mirror of
https://github.com/status-im/das-research.git
synced 2025-02-23 11:58:14 +00:00
commit
fd532a6f17
18
DAS/shape.py
18
DAS/shape.py
@ -3,23 +3,35 @@
|
||||
class Shape:
|
||||
"""This class represents a set of parameters for a specific simulation."""
|
||||
|
||||
def __init__(self, blockSize, numberValidators, failureRate, chi, netDegree, run):
|
||||
def __init__(self, blockSize, numberNodes, failureRate, class1ratio, chi, vpn1, vpn2, netDegree, bwUplinkProd, bwUplink1, bwUplink2, run):
|
||||
"""Initializes the shape with the parameters passed in argument."""
|
||||
self.run = run
|
||||
self.numberValidators = numberValidators
|
||||
self.numberNodes = numberNodes
|
||||
self.blockSize = blockSize
|
||||
self.failureRate = failureRate
|
||||
self.netDegree = netDegree
|
||||
self.class1ratio = class1ratio
|
||||
self.chi = chi
|
||||
self.vpn1 = vpn1
|
||||
self.vpn2 = vpn2
|
||||
self.bwUplinkProd = bwUplinkProd
|
||||
self.bwUplink1 = bwUplink1
|
||||
self.bwUplink2 = bwUplink2
|
||||
self.randomSeed = ""
|
||||
|
||||
def __repr__(self):
|
||||
"""Returns a printable representation of the shape"""
|
||||
shastr = ""
|
||||
shastr += "bs-"+str(self.blockSize)
|
||||
shastr += "-nbv-"+str(self.numberValidators)
|
||||
shastr += "-nn-"+str(self.numberNodes)
|
||||
shastr += "-fr-"+str(self.failureRate)
|
||||
shastr += "-c1r-"+str(self.class1ratio)
|
||||
shastr += "-chi-"+str(self.chi)
|
||||
shastr += "-vpn1-"+str(self.vpn1)
|
||||
shastr += "-vpn2-"+str(self.vpn2)
|
||||
shastr += "-bwupprod-"+str(self.bwUplinkProd)
|
||||
shastr += "-bwup1-"+str(self.bwUplink1)
|
||||
shastr += "-bwup2-"+str(self.bwUplink2)
|
||||
shastr += "-nd-"+str(self.netDegree)
|
||||
shastr += "-r-"+str(self.run)
|
||||
return shastr
|
||||
|
@ -15,6 +15,7 @@ class Simulator:
|
||||
def __init__(self, shape, config):
|
||||
"""It initializes the simulation with a set of parameters (shape)."""
|
||||
self.shape = shape
|
||||
self.config = config
|
||||
self.format = {"entity": "Simulator"}
|
||||
self.result = Result(self.shape)
|
||||
self.validators = []
|
||||
@ -28,12 +29,18 @@ class Simulator:
|
||||
self.glob = Observer(self.logger, self.shape)
|
||||
self.glob.reset()
|
||||
self.validators = []
|
||||
rows = list(range(self.shape.blockSize)) * int(self.shape.chi*self.shape.numberValidators/self.shape.blockSize)
|
||||
columns = list(range(self.shape.blockSize)) * int(self.shape.chi*self.shape.numberValidators/self.shape.blockSize)
|
||||
random.shuffle(rows)
|
||||
random.shuffle(columns)
|
||||
for i in range(self.shape.numberValidators):
|
||||
val = Validator(i, int(not i!=0), self.logger, self.shape, rows, columns)
|
||||
if self.config.evenLineDistribution:
|
||||
rows = list(range(self.shape.blockSize)) * int(self.shape.chi*self.shape.numberNodes/self.shape.blockSize)
|
||||
columns = list(range(self.shape.blockSize)) * int(self.shape.chi*self.shape.numberNodes/self.shape.blockSize)
|
||||
random.shuffle(rows)
|
||||
random.shuffle(columns)
|
||||
for i in range(self.shape.numberNodes):
|
||||
if self.config.evenLineDistribution:
|
||||
val = Validator(i, int(not i!=0), self.logger, self.shape,
|
||||
rows[(i*self.shape.chi):((i+1)*self.shape.chi)],
|
||||
columns[(i*self.shape.chi):((i+1)*self.shape.chi)])
|
||||
else:
|
||||
val = Validator(i, int(not i!=0), self.logger, self.shape)
|
||||
if i == self.proposerID:
|
||||
val.initBlock()
|
||||
self.glob.setGoldenData(val.block)
|
||||
@ -57,7 +64,10 @@ class Simulator:
|
||||
# If the number of nodes in a channel is smaller or equal to the
|
||||
# requested degree, a fully connected graph is used. For n>d, a random
|
||||
# d-regular graph is set up. (For n=d+1, the two are the same.)
|
||||
if (len(rowChannels[id]) <= self.shape.netDegree):
|
||||
if not rowChannels[id]:
|
||||
self.logger.error("No nodes for row %d !" % id, extra=self.format)
|
||||
continue
|
||||
elif (len(rowChannels[id]) <= self.shape.netDegree):
|
||||
self.logger.debug("Graph fully connected with degree %d !" % (len(rowChannels[id]) - 1), extra=self.format)
|
||||
G = nx.complete_graph(len(rowChannels[id]))
|
||||
else:
|
||||
@ -70,7 +80,10 @@ class Simulator:
|
||||
val1.rowNeighbors[id].update({val2.ID : Neighbor(val2, 0, self.shape.blockSize)})
|
||||
val2.rowNeighbors[id].update({val1.ID : Neighbor(val1, 0, self.shape.blockSize)})
|
||||
|
||||
if (len(columnChannels[id]) <= self.shape.netDegree):
|
||||
if not columnChannels[id]:
|
||||
self.logger.error("No nodes for column %d !" % id, extra=self.format)
|
||||
continue
|
||||
elif (len(columnChannels[id]) <= self.shape.netDegree):
|
||||
self.logger.debug("Graph fully connected with degree %d !" % (len(columnChannels[id]) - 1), extra=self.format)
|
||||
G = nx.complete_graph(len(columnChannels[id]))
|
||||
else:
|
||||
@ -97,7 +110,7 @@ class Simulator:
|
||||
v.columnNeighbors[id].update({vi.ID : Neighbor(vi, 1, self.shape.blockSize)})
|
||||
|
||||
if self.logger.isEnabledFor(logging.DEBUG):
|
||||
for i in range(0, self.shape.numberValidators):
|
||||
for i in range(0, self.shape.numberNodes):
|
||||
self.logger.debug("Val %d : rowN %s", i, self.validators[i].rowNeighbors, extra=self.format)
|
||||
self.logger.debug("Val %d : colN %s", i, self.validators[i].columnNeighbors, extra=self.format)
|
||||
|
||||
@ -120,6 +133,8 @@ class Simulator:
|
||||
for val in self.validators:
|
||||
val.shape.failureRate = shape.failureRate
|
||||
val.shape.chi = shape.chi
|
||||
val.shape.vpn1 = shape.vpn1
|
||||
val.shape.vpn2 = shape.vpn2
|
||||
|
||||
# In GossipSub the initiator might push messages without participating in the mesh.
|
||||
# proposerPublishOnly regulates this behavior. If set to true, the proposer is not
|
||||
@ -146,17 +161,17 @@ class Simulator:
|
||||
missingVector.append(missingSamples)
|
||||
oldMissingSamples = missingSamples
|
||||
self.logger.debug("PHASE SEND %d" % steps, extra=self.format)
|
||||
for i in range(0,self.shape.numberValidators):
|
||||
for i in range(0,self.shape.numberNodes):
|
||||
self.validators[i].send()
|
||||
self.logger.debug("PHASE RECEIVE %d" % steps, extra=self.format)
|
||||
for i in range(1,self.shape.numberValidators):
|
||||
for i in range(1,self.shape.numberNodes):
|
||||
self.validators[i].receiveRowsColumns()
|
||||
self.logger.debug("PHASE RESTORE %d" % steps, extra=self.format)
|
||||
for i in range(1,self.shape.numberValidators):
|
||||
for i in range(1,self.shape.numberNodes):
|
||||
self.validators[i].restoreRows()
|
||||
self.validators[i].restoreColumns()
|
||||
self.logger.debug("PHASE LOG %d" % steps, extra=self.format)
|
||||
for i in range(0,self.shape.numberValidators):
|
||||
for i in range(0,self.shape.numberNodes):
|
||||
self.validators[i].logRows()
|
||||
self.validators[i].logColumns()
|
||||
|
||||
@ -167,7 +182,7 @@ class Simulator:
|
||||
(steps, statsTxInSlot[0], statsRxInSlot[0],
|
||||
mean(statsTxInSlot[1:]), max(statsTxInSlot[1:]),
|
||||
mean(statsRxInSlot[1:]), max(statsRxInSlot[1:])), extra=self.format)
|
||||
for i in range(0,self.shape.numberValidators):
|
||||
for i in range(0,self.shape.numberNodes):
|
||||
self.validators[i].updateStats()
|
||||
|
||||
arrived, expected = self.glob.checkStatus(self.validators)
|
||||
|
@ -79,3 +79,9 @@ def sampleLine(line, limit):
|
||||
r[i] = 1
|
||||
limit -= 1
|
||||
return r
|
||||
|
||||
def unionOfSamples(population, sampleSize, times):
|
||||
selected = set()
|
||||
for t in range(times):
|
||||
selected |= set(random.sample(population, sampleSize))
|
||||
return selected
|
||||
|
@ -4,7 +4,7 @@ import random
|
||||
import collections
|
||||
import logging
|
||||
from DAS.block import *
|
||||
from DAS.tools import shuffled, shuffledDict
|
||||
from DAS.tools import shuffled, shuffledDict, unionOfSamples
|
||||
from bitarray.util import zeros
|
||||
from collections import deque
|
||||
from itertools import chain
|
||||
@ -38,8 +38,13 @@ class Validator:
|
||||
"""It returns the validator ID."""
|
||||
return str(self.ID)
|
||||
|
||||
def __init__(self, ID, amIproposer, logger, shape, rows, columns):
|
||||
"""It initializes the validator with the logger, shape and assigned rows/columns."""
|
||||
def __init__(self, ID, amIproposer, logger, shape, rows = None, columns = None):
|
||||
"""It initializes the validator with the logger shape and rows/columns.
|
||||
|
||||
If rows/columns are specified these are observed, otherwise (default)
|
||||
chi rows and columns are selected randomly.
|
||||
"""
|
||||
|
||||
self.shape = shape
|
||||
FORMAT = "%(levelname)s : %(entity)s : %(message)s"
|
||||
self.ID = ID
|
||||
@ -53,18 +58,17 @@ class Validator:
|
||||
if self.shape.chi < 1:
|
||||
self.logger.error("Chi has to be greater than 0", extra=self.format)
|
||||
elif self.shape.chi > self.shape.blockSize:
|
||||
self.logger.error("Chi has to be smaller than %d" % blockSize, extra=self.format)
|
||||
self.logger.error("Chi has to be smaller than %d" % self.shape.blockSize, extra=self.format)
|
||||
else:
|
||||
if amIproposer:
|
||||
self.rowIDs = range(shape.blockSize)
|
||||
self.columnIDs = range(shape.blockSize)
|
||||
else:
|
||||
self.rowIDs = rows[(self.ID*self.shape.chi):(self.ID*self.shape.chi + self.shape.chi)]
|
||||
self.columnIDs = columns[(self.ID*self.shape.chi):(self.ID*self.shape.chi + self.shape.chi)]
|
||||
#if shape.deterministic:
|
||||
# random.seed(self.ID)
|
||||
#self.rowIDs = random.sample(range(self.shape.blockSize), self.shape.chi)
|
||||
#self.columnIDs = random.sample(range(self.shape.blockSize), self.shape.chi)
|
||||
vpn = self.shape.vpn1 if (self.ID <= shape.numberNodes * shape.class1ratio) else self.shape.vpn2
|
||||
self.rowIDs = rows if rows else unionOfSamples(range(self.shape.blockSize), self.shape.chi, vpn)
|
||||
self.columnIDs = columns if columns else unionOfSamples(range(self.shape.blockSize), self.shape.chi, vpn)
|
||||
self.rowNeighbors = collections.defaultdict(dict)
|
||||
self.columnNeighbors = collections.defaultdict(dict)
|
||||
|
||||
@ -77,7 +81,12 @@ class Validator:
|
||||
# Set uplink bandwidth. In segments (~560 bytes) per timestep (50ms?)
|
||||
# 1 Mbps ~= 1e6 / 20 / 8 / 560 ~= 11
|
||||
# TODO: this should be a parameter
|
||||
self.bwUplink = 110 if not self.amIproposer else 2200 # approx. 10Mbps and 200Mbps
|
||||
if self.amIproposer:
|
||||
self.bwUplink = shape.bwUplinkProd
|
||||
elif self.ID <= shape.numberNodes * shape.class1ratio:
|
||||
self.bwUplink = shape.bwUplink1
|
||||
else:
|
||||
self.bwUplink = shape.bwUplink2
|
||||
|
||||
self.repairOnTheFly = True
|
||||
self.sendLineUntil = (self.shape.blockSize + 1) // 2 # stop sending on a p2p link if at least this amount of samples passed
|
||||
|
@ -12,7 +12,8 @@ class Visualizer:
|
||||
def __init__(self, execID):
|
||||
self.execID = execID
|
||||
self.folderPath = "results/"+self.execID
|
||||
self.parameters = ['run', 'blockSize', 'failureRate', 'numberValidators', 'netDegree', 'chi']
|
||||
self.parameters = ['run', 'blockSize', 'failureRate', 'numberNodes', 'netDegree',
|
||||
'chi', 'vpn1', 'vpn2', 'bwUplinkProd', 'bwUplink1', 'bwUplink2']
|
||||
self.minimumDataPoints = 2
|
||||
|
||||
def plottingData(self):
|
||||
@ -27,22 +28,27 @@ class Visualizer:
|
||||
run = int(root.find('run').text)
|
||||
blockSize = int(root.find('blockSize').text)
|
||||
failureRate = int(root.find('failureRate').text)
|
||||
numberValidators = int(root.find('numberValidators').text)
|
||||
numberNodes = int(root.find('numberNodes').text)
|
||||
netDegree = int(root.find('netDegree').text)
|
||||
chi = int(root.find('chi').text)
|
||||
vpn1 = int(root.find('vpn1').text)
|
||||
vpn2 = int(root.find('vpn2').text)
|
||||
bwUplinkProd = int(root.find('bwUplinkProd').text)
|
||||
bwUplink1 = int(root.find('bwUplink1').text)
|
||||
bwUplink2 = int(root.find('bwUplink2').text)
|
||||
tta = int(root.find('tta').text)
|
||||
|
||||
# Loop over all possible combinations of length 4 of the parameters
|
||||
for combination in combinations(self.parameters, 4):
|
||||
# Get the indices and values of the parameters in the combination
|
||||
indices = [self.parameters.index(element) for element in combination]
|
||||
selectedValues = [run, blockSize, failureRate, numberValidators, netDegree, chi]
|
||||
selectedValues = [run, blockSize, failureRate, numberNodes, netDegree, chi, vpn1, vpn2, bwUplinkProd, bwUplink1, bwUplink2]
|
||||
values = [selectedValues[index] for index in indices]
|
||||
names = [self.parameters[i] for i in indices]
|
||||
keyComponents = [f"{name}_{value}" for name, value in zip(names, values)]
|
||||
key = tuple(keyComponents[:4])
|
||||
#Get the names of the other 2 parameters that are not included in the key
|
||||
otherParams = [self.parameters[i] for i in range(6) if i not in indices]
|
||||
otherParams = [self.parameters[i] for i in range(len(self.parameters)) if i not in indices]
|
||||
#Append the values of the other 2 parameters and the ttas to the lists for the key
|
||||
otherIndices = [i for i in range(len(self.parameters)) if i not in indices]
|
||||
|
||||
|
@ -14,6 +14,8 @@ if needed.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import itertools
|
||||
import numpy as np
|
||||
from DAS.shape import Shape
|
||||
|
||||
dumpXML = 1
|
||||
@ -24,11 +26,15 @@ logLevel = logging.INFO
|
||||
# for more details, see joblib.Parallel
|
||||
numJobs = 3
|
||||
|
||||
# distribute rows/columns evenly between validators (True)
|
||||
# or generate it using local randomness (False)
|
||||
evenLineDistribution = False
|
||||
|
||||
# Number of simulation runs with the same parameters for statistical relevance
|
||||
runs = range(10)
|
||||
|
||||
# Number of validators
|
||||
numberValidators = range(256, 513, 128)
|
||||
numberNodes = range(256, 513, 128)
|
||||
|
||||
# Percentage of block not released by producer
|
||||
failureRates = range(10, 91, 40)
|
||||
@ -39,8 +45,21 @@ blockSizes = range(32,65,16)
|
||||
# Per-topic mesh neighborhood size
|
||||
netDegrees = range(6, 9, 2)
|
||||
|
||||
# Number of rows and columns a validator is interested in
|
||||
chis = range(4, 9, 2)
|
||||
# number of rows and columns a validator is interested in
|
||||
chis = range(1, 5, 2)
|
||||
|
||||
# ratio of class1 nodes (see below for parameters per class)
|
||||
class1ratios = np.arange(0, 1, .2)
|
||||
|
||||
# Number of validators per beacon node
|
||||
validatorsPerNode1 = [1]
|
||||
validatorsPerNode2 = [2, 4, 8, 16, 32]
|
||||
|
||||
# Set uplink bandwidth. In segments (~560 bytes) per timestep (50ms?)
|
||||
# 1 Mbps ~= 1e6 / 20 / 8 / 560 ~= 11
|
||||
bwUplinksProd = [2200]
|
||||
bwUplinks1 = [110]
|
||||
bwUplinks2 = [2200]
|
||||
|
||||
# Set to True if you want your run to be deterministic, False if not
|
||||
deterministic = False
|
||||
@ -49,13 +68,9 @@ deterministic = False
|
||||
randomSeed = "DAS"
|
||||
|
||||
def nextShape():
|
||||
for run in runs:
|
||||
for fr in failureRates:
|
||||
for chi in chis:
|
||||
for blockSize in blockSizes:
|
||||
for nv in numberValidators:
|
||||
for netDegree in netDegrees:
|
||||
# Network Degree has to be an even number
|
||||
if netDegree % 2 == 0:
|
||||
shape = Shape(blockSize, nv, fr, chi, netDegree, run)
|
||||
yield shape
|
||||
for run, fr, class1ratio, chi, vpn1, vpn2, blockSize, nn, netDegree, bwUplinkProd, bwUplink1, bwUplink2 in itertools.product(
|
||||
runs, failureRates, class1ratios, chis, validatorsPerNode1, validatorsPerNode2, blockSizes, numberNodes, netDegrees, bwUplinksProd, bwUplinks1, bwUplinks2):
|
||||
# Network Degree has to be an even number
|
||||
if netDegree % 2 == 0:
|
||||
shape = Shape(blockSize, nn, fr, class1ratio, chi, vpn1, vpn2, netDegree, bwUplinkProd, bwUplink1, bwUplink2, run)
|
||||
yield shape
|
||||
|
Loading…
x
Reference in New Issue
Block a user