das-research/DAS/validator.py

492 lines
21 KiB
Python

#!/bin/python3
import random
import collections
import logging
import sys
from DAS.block import *
from bitarray import bitarray
from bitarray.util import zeros
from collections import deque
from itertools import chain
def shuffled(lis, shuffle=True):
''' Generator yielding list in shuffled order
'''
# based on https://stackoverflow.com/a/60342323
if shuffle:
for index in random.sample(range(len(lis)), len(lis)):
yield lis[index]
else:
for v in lis:
yield v
def shuffledDict(d, shuffle=True):
''' Generator yielding dictionary in shuffled order
Shuffle, except if not (optional parameter useful for experiment setup)
'''
if shuffle:
lis = list(d.items())
for index in random.sample(range(len(d)), len(d)):
yield lis[index]
else:
for kv in d.items():
yield kv
def sampleLine(line, limit):
""" sample up to 'limit' bits from a bitarray
Since this is quite expensive, we use a number of heuristics to get it fast.
"""
if limit == sys.maxsize :
return line
else:
w = line.count(1)
if limit >= w :
return line
else:
l = len(line)
r = zeros(l)
if w < l/10 or limit > l/2 :
indices = [ i for i in range(l) if line[i] ]
sample = random.sample(indices, limit)
for i in sample:
r[i] = 1
return r
else:
while limit:
i = random.randrange(0, l)
if line[i] and not r[i]:
r[i] = 1
limit -= 1
return r
class NextToSend:
def __init__(self, neigh, toSend, id, dim):
self.neigh = neigh
self.toSend = toSend
self.id = id
self.dim = dim
class SegmentToSend:
def __init__(self, dim, id, i):
self.dim = dim
self.id = id
self.i = i
class Neighbor:
"""This class implements a node neighbor to monitor sent and received data."""
def __repr__(self):
"""It returns the amount of sent and received data."""
return "%d:%d/%d, q:%d" % (self.node.ID, self.sent.count(1), self.received.count(1), len(self.sendQueue))
def __init__(self, v, dim, blockSize):
"""It initializes the neighbor with the node and sets counters to zero."""
self.node = v
self.dim = dim # 0:row 1:col
self.receiving = zeros(blockSize)
self.received = zeros(blockSize)
self.sent = zeros(blockSize)
self.sendQueue = deque()
class Validator:
"""This class implements a validator/node in the network."""
def __repr__(self):
"""It returns the validator ID."""
return str(self.ID)
def __init__(self, ID, amIproposer, logger, shape, rows, columns):
"""It initializes the validator with the logger, shape and assigned rows/columns."""
self.shape = shape
FORMAT = "%(levelname)s : %(entity)s : %(message)s"
self.ID = ID
self.format = {"entity": "Val "+str(self.ID)}
self.block = Block(self.shape.blockSize)
self.receivedBlock = Block(self.shape.blockSize)
self.receivedQueue = deque()
self.sendQueue = deque()
self.amIproposer = amIproposer
self.logger = logger
if self.shape.chi < 1:
self.logger.error("Chi has to be greater than 0", extra=self.format)
elif self.shape.chi > self.shape.blockSize:
self.logger.error("Chi has to be smaller than %d" % blockSize, extra=self.format)
else:
if amIproposer:
self.rowIDs = range(shape.blockSize)
self.columnIDs = range(shape.blockSize)
else:
self.rowIDs = rows[(self.ID*self.shape.chi):(self.ID*self.shape.chi + self.shape.chi)]
self.columnIDs = columns[(self.ID*self.shape.chi):(self.ID*self.shape.chi + self.shape.chi)]
#if shape.deterministic:
# random.seed(self.ID)
#self.rowIDs = random.sample(range(self.shape.blockSize), self.shape.chi)
#self.columnIDs = random.sample(range(self.shape.blockSize), self.shape.chi)
self.rowNeighbors = collections.defaultdict(dict)
self.columnNeighbors = collections.defaultdict(dict)
#statistics
self.statsTxInSlot = 0
self.statsTxPerSlot = []
self.statsRxInSlot = 0
self.statsRxPerSlot = []
# Set uplink bandwidth. In segments (~560 bytes) per timestep (50ms?)
# 1 Mbps ~= 1e6 / 20 / 8 / 560 ~= 11
# TODO: this should be a parameter
self.bwUplink = 110 if not self.amIproposer else 2200 # approx. 10Mbps and 200Mbps
self.repairOnTheFly = True
self.sendLineUntil = (self.shape.blockSize + 1) // 2 # stop sending on a p2p link if at least this amount of samples passed
self.perNeighborQueue = True # queue incoming messages to outgoing connections on arrival (as typical GossipSub impl)
self.shuffleQueues = True # shuffle the order of picking from active queues of a sender node
self.perNodeQueue = False # keep a global queue of incoming messages for later sequential dispatch
self.shuffleLines = True # shuffle the order of rows/columns in each iteration while trying to send
self.shuffleNeighbors = True # shuffle the order of neighbors when sending the same segment to each neighbor
self.dumbRandomScheduler = False # dumb random scheduler
self.segmentShuffleScheduler = True # send each segment that's worth sending once in shuffled order, then repeat
self.segmentShuffleSchedulerPersist = True # Persist scheduler state between timesteps
def logIDs(self):
"""It logs the assigned rows and columns."""
if self.amIproposer == 1:
self.logger.warning("I am a block proposer."% self.ID)
else:
self.logger.debug("Selected rows: "+str(self.rowIDs), extra=self.format)
self.logger.debug("Selected columns: "+str(self.columnIDs), extra=self.format)
def initBlock(self):
"""It initializes the block for the proposer."""
if self.amIproposer == 1:
self.logger.debug("I am a block proposer.", extra=self.format)
self.block = Block(self.shape.blockSize)
self.block.fill()
#self.block.print()
else:
self.logger.warning("I am not a block proposer."% self.ID)
def broadcastBlock(self):
"""The block proposer broadcasts the block to all validators."""
if self.amIproposer == 0:
self.logger.warning("I am not a block proposer", extra=self.format)
else:
self.logger.debug("Broadcasting my block...", extra=self.format)
order = [i for i in range(self.shape.blockSize * self.shape.blockSize)]
random.shuffle(order)
while(order):
i = order.pop()
if (random.randint(0,99) >= self.shape.failureRate):
self.block.data[i] = 1
else:
self.block.data[i] = 0
nbFailures = self.block.data.count(0)
measuredFailureRate = nbFailures * 100 / (self.shape.blockSize * self.shape.blockSize)
self.logger.debug("Number of failures: %d (%0.02f %%)", nbFailures, measuredFailureRate, extra=self.format)
#broadcasted.print()
def getColumn(self, index):
"""It returns a given column."""
return self.block.getColumn(index)
def getRow(self, index):
"""It returns a given row."""
return self.block.getRow(index)
def receiveSegment(self, rID, cID, src):
# register receive so that we are not sending back
if rID in self.rowIDs:
if src in self.rowNeighbors[rID]:
self.rowNeighbors[rID][src].receiving[cID] = 1
if cID in self.columnIDs:
if src in self.columnNeighbors[cID]:
self.columnNeighbors[cID][src].receiving[rID] = 1
if not self.receivedBlock.getSegment(rID, cID):
self.logger.debug("Recv new: %d->%d: %d,%d", src, self.ID, rID, cID, extra=self.format)
self.receivedBlock.setSegment(rID, cID)
if self.perNodeQueue or self.perNeighborQueue:
self.receivedQueue.append((rID, cID))
else:
self.logger.debug("Recv DUP: %d->%d: %d,%d", src, self.ID, rID, cID, extra=self.format)
# self.statsRxDuplicateInSlot += 1
self.statsRxInSlot += 1
def addToSendQueue(self, rID, cID):
if self.perNodeQueue:
self.sendQueue.append((rID, cID))
if self.perNeighborQueue:
if rID in self.rowIDs:
for neigh in self.rowNeighbors[rID].values():
neigh.sendQueue.append(cID)
if cID in self.columnIDs:
for neigh in self.columnNeighbors[cID].values():
neigh.sendQueue.append(rID)
def receiveRowsColumns(self):
"""It receives rows and columns."""
if self.amIproposer == 1:
self.logger.error("I am a block proposer", extra=self.format)
else:
self.logger.debug("Receiving the data...", extra=self.format)
#self.logger.debug("%s -> %s", self.block.data, self.receivedBlock.data, extra=self.format)
self.block.merge(self.receivedBlock)
for neighs in chain (self.rowNeighbors.values(), self.columnNeighbors.values()):
for neigh in neighs.values():
neigh.received |= neigh.receiving
neigh.receiving.setall(0)
# add newly received segments to the send queue
if self.perNodeQueue or self.perNeighborQueue:
while self.receivedQueue:
(rID, cID) = self.receivedQueue.popleft()
self.addToSendQueue(rID, cID)
def updateStats(self):
"""It updates the stats related to sent and received data."""
self.logger.debug("Stats: tx %d, rx %d", self.statsTxInSlot, self.statsRxInSlot, extra=self.format)
self.statsRxPerSlot.append(self.statsRxInSlot)
self.statsTxPerSlot.append(self.statsTxInSlot)
self.statsRxInSlot = 0
self.statsTxInSlot = 0
def sendSegmentToNeigh(self, rID, cID, neigh):
if (neigh.sent | neigh.received).count(1) >= self.sendLineUntil:
return False # sent enough, other side can restore
if neigh.dim == 0: #row
i = cID
else:
i = rID
if not neigh.sent[i] and not neigh.received[i] :
neigh.sent[i] = 1
neigh.node.receiveSegment(rID, cID, self.ID)
self.statsTxInSlot += 1
return True
else:
return False # received or already sent
def processSendQueue(self):
while self.sendQueue:
(rID, cID) = self.sendQueue[0]
if rID in self.rowIDs:
for _, neigh in shuffledDict(self.rowNeighbors[rID], self.shuffleNeighbors):
self.sendSegmentToNeigh(rID, cID, neigh)
if self.statsTxInSlot >= self.bwUplink:
return
if cID in self.columnIDs:
for _, neigh in shuffledDict(self.columnNeighbors[cID], self.shuffleNeighbors):
self.sendSegmentToNeigh(rID, cID, neigh)
if self.statsTxInSlot >= self.bwUplink:
return
self.sendQueue.popleft()
def processPerNeighborSendQueue(self):
progress = True
while (progress):
progress = False
queues = []
# collect and shuffle
for rID, neighs in self.rowNeighbors.items():
for neigh in neighs.values():
if (neigh.sendQueue):
queues.append((0, rID, neigh))
for cID, neighs in self.columnNeighbors.items():
for neigh in neighs.values():
if (neigh.sendQueue):
queues.append((1, cID, neigh))
for dim, lineID, neigh in shuffled(queues, self.shuffleQueues):
if dim == 0:
self.sendSegmentToNeigh(lineID, neigh.sendQueue.popleft(), neigh)
else:
self.sendSegmentToNeigh(neigh.sendQueue.popleft(), lineID, neigh)
progress = True
if self.statsTxInSlot >= self.bwUplink:
return
def runSegmentShuffleScheduler(self):
# This scheduler check which owned segments needs sending (at least
# one neighbor needing it). Then it sends each segment that's worth sending
# once, in shuffled order. This is repeated until bw limit.
while True:
if hasattr(self, 'segmentShuffleGen') and self.segmentShuffleGen is not None:
#self.logger.debug("TX:%d queue:%d", self.statsTxInSlot, len(self.segmentsToSend), extra=self.format)
for s in self.segmentShuffleGen:
self.logger.debug("%d:%d/%d", s.dim, s.id, s.i, extra=self.format)
if s.dim == 0:
for _, neigh in shuffledDict(self.rowNeighbors[s.id], self.shuffleNeighbors):
self.logger.debug("%d or %d", neigh.sent[s.i], neigh.received[s.i], extra=self.format)
if self.sendSegmentToNeigh(s.id, s.i, neigh):
self.logger.debug("sending to %d", neigh.node.ID, extra=self.format)
break
else:
for _, neigh in shuffledDict(self.columnNeighbors[s.id], self.shuffleNeighbors):
self.logger.debug("%d or %d", neigh.sent[s.i], neigh.received[s.i], extra=self.format)
if self.sendSegmentToNeigh(s.i, s.id, neigh):
self.logger.debug("sending to %d", neigh.node.ID, extra=self.format)
break
if self.statsTxInSlot >= self.bwUplink:
if not self.segmentShuffleSchedulerPersist:
# remove scheduler state before leaving
self.segmentsToSend = []
self.segmentShuffleGen = None
return
self.segmentsToSend = []
for rID, neighs in self.rowNeighbors.items():
line = self.getRow(rID)
needed = zeros(self.shape.blockSize)
for neigh in neighs.values():
sentOrReceived = neigh.received | neigh.sent
if sentOrReceived.count(1) < self.sendLineUntil:
needed |= ~sentOrReceived
needed &= line
if (needed).any():
for i in range(len(needed)):
if needed[i]:
self.segmentsToSend.append(SegmentToSend(0, rID, i))
for cID, neighs in self.columnNeighbors.items():
line = self.getColumn(cID)
needed = zeros(self.shape.blockSize)
for neigh in neighs.values():
sentOrReceived = neigh.received | neigh.sent
if sentOrReceived.count(1) < self.sendLineUntil:
needed |= ~sentOrReceived
needed &= line
if (needed).any():
for i in range(len(needed)):
if needed[i]:
self.segmentsToSend.append(SegmentToSend(1, cID, i))
if not self.segmentsToSend:
break
else:
self.segmentShuffleGen = shuffled(self.segmentsToSend, self.shuffleLines)
def runDumbRandomScheduler(self, tries = 100):
# dumb random scheduler picking segments at random and trying to send it
t = tries
while t:
if self.rowIDs:
rID = random.choice(self.rowIDs)
cID = random.randrange(0, self.shape.blockSize)
if self.block.getSegment(rID, cID) :
neigh = random.choice(list(self.rowNeighbors[rID].values()))
if not neigh.sent[cID] and not neigh.received[cID] :
neigh.sent[cID] = 1
neigh.node.receiveSegment(rID, cID, self.ID)
self.statsTxInSlot += 1
t = tries
if self.statsTxInSlot >= self.bwUplink:
return
if self.columnIDs:
cID = random.choice(self.columnIDs)
rID = random.randrange(0, self.shape.blockSize)
if self.block.getSegment(rID, cID) :
neigh = random.choice(list(self.columnNeighbors[cID].values()))
if not neigh.sent[rID] and not neigh.received[rID] :
neigh.sent[rID] = 1
neigh.node.receiveSegment(rID, cID, self.ID)
self.statsTxInSlot += 1
t = tries
t -= 1
if self.statsTxInSlot >= self.bwUplink:
return
return
def send(self):
""" Send as much as we can in the timeslot, limited by bwUplink
"""
# process node level send queue
self.processSendQueue()
if self.statsTxInSlot >= self.bwUplink:
return
# process neighbor level send queues in shuffled breadth-first order
self.processPerNeighborSendQueue()
if self.statsTxInSlot >= self.bwUplink:
return
# process possible segments to send in shuffled breadth-first order
if self.segmentShuffleScheduler:
self.runSegmentShuffleScheduler()
if self.statsTxInSlot >= self.bwUplink:
return
if self.dumbRandomScheduler:
self.runDumbRandomScheduler()
if self.statsTxInSlot >= self.bwUplink:
return
def logRows(self):
"""It logs the rows assigned to the validator."""
if self.logger.isEnabledFor(logging.DEBUG):
for id in self.rowIDs:
self.logger.debug("Row %d: %s", id, self.getRow(id), extra=self.format)
def logColumns(self):
"""It logs the columns assigned to the validator."""
if self.logger.isEnabledFor(logging.DEBUG):
for id in self.columnIDs:
self.logger.debug("Column %d: %s", id, self.getColumn(id), extra=self.format)
def restoreRows(self):
"""It restores the rows assigned to the validator, that can be repaired."""
if self.repairOnTheFly:
for id in self.rowIDs:
rep = self.block.repairRow(id)
if (rep.any()):
# If operation is based on send queues, segments should
# be queued after successful repair.
for i in range(len(rep)):
if rep[i]:
self.logger.debug("Rep: %d,%d", id, i, extra=self.format)
self.addToSendQueue(id, i)
# self.statsRepairInSlot += rep.count(1)
def restoreColumns(self):
"""It restores the columns assigned to the validator, that can be repaired."""
if self.repairOnTheFly:
for id in self.columnIDs:
rep = self.block.repairColumn(id)
if (rep.any()):
# If operation is based on send queues, segments should
# be queued after successful repair.
for i in range(len(rep)):
if rep[i]:
self.logger.debug("Rep: %d,%d", i, id, extra=self.format)
self.addToSendQueue(i, id)
# self.statsRepairInSlot += rep.count(1)
def checkStatus(self):
"""It checks how many expected/arrived samples are for each assigned row/column."""
arrived = 0
expected = 0
for id in self.columnIDs:
line = self.getColumn(id)
arrived += line.count(1)
expected += len(line)
for id in self.rowIDs:
line = self.getRow(id)
arrived += line.count(1)
expected += len(line)
self.logger.debug("status: %d / %d", arrived, expected, extra=self.format)
return (arrived, expected)