das-research/DAS/simulator.py

214 lines
10 KiB
Python

#!/bin/python
import networkx as nx
import logging, random
from functools import partial, partialmethod
from datetime import datetime
from DAS.tools import *
from DAS.results import *
from DAS.observer import *
from DAS.validator import *
class Simulator:
"""This class implements the main DAS simulator."""
def __init__(self, shape, config):
"""It initializes the simulation with a set of parameters (shape)."""
self.shape = shape
self.config = config
self.format = {"entity": "Simulator"}
self.result = Result(self.shape)
self.validators = []
self.logger = []
self.logLevel = config.logLevel
self.proposerID = 0
self.glob = []
# In GossipSub the initiator might push messages without participating in the mesh.
# proposerPublishOnly regulates this behavior. If set to true, the proposer is not
# part of the p2p distribution graph, only pushes segments to it. If false, the proposer
# might get back segments from other peers since links are symmetric.
self.proposerPublishOnly = True
# If proposerPublishOnly == True, this regulates how many copies of each segment are
# pushed out by the proposer.
# 1: the data is sent out exactly once on rows and once on columns (2 copies in total)
# self.shape.netDegree: default behavior similar (but not same) to previous code
self.proposerPublishTo = self.shape.netDegree
def initValidators(self):
"""It initializes all the validators in the network."""
self.glob = Observer(self.logger, self.shape)
self.validators = []
if self.config.evenLineDistribution:
lightVal = int(self.shape.numberNodes * self.shape.class1ratio * self.shape.vpn1)
heavyVal = int(self.shape.numberNodes * (1-self.shape.class1ratio) * self.shape.vpn2)
totalValidators = lightVal + heavyVal
rows = list(range(self.shape.blockSize)) * (int(totalValidators/self.shape.blockSize)+1)
columns = list(range(self.shape.blockSize)) * (int(totalValidators/self.shape.blockSize)+1)
offset = heavyVal*self.shape.chi
random.shuffle(rows)
random.shuffle(columns)
for i in range(self.shape.numberNodes):
if self.config.evenLineDistribution:
if i < int(heavyVal/self.shape.vpn2): # First start with the heavy nodes
start = i *self.shape.chi*self.shape.vpn2
end = (i+1)*self.shape.chi*self.shape.vpn2
else: # Then the solo stakers
j = i - int(heavyVal/self.shape.vpn2)
start = offset+( j *self.shape.chi)
end = offset+((j+1)*self.shape.chi)
r = rows[start:end]
c = columns[start:end]
val = Validator(i, int(not i!=0), self.logger, self.shape, r, c)
else:
val = Validator(i, int(not i!=0), self.logger, self.shape)
if i == self.proposerID:
val.initBlock()
else:
val.logIDs()
self.validators.append(val)
self.logger.debug("Validators initialized.", extra=self.format)
def initNetwork(self):
"""It initializes the simulated network."""
rowChannels = [[] for i in range(self.shape.blockSize)]
columnChannels = [[] for i in range(self.shape.blockSize)]
for v in self.validators:
if not (self.proposerPublishOnly and v.amIproposer):
for id in v.rowIDs:
rowChannels[id].append(v)
for id in v.columnIDs:
columnChannels[id].append(v)
# Check rows/columns distribution
#totalR = 0
#totalC = 0
#for r in rowChannels:
# totalR += len(r)
#for c in columnChannels:
# totalC += len(c)
for id in range(self.shape.blockSize):
# If the number of nodes in a channel is smaller or equal to the
# requested degree, a fully connected graph is used. For n>d, a random
# d-regular graph is set up. (For n=d+1, the two are the same.)
if not rowChannels[id]:
self.logger.error("No nodes for row %d !" % id, extra=self.format)
continue
elif (len(rowChannels[id]) <= self.shape.netDegree):
self.logger.debug("Graph fully connected with degree %d !" % (len(rowChannels[id]) - 1), extra=self.format)
G = nx.complete_graph(len(rowChannels[id]))
else:
G = nx.random_regular_graph(self.shape.netDegree, len(rowChannels[id]))
if not nx.is_connected(G):
self.logger.error("Graph not connected for row %d !" % id, extra=self.format)
for u, v in G.edges:
val1=rowChannels[id][u]
val2=rowChannels[id][v]
val1.rowNeighbors[id].update({val2.ID : Neighbor(val2, 0, self.shape.blockSize)})
val2.rowNeighbors[id].update({val1.ID : Neighbor(val1, 0, self.shape.blockSize)})
if not columnChannels[id]:
self.logger.error("No nodes for column %d !" % id, extra=self.format)
continue
elif (len(columnChannels[id]) <= self.shape.netDegree):
self.logger.debug("Graph fully connected with degree %d !" % (len(columnChannels[id]) - 1), extra=self.format)
G = nx.complete_graph(len(columnChannels[id]))
else:
G = nx.random_regular_graph(self.shape.netDegree, len(columnChannels[id]))
if not nx.is_connected(G):
self.logger.error("Graph not connected for column %d !" % id, extra=self.format)
for u, v in G.edges:
val1=columnChannels[id][u]
val2=columnChannels[id][v]
val1.columnNeighbors[id].update({val2.ID : Neighbor(val2, 1, self.shape.blockSize)})
val2.columnNeighbors[id].update({val1.ID : Neighbor(val1, 1, self.shape.blockSize)})
for v in self.validators:
if (self.proposerPublishOnly and v.amIproposer):
for id in v.rowIDs:
count = min(self.proposerPublishTo, len(rowChannels[id]))
publishTo = random.sample(rowChannels[id], count)
for vi in publishTo:
v.rowNeighbors[id].update({vi.ID : Neighbor(vi, 0, self.shape.blockSize)})
for id in v.columnIDs:
count = min(self.proposerPublishTo, len(columnChannels[id]))
publishTo = random.sample(columnChannels[id], count)
for vi in publishTo:
v.columnNeighbors[id].update({vi.ID : Neighbor(vi, 1, self.shape.blockSize)})
if self.logger.isEnabledFor(logging.DEBUG):
for i in range(0, self.shape.numberNodes):
self.logger.debug("Val %d : rowN %s", i, self.validators[i].rowNeighbors, extra=self.format)
self.logger.debug("Val %d : colN %s", i, self.validators[i].columnNeighbors, extra=self.format)
def initLogger(self):
"""It initializes the logger."""
logging.TRACE = 5
logging.addLevelName(logging.TRACE, 'TRACE')
logging.Logger.trace = partialmethod(logging.Logger.log, logging.TRACE)
logging.trace = partial(logging.log, logging.TRACE)
logger = logging.getLogger("DAS")
if len(logger.handlers) == 0:
logger.setLevel(self.logLevel)
ch = logging.StreamHandler()
ch.setLevel(self.logLevel)
ch.setFormatter(CustomFormatter())
logger.addHandler(ch)
self.logger = logger
def run(self):
"""It runs the main simulation until the block is available or it gets stucked."""
self.glob.checkRowsColumns(self.validators)
self.validators[self.proposerID].broadcastBlock()
arrived, expected, ready, validated = self.glob.checkStatus(self.validators)
missingSamples = expected - arrived
missingVector = []
steps = 0
while(True):
missingVector.append(missingSamples)
oldMissingSamples = missingSamples
self.logger.debug("PHASE SEND %d" % steps, extra=self.format)
for i in range(0,self.shape.numberNodes):
self.validators[i].send()
self.logger.debug("PHASE RECEIVE %d" % steps, extra=self.format)
for i in range(1,self.shape.numberNodes):
self.validators[i].receiveRowsColumns()
self.logger.debug("PHASE RESTORE %d" % steps, extra=self.format)
for i in range(1,self.shape.numberNodes):
self.validators[i].restoreRows()
self.validators[i].restoreColumns()
self.logger.debug("PHASE LOG %d" % steps, extra=self.format)
for i in range(0,self.shape.numberNodes):
self.validators[i].logRows()
self.validators[i].logColumns()
# log TX and RX statistics
TX_prod, RX_prod, TX_avg, TX_max, Rx_avg, Rx_max = self.glob.getTrafficStats(self.validators)
self.logger.debug("step %d: TX_prod=%.1f, RX_prod=%.1f, TX_avg=%.1f, TX_max=%.1f, Rx_avg=%.1f, Rx_max=%.1f" %
(steps, TX_prod, RX_prod, TX_avg, TX_max, Rx_avg, Rx_max), extra=self.format)
for i in range(0,self.shape.numberNodes):
self.validators[i].updateStats()
missingSamples, sampleProgress, nodeProgress, validatorProgress = self.glob.getProgress(self.validators)
self.logger.debug("step %d, arrived %0.02f %%, ready %0.02f %%, validated %0.02f %%"
% (steps, sampleProgress*100, nodeProgress*100, validatorProgress*100), extra=self.format)
if missingSamples == oldMissingSamples:
self.logger.debug("The block cannot be recovered, failure rate %d!" % self.shape.failureRate, extra=self.format)
missingVector.append(missingSamples)
break
elif missingSamples == 0:
#self.logger.info("The entire block is available at step %d, with failure rate %d !" % (steps, self.shape.failureRate), extra=self.format)
missingVector.append(missingSamples)
break
else:
steps += 1
self.result.populate(self.shape, missingVector)
return self.result