This commit is contained in:
HajarZaiz 2023-02-26 18:27:47 +01:00
commit ceb8357034
24 changed files with 503 additions and 33 deletions

2
.gitignore vendored
View File

@ -1,2 +1,4 @@
*.swp *.swp
*.pyc *.pyc
results/*
!results/plots.py

View File

@ -1,3 +1,4 @@
from DAS.simulator import * from DAS.simulator import *
from DAS.configuration import * from DAS.configuration import *
from DAS.shape import * from DAS.shape import *
from DAS.visualizer import *

View File

@ -33,6 +33,7 @@ class Configuration:
self.numberRuns = int(config.get("Advanced", "numberRuns")) self.numberRuns = int(config.get("Advanced", "numberRuns"))
self.deterministic = config.get("Advanced", "deterministic") self.deterministic = config.get("Advanced", "deterministic")
self.dumpXML = config.get("Advanced", "dumpXML")
if self.nvStop < (self.blockSizeStart*4): if self.nvStop < (self.blockSizeStart*4):
print("ERROR: The number of validators cannot be lower than the block size * 4") print("ERROR: The number of validators cannot be lower than the block size * 4")

View File

@ -1,17 +1,50 @@
#!/bin/python3 #!/bin/python3
import os
from xml.dom import minidom
from dicttoxml import dicttoxml
class Result: class Result:
config = [] shape = []
missingVector = [] missingVector = []
blockAvailable = -1 blockAvailable = -1
tta = -1
def __init__(self, config): def __init__(self, shape):
self.config = config self.shape = shape
self.blockAvailable = -1 self.blockAvailable = -1
self.tta = -1
self.missingVector = [] self.missingVector = []
def populate(self, shape, missingVector):
def addMissing(self, missingVector): self.shape = shape
self.missingVector = missingVector self.missingVector = missingVector
missingSamples = missingVector[-1]
if missingSamples == 0:
self.blockAvailable = 1
self.tta = len(missingVector)
else:
self.blockAvailable = 0
self.tta = -1
def dump(self, execID):
if not os.path.exists("results"):
os.makedirs("results")
if not os.path.exists("results/"+execID):
os.makedirs("results/"+execID)
resd1 = self.shape.__dict__
resd2 = self.__dict__.copy()
resd2.pop("shape")
resd1.update(resd2)
resXml = dicttoxml(resd1)
xmlstr = minidom.parseString(resXml)
xmlPretty = xmlstr.toprettyxml()
filePath = "results/"+execID+"/nbv-"+str(self.shape.numberValidators)+\
"-bs-"+str(self.shape.blockSize)+\
"-nd-"+str(self.shape.netDegree)+\
"-fr-"+str(self.shape.failureRate)+\
"-chi-"+str(self.shape.chi)+\
"-r-"+str(self.shape.run)+".xml"
with open(filePath, "w") as f:
f.write(xmlPretty)

View File

@ -1,16 +1,18 @@
#!/bin/python3 #!/bin/python3
class Shape: class Shape:
run = 0
numberValidators = 0 numberValidators = 0
failureRate = 0
blockSize = 0 blockSize = 0
failureRate = 0
netDegree = 0 netDegree = 0
chi = 0 chi = 0
def __init__(self, blockSize, numberValidators, failureRate, chi, netDegree): def __init__(self, blockSize, numberValidators, failureRate, chi, netDegree, run):
self.run = run
self.numberValidators = numberValidators self.numberValidators = numberValidators
self.failureRate = failureRate
self.blockSize = blockSize self.blockSize = blockSize
self.failureRate = failureRate
self.netDegree = netDegree self.netDegree = netDegree
self.chi = chi self.chi = chi

View File

@ -42,7 +42,6 @@ class Simulator:
self.validators.append(val) self.validators.append(val)
def initNetwork(self): def initNetwork(self):
self.shape.netDegree = 6
rowChannels = [[] for i in range(self.shape.blockSize)] rowChannels = [[] for i in range(self.shape.blockSize)]
columnChannels = [[] for i in range(self.shape.blockSize)] columnChannels = [[] for i in range(self.shape.blockSize)]
for v in self.validators: for v in self.validators:
@ -87,6 +86,7 @@ class Simulator:
def resetShape(self, shape): def resetShape(self, shape):
self.shape = shape self.shape = shape
self.result = Result(self.shape)
for val in self.validators: for val in self.validators:
val.shape.failureRate = shape.failureRate val.shape.failureRate = shape.failureRate
val.shape.chi = shape.chi val.shape.chi = shape.chi
@ -120,19 +120,16 @@ class Simulator:
missingRate = missingSamples*100/expected missingRate = missingSamples*100/expected
self.logger.debug("step %d, missing %d of %d (%0.02f %%)" % (steps, missingSamples, expected, missingRate), extra=self.format) self.logger.debug("step %d, missing %d of %d (%0.02f %%)" % (steps, missingSamples, expected, missingRate), extra=self.format)
if missingSamples == oldMissingSamples: if missingSamples == oldMissingSamples:
#self.logger.info("The block cannot be recovered, failure rate %d!" % self.shape.failureRate, extra=self.format)
missingVector.append(missingSamples)
break break
elif missingSamples == 0: elif missingSamples == 0:
#self.logger.info("The entire block is available at step %d, with failure rate %d !" % (steps, self.shape.failureRate), extra=self.format)
missingVector.append(missingSamples)
break break
else: else:
steps += 1 steps += 1
self.result.addMissing(missingVector) self.result.populate(self.shape, missingVector)
if missingSamples == 0:
self.result.blockAvailable = 1
self.logger.debug("The entire block is available at step %d, with failure rate %d !" % (steps, self.shape.failureRate), extra=self.format)
return self.result
else:
self.result.blockAvailable = 0
self.logger.debug("The block cannot be recovered, failure rate %d!" % self.shape.failureRate, extra=self.format)
return self.result return self.result

130
DAS/visualizer.py Normal file
View File

@ -0,0 +1,130 @@
#!/bin/python3
import os, sys
import time
import xml.etree.ElementTree as ET
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from itertools import combinations
class Visualizer:
def __init__(self, execID):
self.execID = execID
self.folderPath = "results/"+self.execID
self.parameters = ['run', 'blockSize', 'failureRate', 'numberValidators', 'netDegree', 'chi']
#Store data with a unique key for each params combination
def plottingData(self):
data = {}
#Loop over the xml files in the folder
for filename in os.listdir(self.folderPath):
#Loop over the xmls and store the data in variables
if filename.endswith('.xml'):
tree = ET.parse(os.path.join(self.folderPath, filename))
root = tree.getroot()
run = int(root.find('run').text)
blockSize = int(root.find('blockSize').text)
failureRate = int(root.find('failureRate').text)
numberValidators = int(root.find('numberValidators').text)
netDegree = int(root.find('netDegree').text)
chi = int(root.find('chi').text)
tta = int(root.find('tta').text)
# Loop over all possible combinations of length 4 of the parameters
for combination in combinations(self.parameters, 4):
# Get the indices and values of the parameters in the combination
indices = [self.parameters.index(element) for element in combination]
selectedValues = [run, blockSize, failureRate, numberValidators, netDegree, chi]
values = [selectedValues[index] for index in indices]
names = [self.parameters[i] for i in indices]
keyComponents = [f"{name}_{value}" for name, value in zip(names, values)]
key = tuple(keyComponents[:4])
#Get the names of the other 2 parameters that are not included in the key
otherParams = [self.parameters[i] for i in range(6) if i not in indices]
#Append the values of the other 2 parameters and the ttas to the lists for the key
otherIndices = [i for i in range(len(self.parameters)) if i not in indices]
#Initialize the dictionary for the key if it doesn't exist yet
if key not in data:
data[key] = {}
#Initialize lists for the other 2 parameters and the ttas with the key
data[key][otherParams[0]] = []
data[key][otherParams[1]] = []
data[key]['ttas'] = []
if otherParams[0] in data[key]:
data[key][otherParams[0]].append(selectedValues[otherIndices[0]])
else:
data[key][otherParams[0]] = [selectedValues[otherIndices[0]]]
if otherParams[1] in data[key]:
data[key][otherParams[1]].append(selectedValues[otherIndices[1]])
else:
data[key][otherParams[1]] = [selectedValues[otherIndices[1]]]
data[key]['ttas'].append(tta)
print("Getting data from the folder...")
return data
#Get the keys for all data with the same x and y labels
def similarKeys(self, data):
filteredKeys = {}
for key1, value1 in data.items():
subKeys1 = list(value1.keys())
filteredKeys[(subKeys1[0], subKeys1[1])] = [key1]
for key2, value2 in data.items():
subKeys2 = list(value2.keys())
if key1 != key2 and subKeys1[0] == subKeys2[0] and subKeys1[1] == subKeys2[1]:
try:
filteredKeys[(subKeys1[0], subKeys1[1])].append(key2)
except KeyError:
filteredKeys[(subKeys1[0], subKeys1[1])] = [key2]
print("Getting filtered keys from data...")
return filteredKeys
#Title formatting for the figures
def formatTitle(self, key):
name = ''.join([f" {char}" if char.isupper() else char for char in key.split('_')[0]])
number = key.split('_')[1]
return f"{name.title()}: {number} "
#Plot and store the 2D heatmaps in subfolders
def plotHeatmaps(self):
data = self.plottingData()
filteredKeys = self.similarKeys(data)
print("Plotting heatmaps...")
#Create the directory if it doesn't exist already
heatmapsFolder = self.folderPath + '/heatmaps'
if not os.path.exists(heatmapsFolder):
os.makedirs(heatmapsFolder)
#Plot
for labels, keys in filteredKeys.items():
for key in keys:
xlabels = np.sort(np.unique(data[key][labels[0]]))
ylabels = np.sort(np.unique(data[key][labels[1]]))
hist, xedges, yedges = np.histogram2d(data[key][labels[0]], data[key][labels[1]], bins=(len(xlabels), len(ylabels)), weights=data[key]['ttas'])
hist = hist.T
fig, ax = plt.subplots(figsize=(10, 6))
sns.heatmap(hist, xticklabels=xlabels, yticklabels=ylabels, cmap='Purples', cbar_kws={'label': 'Time to block availability'}, linecolor='black', linewidths=0.3, annot=True, fmt=".2f", ax=ax)
plt.xlabel(labels[0])
plt.ylabel(labels[1])
filename = ""
title = ""
paramValueCnt = 0
for param in self.parameters:
if param != labels[0] and param != labels[1]:
filename += f"{key[paramValueCnt]}"
formattedTitle = self.formatTitle(key[paramValueCnt])
title += formattedTitle
paramValueCnt += 1
title_obj = plt.title(title)
font_size = 16 * fig.get_size_inches()[0] / 10
title_obj.set_fontsize(font_size)
filename = filename + ".png"
targetFolder = os.path.join(heatmapsFolder, f"{labels[0]}Vs{labels[1]}")
if not os.path.exists(targetFolder):
os.makedirs(targetFolder)
plt.savefig(os.path.join(targetFolder, filename))
plt.close()
plt.clf()

BIN
Frontend/Imgs/logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
Frontend/Plots/plot1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
Frontend/Plots/plt1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

85
Frontend/css/style.css Normal file
View File

@ -0,0 +1,85 @@
*{
text-decoration: none;
margin: 0;
padding: 0;
box-sizing: border-box;
list-style: none;
}
body{
display: flex;
}
.navbar{
width: 7vw;
height: 100vh;
padding-left: 5px;
display: flex;
flex-direction: column;
align-items: center;
background-color: #7f5a83;
background-image: linear-gradient(280deg, #3f305e 0%, #00060a 74%);
}
#logo{
margin-top: 25px;
width: 3vw;
opacity: 0.9;
}
.navbar-bar{
color: aliceblue;
margin-top: 15vh;
}
.navbar-bar li{
margin-top: 10px;
height: 10vh;
width: 7vw;
text-align: center;
line-height: 10vh;
}
.navbar li:hover, .navbar li:focus, .navbar li:active{
background: #eee5fdea;
border-top-left-radius: 50%;
border-bottom-left-radius: 50%;
cursor: pointer;
transition: all 0.5s ease-in-out;
}
.navbar li:hover .fa-solid{
color: #160f25;
}
.fa-solid{
color: #b9aecf;
opacity: 0.7;
cursor: pointer;
transition: all 0.5s ease-in-out;
}
.fa-solid:hover{
opacity: 1;
color: #160f25;
}
.content{
width: 93vw;
height: 100vh;
background-color: #eee5fdea;
}
.p1, .p2, .p3, .p4{
width: 93vw;
height: 100vh;
}
.p2, .p3, .p4{
display: none;
}
.plot1{
margin: auto;
display: block;
}

32
Frontend/index.html Normal file
View File

@ -0,0 +1,32 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="stylesheet" href="css/style.css">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.2.0/css/all.min.css" integrity="sha512-xh6O/CkQoPOWDdYTDqeRdPCVd1SpvCA9XXcUnZS2FmJNp1coAFzvtCN9BmamE+4aHK8yyUHUSCcJHgXloTyT2A==" crossorigin="anonymous" referrerpolicy="no-referrer" /> <title>DAS Dashboard</title>
</head>
<body>
<nav class="navbar">
<div class="company-logo">
<img src="Imgs/logo.png" id="logo">
</div>
<ul class="navbar-bar">
<li class = "sec1"><i class="fa-solid fa-chart-line fa-xl"></i></li>
<li class = sec2><i class="fa-solid fa-layer-group fa-xl"></i></li>
<li class = "sec3"><i class="fa-solid fa-chart-simple fa-xl"></i></li>
<li class = "sec4"><i class="fa-solid fa-table-list fa-xl"></i></li>
</ul>
</nav>
<div class="content">
<div class="p1">
<img class = "plot1" src="Plots/plot1.png">
</div>
<div class="p2">Text2</div>
<div class="p3">Text3</div>
<div class="p4">Text4</div>
</div>
<script src="script.js"></script>
</body>
</html>

33
Frontend/script.js Normal file
View File

@ -0,0 +1,33 @@
let section1 = document.querySelector('.sec1');
let section2 = document.querySelector('.sec2');
let section3 = document.querySelector('.sec3');
let section4 = document.querySelector('.sec4');
let sections = [section1, section2, section3, section4];
let icon1 = document.querySelector(".sec1 i");
let icon2 = document.querySelector(".sec2 i");
let icon3 = document.querySelector(".sec3 i");
let icon4 = document.querySelector(".sec4 i");
let icons = [icon1, icon2, icon3, icon4];
let par1 = document.querySelector(".p1");
let par2 = document.querySelector(".p2");
let par3 = document.querySelector(".p3");
let par4 = document.querySelector(".p4");
let paragraphs = [par1, par2, par3, par4];
section1.style.cssText = "background: #eee5fdea; border-top-left-radius: 50%; border-bottom-left-radius: 50%; cursor: pointer; transition: all 0.5s ease-in-out;"
icon1.style.cssText = "opacity: 1; color: #160f25;"
sections.forEach(section =>{
section.addEventListener("click", function(){
sections.forEach(s =>{
s.style.cssText = "background: none; border-top-left-radius: 0%; border-bottom-left-radius: 0%;"
icons[sections.indexOf(s)].style.cssText = "color: #b9aecf; opacity: 0.7;"
paragraphs[sections.indexOf(s)].style.display = "none";
});
section.style.cssText = "background: #eee5fdea; border-top-left-radius: 50%; border-bottom-left-radius: 50%; cursor: pointer; transition: all 0.5s ease-in-out;"
icons[sections.indexOf(section)].style.cssText = "opacity: 1; color: #160f25;"
paragraphs[sections.indexOf(section)].style.display = "block";
});
});

View File

@ -25,3 +25,4 @@ chiStep = 2
deterministic = 0 deterministic = 0
numberRuns = 2 numberRuns = 2
dumpXML = 1

138
results/plots.py Normal file
View File

@ -0,0 +1,138 @@
import os, sys
import time
import xml.etree.ElementTree as ET
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from itertools import combinations
parameters = ['run', 'blockSize', 'failureRate', 'numberValidators', 'netDegree', 'chi']
#Title formatting for the figures
def formatTitle(key):
name = ''.join([f" {char}" if char.isupper() else char for char in key.split('_')[0]])
number = key.split('_')[1]
return f"{name.title()}: {number} "
def getLatestDirectory():
resultsFolder = os.getcwd()
#Get all folders and store their time info and sort
directories = [d for d in os.listdir(resultsFolder) if os.path.isdir(os.path.join(resultsFolder, d))]
directoriesTime = [(d, os.path.getctime(os.path.join(resultsFolder, d))) for d in directories]
directoriesTime.sort(key=lambda x: x[1], reverse=True)
#Get the path of the latest created folder
latestDirectory = directoriesTime[0][0]
folderPath = os.path.join(resultsFolder, latestDirectory)
return folderPath
def plottingData(folderPath):
#Store data with a unique key for each params combination
data = {}
plotInfo = {}
#Loop over the xml files in the folder
for filename in os.listdir(folderPath):
#Loop over the xmls and store the data in variables
if filename.endswith('.xml'):
tree = ET.parse(os.path.join(folderPath, filename))
root = tree.getroot()
run = int(root.find('run').text)
blockSize = int(root.find('blockSize').text)
failureRate = int(root.find('failureRate').text)
numberValidators = int(root.find('numberValidators').text)
netDegree = int(root.find('netDegree').text)
chi = int(root.find('chi').text)
tta = int(root.find('tta').text)
# Loop over all possible combinations of length 4 of the parameters
for combination in combinations(parameters, 4):
# Get the indices and values of the parameters in the combination
indices = [parameters.index(element) for element in combination]
selectedValues = [run, blockSize, failureRate, numberValidators, netDegree, chi]
values = [selectedValues[index] for index in indices]
names = [parameters[i] for i in indices]
keyComponents = [f"{name}_{value}" for name, value in zip(names, values)]
key = tuple(keyComponents[:4])
#Get the names of the other 2 parameters that are not included in the key
otherParams = [parameters[i] for i in range(6) if i not in indices]
#Append the values of the other 2 parameters and the ttas to the lists for the key
otherIndices = [i for i in range(len(parameters)) if i not in indices]
#Initialize the dictionary for the key if it doesn't exist yet
if key not in data:
data[key] = {}
#Initialize lists for the other 2 parameters and the ttas with the key
data[key][otherParams[0]] = []
data[key][otherParams[1]] = []
data[key]['ttas'] = []
if otherParams[0] in data[key]:
data[key][otherParams[0]].append(selectedValues[otherIndices[0]])
else:
data[key][otherParams[0]] = [selectedValues[otherIndices[0]]]
if otherParams[1] in data[key]:
data[key][otherParams[1]].append(selectedValues[otherIndices[1]])
else:
data[key][otherParams[1]] = [selectedValues[otherIndices[1]]]
data[key]['ttas'].append(tta)
return data
def similarKeys(data):
#Get the keys for all data with the same x and y labels
filteredKeys = {}
for key1, value1 in data.items():
subKeys1 = list(value1.keys())
filteredKeys[(subKeys1[0], subKeys1[1])] = [key1]
for key2, value2 in data.items():
subKeys2 = list(value2.keys())
if key1 != key2 and subKeys1[0] == subKeys2[0] and subKeys1[1] == subKeys2[1]:
try:
filteredKeys[(subKeys1[0], subKeys1[1])].append(key2)
except KeyError:
filteredKeys[(subKeys1[0], subKeys1[1])] = [key2]
return filteredKeys
def plotHeatmaps(folderPath, filteredKeys, data):
#Store the 2D heatmaps in a folder
heatmapsFolder = folderPath+'/heatmaps'
if not os.path.exists(heatmapsFolder):
os.makedirs(heatmapsFolder)
for labels, keys in filteredKeys.items():
for key in keys:
xlabels = np.sort(np.unique(data[key][labels[0]]))
ylabels = np.sort(np.unique(data[key][labels[1]]))
hist, xedges, yedges = np.histogram2d(data[key][labels[0]], data[key][labels[1]], bins=(len(xlabels), len(ylabels)), weights=data[key]['ttas'])
hist = hist.T
fig, ax = plt.subplots(figsize=(10, 6))
sns.heatmap(hist, xticklabels=xlabels, yticklabels=ylabels, cmap='Purples', cbar_kws={'label': 'Time to block availability'}, linecolor='black', linewidths=0.3, annot=True, fmt=".2f", ax=ax)
plt.xlabel(labels[0])
plt.ylabel(labels[1])
filename = ""
title = ""
paramValueCnt = 0
for param in parameters:
if param != labels[0] and param != labels[1]:
filename += f"{key[paramValueCnt]}"
title += formatTitle(key[paramValueCnt])
paramValueCnt += 1
title_obj = plt.title(title)
font_size = 16 * fig.get_size_inches()[0] / 10
title_obj.set_fontsize(font_size)
filename = filename + ".png"
targetFolder = os.path.join(heatmapsFolder, f"{labels[0]}Vs{labels[1]}")
if not os.path.exists(targetFolder):
os.makedirs(targetFolder)
plt.savefig(os.path.join(targetFolder, filename))
plt.close()
plt.clf()
def generateHeatmaps(folderPath):
#folderPath = getLatestDirectory()
data = plottingData(folderPath)
filteredKeys = similarKeys(data)
plotHeatmaps(folderPath, filteredKeys, data)
generateHeatmaps(sys.argv[1])

View File

@ -1,6 +1,6 @@
#! /bin/python3 #! /bin/python3
import time, sys import time, sys, random, copy
from DAS import * from DAS import *
@ -10,36 +10,51 @@ def study():
exit(1) exit(1)
config = Configuration(sys.argv[1]) config = Configuration(sys.argv[1])
sim = Simulator(config) shape = Shape(0, 0, 0, 0, 0, 0)
sim = Simulator(shape)
sim.initLogger() sim.initLogger()
results = [] results = []
simCnt = 0 simCnt = 0
now = datetime.now()
execID = now.strftime("%Y-%m-%d_%H-%M-%S_")+str(random.randint(100,999))
sim.logger.info("Starting simulations:", extra=sim.format) sim.logger.info("Starting simulations:", extra=sim.format)
start = time.time() start = time.time()
for run in range(config.numberRuns): for run in range(config.numberRuns):
for fr in range(config.failureRateStart, config.failureRateStop+1, config.failureRateStep):
for chi in range(config.chiStart, config.chiStop+1, config.chiStep):
for blockSize in range(config.blockSizeStart, config.blockSizeStop+1, config.blockSizeStep):
for nv in range(config.nvStart, config.nvStop+1, config.nvStep): for nv in range(config.nvStart, config.nvStop+1, config.nvStep):
for blockSize in range(config.blockSizeStart, config.blockSizeStop+1, config.blockSizeStep):
for fr in range(config.failureRateStart, config.failureRateStop+1, config.failureRateStep):
for netDegree in range(config.netDegreeStart, config.netDegreeStop+1, config.netDegreeStep): for netDegree in range(config.netDegreeStart, config.netDegreeStop+1, config.netDegreeStep):
for chi in range(config.chiStart, config.chiStop+1, config.chiStep):
if not config.deterministic: if not config.deterministic:
random.seed(datetime.now()) random.seed(datetime.now())
shape = Shape(blockSize, nv, fr, chi, netDegree) # Network Degree has to be an even number
if netDegree % 2 == 0:
shape = Shape(blockSize, nv, fr, chi, netDegree, run)
sim.resetShape(shape) sim.resetShape(shape)
sim.initValidators() sim.initValidators()
sim.initNetwork() sim.initNetwork()
result = sim.run() result = sim.run()
sim.logger.info("Run %d, FR: %d %%, Chi: %d, BlockSize: %d, Nb.Val: %d, netDegree: %d ... Block Available: %d" % (run, fr, chi, blockSize, nv, netDegree, result.blockAvailable), extra=sim.format) sim.logger.info("Shape: %s ... Block Available: %d" % (str(sim.shape.__dict__), result.blockAvailable), extra=sim.format)
results.append(result) results.append(copy.deepcopy(result))
simCnt += 1 simCnt += 1
end = time.time() end = time.time()
sim.logger.info("A total of %d simulations ran in %d seconds" % (simCnt, end-start), extra=sim.format) sim.logger.info("A total of %d simulations ran in %d seconds" % (simCnt, end-start), extra=sim.format)
if config.dumpXML:
for res in results:
res.dump(execID)
sim.logger.info("Results dumped into results/%s/" % (execID), extra=sim.format)
visualization = 1
if visualization:
vis = Visualizer(execID)
vis.plotHeatmaps()
study() study()