] ) ? NaN : c ? x : 1 / 0 ); + } + + // Initial estimate. + s = Math.sqrt( +x ); + + // Math.sqrt underflow/overflow? + // Pass x to Math.sqrt as integer, then adjust the exponent of the result. + if ( s == 0 || s == 1 / 0 ) { + n = coeffToString(c); + if ( ( n.length + e ) % 2 == 0 ) n += '0'; + s = Math.sqrt(n); + e = bitFloor( ( e + 1 ) / 2 ) - ( e < 0 || e % 2 ); + + if ( s == 1 / 0 ) { + n = '1e' + e; + } else { + n = s.toExponential(); + n = n.slice( 0, n.indexOf('e') + 1 ) + e; + } + + r = new BigNumber(n); + } else { + r = new BigNumber( s + '' ); + } + + // Check for zero. + // r could be zero if MIN_EXP is changed after the this value was created. + // This would cause a division by zero (x/t) and hence Infinity below, which would cause + // coeffToString to throw. + if ( r.c[0] ) { + e = r.e; + s = e + dp; + if ( s < 3 ) s = 0; + + // Newton-Raphson iteration. + for ( ; ; ) { + t = r; + r = half.times( t.plus( div( x, t, dp, 1 ) ) ); + + if ( coeffToString( t.c ).slice( 0, s ) === ( n = + coeffToString( r.c ) ).slice( 0, s ) ) { + + // The exponent of r may here be one less than the final result exponent, + // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits + // are indexed correctly. + if ( r.e < e ) --s; + n = n.slice( s - 3, s + 1 ); + + // The 4th rounding digit may be in error by -1 so if the 4 rounding digits + // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the + // iteration. + if ( n == '9999' || !rep && n == '4999' ) { + + // On the first iteration only, check to see if rounding up gives the + // exact result as the nines may infinitely repeat. + if ( !rep ) { + round( t, t.e + DECIMAL_PLACES + 2, 0 ); + + if ( t.times(t).eq(x) ) { + r = t; + break; + } + } + + dp += 4; + s += 4; + rep = 1; + } else { + + // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact + // result. If not, then there are further digits and m will be truthy. + if ( !+n || !+n.slice(1) && n.charAt(0) == '5' ) { + + // Truncate to the first rounding digit. + round( r, r.e + DECIMAL_PLACES + 2, 1 ); + m = !r.times(r).eq(x); + } + + break; + } + } + } + } + + return round( r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m ); + }; + + + /* + * n * 0 = 0 + * n * N = N + * n * I = I + * 0 * n = 0 + * 0 * 0 = 0 + * 0 * N = N + * 0 * I = N + * N * n = N + * N * 0 = N + * N * N = N + * N * I = N + * I * n = I + * I * 0 = N + * I * N = N + * I * I = I + * + * Return a new BigNumber whose value is the value of this BigNumber times the value of + * BigNumber(y, b). + */ + P.times = P.mul = function ( y, b ) { + var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc, + base, sqrtBase, + x = this, + xc = x.c, + yc = ( id = 17, y = new BigNumber( y, b ) ).c; + + // Either NaN, ±Infinity or ±0? + if ( !xc || !yc || !xc[0] || !yc[0] ) { + + // Return NaN if either is NaN, or one is 0 and the other is Infinity. + if ( !x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc ) { + y.c = y.e = y.s = null; + } else { + y.s *= x.s; + + // Return ±Infinity if either is ±Infinity. + if ( !xc || !yc ) { + y.c = y.e = null; + + // Return ±0 if either is ±0. + } else { + y.c = [0]; + y.e = 0; + } + } + + return y; + } + + e = bitFloor( x.e / LOG_BASE ) + bitFloor( y.e / LOG_BASE ); + y.s *= x.s; + xcL = xc.length; + ycL = yc.length; + + // Ensure xc points to longer array and xcL to its length. + if ( xcL < ycL ) zc = xc, xc = yc, yc = zc, i = xcL, xcL = ycL, ycL = i; + + // Initialise the result array with zeros. + for ( i = xcL + ycL, zc = []; i--; zc.push(0) ); + + base = BASE; + sqrtBase = SQRT_BASE; + + for ( i = ycL; --i >= 0; ) { + c = 0; + ylo = yc[i] % sqrtBase; + yhi = yc[i] / sqrtBase | 0; + + for ( k = xcL, j = i + k; j > i; ) { + xlo = xc[--k] % sqrtBase; + xhi = xc[k] / sqrtBase | 0; + m = yhi * xlo + xhi * ylo; + xlo = ylo * xlo + ( ( m % sqrtBase ) * sqrtBase ) + zc[j] + c; + c = ( xlo / base | 0 ) + ( m / sqrtBase | 0 ) + yhi * xhi; + zc[j--] = xlo % base; + } + + zc[j] = c; + } + + if (c) { + ++e; + } else { + zc.splice(0, 1); + } + + return normalise( y, zc, e ); + }; + + + /* + * Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of + * sd significant digits using rounding mode rm, or ROUNDING_MODE if rm is omitted. + * + * [sd] {number} Significant digits. Integer, 1 to MAX inclusive. + * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. + * + * 'toDigits() precision out of range: {sd}' + * 'toDigits() precision not an integer: {sd}' + * 'toDigits() rounding mode not an integer: {rm}' + * 'toDigits() rounding mode out of range: {rm}' + */ + P.toDigits = function ( sd, rm ) { + var n = new BigNumber(this); + sd = sd == null || !isValidInt( sd, 1, MAX, 18, 'precision' ) ? null : sd | 0; + rm = rm == null || !isValidInt( rm, 0, 8, 18, roundingMode ) ? ROUNDING_MODE : rm | 0; + return sd ? round( n, sd, rm ) : n; + }; + + + /* + * Return a string representing the value of this BigNumber in exponential notation and + * rounded using ROUNDING_MODE to dp fixed decimal places. + * + * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. + * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. + * + * 'toExponential() decimal places not an integer: {dp}' + * 'toExponential() decimal places out of range: {dp}' + * 'toExponential() rounding mode not an integer: {rm}' + * 'toExponential() rounding mode out of range: {rm}' + */ + P.toExponential = function ( dp, rm ) { + return format( this, + dp != null && isValidInt( dp, 0, MAX, 19 ) ? ~~dp + 1 : null, rm, 19 ); + }; + + + /* + * Return a string representing the value of this BigNumber in fixed-point notation rounding + * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted. + * + * Note: as with JavaScript's number type, (-0).toFixed(0) is '0', + * but e.g. (-0.00001).toFixed(0) is '-0'. + * + * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. + * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. + * + * 'toFixed() decimal places not an integer: {dp}' + * 'toFixed() decimal places out of range: {dp}' + * 'toFixed() rounding mode not an integer: {rm}' + * 'toFixed() rounding mode out of range: {rm}' + */ + P.toFixed = function ( dp, rm ) { + return format( this, dp != null && isValidInt( dp, 0, MAX, 20 ) + ? ~~dp + this.e + 1 : null, rm, 20 ); + }; + + + /* + * Return a string representing the value of this BigNumber in fixed-point notation rounded + * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties + * of the FORMAT object (see BigNumber.config). + * + * FORMAT = { + * decimalSeparator : '.', + * groupSeparator : ',', + * groupSize : 3, + * secondaryGroupSize : 0, + * fractionGroupSeparator : '\xA0', // non-breaking space + * fractionGroupSize : 0 + * }; + * + * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. + * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. + * + * 'toFormat() decimal places not an integer: {dp}' + * 'toFormat() decimal places out of range: {dp}' + * 'toFormat() rounding mode not an integer: {rm}' + * 'toFormat() rounding mode out of range: {rm}' + */ + P.toFormat = function ( dp, rm ) { + var str = format( this, dp != null && isValidInt( dp, 0, MAX, 21 ) + ? ~~dp + this.e + 1 : null, rm, 21 ); + + if ( this.c ) { + var i, + arr = str.split('.'), + g1 = +FORMAT.groupSize, + g2 = +FORMAT.secondaryGroupSize, + groupSeparator = FORMAT.groupSeparator, + intPart = arr[0], + fractionPart = arr[1], + isNeg = this.s < 0, + intDigits = isNeg ? intPart.slice(1) : intPart, + len = intDigits.length; + + if (g2) i = g1, g1 = g2, g2 = i, len -= i; + + if ( g1 > 0 && len > 0 ) { + i = len % g1 || g1; + intPart = intDigits.substr( 0, i ); + + for ( ; i < len; i += g1 ) { + intPart += groupSeparator + intDigits.substr( i, g1 ); + } + + if ( g2 > 0 ) intPart += groupSeparator + intDigits.slice(i); + if (isNeg) intPart = '-' + intPart; + } + + str = fractionPart + ? intPart + FORMAT.decimalSeparator + ( ( g2 = +FORMAT.fractionGroupSize ) + ? fractionPart.replace( new RegExp( '\\d{' + g2 + '}\\B', 'g' ), + '$&' + FORMAT.fractionGroupSeparator ) + : fractionPart ) + : intPart; + } + + return str; + }; + + + /* + * Return a string array representing the value of this BigNumber as a simple fraction with + * an integer numerator and an integer denominator. The denominator will be a positive + * non-zero value less than or equal to the specified maximum denominator. If a maximum + * denominator is not specified, the denominator will be the lowest value necessary to + * represent the number exactly. + * + * [md] {number|string|BigNumber} Integer >= 1 and < Infinity. The maximum denominator. + * + * 'toFraction() max denominator not an integer: {md}' + * 'toFraction() max denominator out of range: {md}' + */ + P.toFraction = function (md) { + var arr, d0, d2, e, exp, n, n0, q, s, + k = ERRORS, + x = this, + xc = x.c, + d = new BigNumber(ONE), + n1 = d0 = new BigNumber(ONE), + d1 = n0 = new BigNumber(ONE); + + if ( md != null ) { + ERRORS = false; + n = new BigNumber(md); + ERRORS = k; + + if ( !( k = n.isInt() ) || n.lt(ONE) ) { + + if (ERRORS) { + raise( 22, + 'max denominator ' + ( k ? 'out of range' : 'not an integer' ), md ); + } + + // ERRORS is false: + // If md is a finite non-integer >= 1, round it to an integer and use it. + md = !k && n.c && round( n, n.e + 1, 1 ).gte(ONE) ? n : null; + } + } + + if ( !xc ) return x.toString(); + s = coeffToString(xc); + + // Determine initial denominator. + // d is a power of 10 and the minimum max denominator that specifies the value exactly. + e = d.e = s.length - x.e - 1; + d.c[0] = POWS_TEN[ ( exp = e % LOG_BASE ) < 0 ? LOG_BASE + exp : exp ]; + md = !md || n.cmp(d) > 0 ? ( e > 0 ? d : n1 ) : n; + + exp = MAX_EXP; + MAX_EXP = 1 / 0; + n = new BigNumber(s); + + // n0 = d1 = 0 + n0.c[0] = 0; + + for ( ; ; ) { + q = div( n, d, 0, 1 ); + d2 = d0.plus( q.times(d1) ); + if ( d2.cmp(md) == 1 ) break; + d0 = d1; + d1 = d2; + n1 = n0.plus( q.times( d2 = n1 ) ); + n0 = d2; + d = n.minus( q.times( d2 = d ) ); + n = d2; + } + + d2 = div( md.minus(d0), d1, 0, 1 ); + n0 = n0.plus( d2.times(n1) ); + d0 = d0.plus( d2.times(d1) ); + n0.s = n1.s = x.s; + e *= 2; + + // Determine which fraction is closer to x, n0/d0 or n1/d1 + arr = div( n1, d1, e, ROUNDING_MODE ).minus(x).abs().cmp( + div( n0, d0, e, ROUNDING_MODE ).minus(x).abs() ) < 1 + ? [ n1.toString(), d1.toString() ] + : [ n0.toString(), d0.toString() ]; + + MAX_EXP = exp; + return arr; + }; + + + /* + * Return the value of this BigNumber converted to a number primitive. + */ + P.toNumber = function () { + return +this; + }; + + + /* + * Return a BigNumber whose value is the value of this BigNumber raised to the power n. + * If m is present, return the result modulo m. + * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE. + * If POW_PRECISION is non-zero and m is not present, round to POW_PRECISION using + * ROUNDING_MODE. + * + * The modular power operation works efficiently when x, n, and m are positive integers, + * otherwise it is equivalent to calculating x.toPower(n).modulo(m) (with POW_PRECISION 0). + * + * n {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive. + * [m] {number|string|BigNumber} The modulus. + * + * 'pow() exponent not an integer: {n}' + * 'pow() exponent out of range: {n}' + * + * Performs 54 loop iterations for n of 9007199254740991. + */ + P.toPower = P.pow = function ( n, m ) { + var k, y, z, + i = mathfloor( n < 0 ? -n : +n ), + x = this; + + if ( m != null ) { + id = 23; + m = new BigNumber(m); + } + + // Pass ±Infinity to Math.pow if exponent is out of range. + if ( !isValidInt( n, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 23, 'exponent' ) && + ( !isFinite(n) || i > MAX_SAFE_INTEGER && ( n /= 0 ) || + parseFloat(n) != n && !( n = NaN ) ) || n == 0 ) { + k = Math.pow( +x, n ); + return new BigNumber( m ? k % m : k ); + } + + if (m) { + if ( n > 1 && x.gt(ONE) && x.isInt() && m.gt(ONE) && m.isInt() ) { + x = x.mod(m); + } else { + z = m; + + // Nullify m so only a single mod operation is performed at the end. + m = null; + } + } else if (POW_PRECISION) { + + // Truncating each coefficient array to a length of k after each multiplication + // equates to truncating significant digits to POW_PRECISION + [28, 41], + // i.e. there will be a minimum of 28 guard digits retained. + // (Using + 1.5 would give [9, 21] guard digits.) + k = mathceil( POW_PRECISION / LOG_BASE + 2 ); + } + + y = new BigNumber(ONE); + + for ( ; ; ) { + if ( i % 2 ) { + y = y.times(x); + if ( !y.c ) break; + if (k) { + if ( y.c.length > k ) y.c.length = k; + } else if (m) { + y = y.mod(m); + } + } + + i = mathfloor( i / 2 ); + if ( !i ) break; + x = x.times(x); + if (k) { + if ( x.c && x.c.length > k ) x.c.length = k; + } else if (m) { + x = x.mod(m); + } + } + + if (m) return y; + if ( n < 0 ) y = ONE.div(y); + + return z ? y.mod(z) : k ? round( y, POW_PRECISION, ROUNDING_MODE ) : y; + }; + + + /* + * Return a string representing the value of this BigNumber rounded to sd significant digits + * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits + * necessary to represent the integer part of the value in fixed-point notation, then use + * exponential notation. + * + * [sd] {number} Significant digits. Integer, 1 to MAX inclusive. + * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. + * + * 'toPrecision() precision not an integer: {sd}' + * 'toPrecision() precision out of range: {sd}' + * 'toPrecision() rounding mode not an integer: {rm}' + * 'toPrecision() rounding mode out of range: {rm}' + */ + P.toPrecision = function ( sd, rm ) { + return format( this, sd != null && isValidInt( sd, 1, MAX, 24, 'precision' ) + ? sd | 0 : null, rm, 24 ); + }; + + + /* + * Return a string representing the value of this BigNumber in base b, or base 10 if b is + * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and + * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent + * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than + * TO_EXP_NEG, return exponential notation. + * + * [b] {number} Integer, 2 to 64 inclusive. + * + * 'toString() base not an integer: {b}' + * 'toString() base out of range: {b}' + */ + P.toString = function (b) { + var str, + n = this, + s = n.s, + e = n.e; + + // Infinity or NaN? + if ( e === null ) { + + if (s) { + str = 'Infinity'; + if ( s < 0 ) str = '-' + str; + } else { + str = 'NaN'; + } + } else { + str = coeffToString( n.c ); + + if ( b == null || !isValidInt( b, 2, 64, 25, 'base' ) ) { + str = e <= TO_EXP_NEG || e >= TO_EXP_POS + ? toExponential( str, e ) + : toFixedPoint( str, e ); + } else { + str = convertBase( toFixedPoint( str, e ), b | 0, 10, s ); + } + + if ( s < 0 && n.c[0] ) str = '-' + str; + } + + return str; + }; + + + /* + * Return a new BigNumber whose value is the value of this BigNumber truncated to a whole + * number. + */ + P.truncated = P.trunc = function () { + return round( new BigNumber(this), this.e + 1, 1 ); + }; + + + /* + * Return as toString, but do not accept a base argument, and include the minus sign for + * negative zero. + */ + P.valueOf = P.toJSON = function () { + var str, + n = this, + e = n.e; + + if ( e === null ) return n.toString(); + + str = coeffToString( n.c ); + + str = e <= TO_EXP_NEG || e >= TO_EXP_POS + ? toExponential( str, e ) + : toFixedPoint( str, e ); + + return n.s < 0 ? '-' + str : str; + }; + + + P.isBigNumber = true; + + if ( config != null ) BigNumber.config(config); + + return BigNumber; + } + + + // PRIVATE HELPER FUNCTIONS + + + function bitFloor(n) { + var i = n | 0; + return n > 0 || n === i ? i : i - 1; + } + + + // Return a coefficient array as a string of base 10 digits. + function coeffToString(a) { + var s, z, + i = 1, + j = a.length, + r = a[0] + ''; + + for ( ; i < j; ) { + s = a[i++] + ''; + z = LOG_BASE - s.length; + for ( ; z--; s = '0' + s ); + r += s; + } + + // Determine trailing zeros. + for ( j = r.length; r.charCodeAt(--j) === 48; ); + return r.slice( 0, j + 1 || 1 ); + } + + + // Compare the value of BigNumbers x and y. + function compare( x, y ) { + var a, b, + xc = x.c, + yc = y.c, + i = x.s, + j = y.s, + k = x.e, + l = y.e; + + // Either NaN? + if ( !i || !j ) return null; + + a = xc && !xc[0]; + b = yc && !yc[0]; + + // Either zero? + if ( a || b ) return a ? b ? 0 : -j : i; + + // Signs differ? + if ( i != j ) return i; + + a = i < 0; + b = k == l; + + // Either Infinity? + if ( !xc || !yc ) return b ? 0 : !xc ^ a ? 1 : -1; + + // Compare exponents. + if ( !b ) return k > l ^ a ? 1 : -1; + + j = ( k = xc.length ) < ( l = yc.length ) ? k : l; + + // Compare digit by digit. + for ( i = 0; i < j; i++ ) if ( xc[i] != yc[i] ) return xc[i] > yc[i] ^ a ? 1 : -1; + + // Compare lengths. + return k == l ? 0 : k > l ^ a ? 1 : -1; + } + + + /* + * Return true if n is a valid number in range, otherwise false. + * Use for argument validation when ERRORS is false. + * Note: parseInt('1e+1') == 1 but parseFloat('1e+1') == 10. + */ + function intValidatorNoErrors( n, min, max ) { + return ( n = truncate(n) ) >= min && n <= max; + } + + + function isArray(obj) { + return Object.prototype.toString.call(obj) == '[object Array]'; + } + + + /* + * Convert string of baseIn to an array of numbers of baseOut. + * Eg. convertBase('255', 10, 16) returns [15, 15]. + * Eg. convertBase('ff', 16, 10) returns [2, 5, 5]. + */ + function toBaseOut( str, baseIn, baseOut ) { + var j, + arr = [0], + arrL, + i = 0, + len = str.length; + + for ( ; i < len; ) { + for ( arrL = arr.length; arrL--; arr[arrL] *= baseIn ); + arr[ j = 0 ] += ALPHABET.indexOf( str.charAt( i++ ) ); + + for ( ; j < arr.length; j++ ) { + + if ( arr[j] > baseOut - 1 ) { + if ( arr[j + 1] == null ) arr[j + 1] = 0; + arr[j + 1] += arr[j] / baseOut | 0; + arr[j] %= baseOut; + } + } + } + + return arr.reverse(); + } + + + function toExponential( str, e ) { + return ( str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str ) + + ( e < 0 ? 'e' : 'e+' ) + e; + } + + + function toFixedPoint( str, e ) { + var len, z; + + // Negative exponent? + if ( e < 0 ) { + + // Prepend zeros. + for ( z = '0.'; ++e; z += '0' ); + str = z + str; + + // Positive exponent + } else { + len = str.length; + + // Append zeros. + if ( ++e > len ) { + for ( z = '0', e -= len; --e; z += '0' ); + str += z; + } else if ( e < len ) { + str = str.slice( 0, e ) + '.' + str.slice(e); + } + } + + return str; + } + + + function truncate(n) { + n = parseFloat(n); + return n < 0 ? mathceil(n) : mathfloor(n); + } + + + // EXPORT + + + BigNumber = constructorFactory(); + BigNumber['default'] = BigNumber.BigNumber = BigNumber; + + + // AMD. + if ( typeof define == 'function' && define.amd ) { + define( function () { return BigNumber; } ); + + // Node.js and other environments that support module.exports. + } else if ( typeof module != 'undefined' && module.exports ) { + module.exports = BigNumber; + + // Browser. + } else { + if ( !globalObj ) globalObj = typeof self != 'undefined' ? self : Function('return this')(); + globalObj.BigNumber = BigNumber; + } +})(this); + +},{}],"web3":[function(require,module,exports){ var Web3 = require('./lib/web3'); // dont override global variable diff --git a/lib/contracts/abi.js b/lib/contracts/abi.js index 682b086e..55f184c2 100644 --- a/lib/contracts/abi.js +++ b/lib/contracts/abi.js @@ -19,8 +19,8 @@ class ABIGenerator { } result += "\nvar whenEnvIsLoaded = function(cb) {"; - result += "\n if (typeof window !== 'undefined' && window !== null) {"; - result += "\n window.addEventListener('load', cb);"; + result += "\n if (typeof document !== 'undefined' && document !== null) {"; + result += "\n document.addEventListener('DOMContentLoaded', cb);"; result += "\n } else {"; result += "\n cb();"; result += "\n }"; @@ -73,11 +73,13 @@ class ABIGenerator { let gasEstimates = JSON.stringify(contract.gasEstimates); // TODO: refactor this - result += "\nvar whenEnvIsLoaded = function(cb) {"; - result += "\n if (typeof window !== 'undefined' && window !== null) {"; - result += "\n window.addEventListener('load', cb);"; - result += "\n } else {"; - result += "\n cb();"; + result += "\nif (whenEnvIsLoaded === undefined) {"; + result += "\n var whenEnvIsLoaded = function(cb) {"; + result += "\n if (typeof document !== 'undefined' && document !== null) {"; + result += "\n document.addEventListener('DOMContentLoaded', cb);"; + result += "\n } else {"; + result += "\n cb();"; + result += "\n }"; result += "\n }"; result += "\n}";