Merge branch 'develop' into addDiagnostics
This commit is contained in:
commit
699a912991
|
@ -58,6 +58,17 @@ class Observer:
|
|||
return (arrived, expected, ready, validated)
|
||||
|
||||
def getProgress(self, validators):
|
||||
"""Calculate current simulation progress with different metrics.
|
||||
|
||||
Returns:
|
||||
- missingSamples: overall number of sample instances missing in nodes.
|
||||
Sample are counted on both rows and columns, so intersections of interest are counted twice.
|
||||
- sampleProgress: previous expressed as progress ratio
|
||||
- nodeProgress: ratio of nodes having all segments interested in
|
||||
- validatorProgress: same as above, but vpn weighted average. I.e. it counts per validator,
|
||||
but counts a validator only if its support node's all validators see all interesting segments
|
||||
TODO: add real per validator progress counter
|
||||
"""
|
||||
arrived, expected, ready, validated = self.checkStatus(validators)
|
||||
missingSamples = expected - arrived
|
||||
sampleProgress = arrived / expected
|
||||
|
@ -68,6 +79,7 @@ class Observer:
|
|||
return missingSamples, sampleProgress, nodeProgress, validatorProgress
|
||||
|
||||
def getTrafficStats(self, validators):
|
||||
"""Summary statistics of traffic measurements in a timestep."""
|
||||
def maxOrNan(l):
|
||||
return np.max(l) if l else np.NaN
|
||||
def meanOrNan(l):
|
||||
|
|
|
@ -7,35 +7,37 @@ from dicttoxml import dicttoxml
|
|||
class Result:
|
||||
"""This class stores and process/store the results of a simulation."""
|
||||
|
||||
def __init__(self, shape):
|
||||
def __init__(self, shape, execID):
|
||||
"""It initializes the instance with a specific shape."""
|
||||
self.shape = shape
|
||||
self.execID = execID
|
||||
self.blockAvailable = -1
|
||||
self.tta = -1
|
||||
self.missingVector = []
|
||||
self.metrics = {}
|
||||
|
||||
def populate(self, shape, missingVector):
|
||||
def populate(self, shape, config, missingVector):
|
||||
"""It populates part of the result data inside a vector."""
|
||||
self.shape = shape
|
||||
self.missingVector = missingVector
|
||||
missingSamples = missingVector[-1]
|
||||
if missingSamples == 0:
|
||||
self.blockAvailable = 1
|
||||
self.tta = len(missingVector)
|
||||
self.tta = len(missingVector) * (1000/config.stepDuration)
|
||||
else:
|
||||
self.blockAvailable = 0
|
||||
self.tta = -1
|
||||
|
||||
def addMetric(self, name, metric):
|
||||
"""Generic function to add a metric to the results."""
|
||||
self.metrics[name] = metric
|
||||
|
||||
def dump(self, execID):
|
||||
def dump(self):
|
||||
"""It dumps the results of the simulation in an XML file."""
|
||||
if not os.path.exists("results"):
|
||||
os.makedirs("results")
|
||||
if not os.path.exists("results/"+execID):
|
||||
os.makedirs("results/"+execID)
|
||||
if not os.path.exists("results/"+self.execID):
|
||||
os.makedirs("results/"+self.execID)
|
||||
resd1 = self.shape.__dict__
|
||||
resd2 = self.__dict__.copy()
|
||||
resd2.pop("shape")
|
||||
|
@ -43,6 +45,6 @@ class Result:
|
|||
resXml = dicttoxml(resd1)
|
||||
xmlstr = minidom.parseString(resXml)
|
||||
xmlPretty = xmlstr.toprettyxml()
|
||||
filePath = "results/"+execID+"/"+str(self.shape)+".xml"
|
||||
filePath = "results/"+self.execID+"/"+str(self.shape)+".xml"
|
||||
with open(filePath, "w") as f:
|
||||
f.write(xmlPretty)
|
||||
|
|
|
@ -19,7 +19,8 @@ class Simulator:
|
|||
self.shape = shape
|
||||
self.config = config
|
||||
self.format = {"entity": "Simulator"}
|
||||
self.result = Result(self.shape)
|
||||
self.execID = execID
|
||||
self.result = Result(self.shape, self.execID)
|
||||
self.validators = []
|
||||
self.logger = []
|
||||
self.logLevel = config.logLevel
|
||||
|
@ -279,7 +280,7 @@ class Simulator:
|
|||
missingVector.append(missingSamples)
|
||||
break
|
||||
elif missingSamples == 0:
|
||||
#self.logger.info("The entire block is available at step %d, with failure rate %d !" % (steps, self.shape.failureRate), extra=self.format)
|
||||
self.logger.debug("The entire block is available at step %d, with failure rate %d !" % (steps, self.shape.failureRate), extra=self.format)
|
||||
missingVector.append(missingSamples)
|
||||
break
|
||||
else:
|
||||
|
@ -288,17 +289,6 @@ class Simulator:
|
|||
progress = pd.DataFrame(progressVector)
|
||||
if self.config.saveProgress:
|
||||
self.result.addMetric("progress", progress.to_dict(orient='list'))
|
||||
if self.config.plotProgress:
|
||||
progress.plot.line(subplots = [[cnS, cnN, cnV], [cnT0], [cnT1, cnR1, cnD1], [cnT2, cnR2, cnD2]],
|
||||
title = str(self.shape))
|
||||
if not os.path.exists("results"):
|
||||
os.makedirs("results")
|
||||
if not os.path.exists("results/"+self.execID):
|
||||
os.makedirs("results/"+self.execID)
|
||||
filePath = "results/"+self.execID+"/"+str(self.shape)+".png"
|
||||
matplotlib.pyplot.savefig(filePath)
|
||||
matplotlib.pyplot.close()
|
||||
|
||||
self.result.populate(self.shape, missingVector)
|
||||
self.result.populate(self.shape, self.config, missingVector)
|
||||
return self.result
|
||||
|
||||
|
|
|
@ -36,7 +36,7 @@ class Visualizer:
|
|||
bwUplinkProd = int(root.find('bwUplinkProd').text)
|
||||
bwUplink1 = int(root.find('bwUplink1').text)
|
||||
bwUplink2 = int(root.find('bwUplink2').text)
|
||||
tta = int(root.find('tta').text)
|
||||
tta = float(root.find('tta').text)
|
||||
|
||||
# Loop over all possible combinations of of the parameters minus two
|
||||
for combination in combinations(self.parameters, len(self.parameters)-2):
|
||||
|
@ -120,7 +120,7 @@ class Visualizer:
|
|||
hist, xedges, yedges = np.histogram2d(data[key][labels[0]], data[key][labels[1]], bins=(len(xlabels), len(ylabels)), weights=data[key]['ttas'])
|
||||
hist = hist.T
|
||||
fig, ax = plt.subplots(figsize=(10, 6))
|
||||
sns.heatmap(hist, xticklabels=xlabels, yticklabels=ylabels, cmap='Purples', cbar_kws={'label': 'Time to block availability'}, linecolor='black', linewidths=0.3, annot=True, fmt=".2f", ax=ax)
|
||||
sns.heatmap(hist, xticklabels=xlabels, yticklabels=ylabels, cmap='Purples', cbar_kws={'label': 'Time to block availability (ms)'}, linecolor='black', linewidths=0.3, annot=True, fmt=".2f", ax=ax)
|
||||
plt.xlabel(self.formatLabel(labels[0]))
|
||||
plt.ylabel(self.formatLabel(labels[1]))
|
||||
filename = ""
|
||||
|
@ -131,6 +131,8 @@ class Visualizer:
|
|||
filename += f"{key[paramValueCnt]}"
|
||||
formattedTitle = self.formatTitle(key[paramValueCnt])
|
||||
title += formattedTitle
|
||||
if (paramValueCnt+1) % 5 == 0:
|
||||
title += "\n"
|
||||
paramValueCnt += 1
|
||||
title_obj = plt.title(title)
|
||||
font_size = 16 * fig.get_size_inches()[0] / 10
|
||||
|
|
|
@ -31,14 +31,14 @@ logLevel = logging.INFO
|
|||
|
||||
# number of parallel workers. -1: all cores; 1: sequential
|
||||
# for more details, see joblib.Parallel
|
||||
numJobs = 3
|
||||
numJobs = -1
|
||||
|
||||
# distribute rows/columns evenly between validators (True)
|
||||
# or generate it using local randomness (False)
|
||||
evenLineDistribution = True
|
||||
|
||||
# Number of simulation runs with the same parameters for statistical relevance
|
||||
runs = range(10)
|
||||
runs = range(2)
|
||||
|
||||
# Number of validators
|
||||
numberNodes = range(256, 513, 128)
|
||||
|
@ -53,14 +53,14 @@ blockSizes = range(32,65,16)
|
|||
netDegrees = range(6, 9, 2)
|
||||
|
||||
# number of rows and columns a validator is interested in
|
||||
chis = range(1, 5, 2)
|
||||
chis = range(2, 5, 2)
|
||||
|
||||
# ratio of class1 nodes (see below for parameters per class)
|
||||
class1ratios = np.arange(0, 1, .2)
|
||||
class1ratios = [0.8, 0.9]
|
||||
|
||||
# Number of validators per beacon node
|
||||
validatorsPerNode1 = [1]
|
||||
validatorsPerNode2 = [2, 4, 8, 16, 32]
|
||||
validatorsPerNode2 = [500]
|
||||
|
||||
# Set uplink bandwidth. In segments (~560 bytes) per timestep (50ms?)
|
||||
# 1 Mbps ~= 1e6 / 20 / 8 / 560 ~= 11
|
||||
|
@ -68,8 +68,11 @@ bwUplinksProd = [2200]
|
|||
bwUplinks1 = [110]
|
||||
bwUplinks2 = [2200]
|
||||
|
||||
# Step duration in miliseconds (Classic RTT is about 100ms)
|
||||
stepDuration = 50
|
||||
|
||||
# Set to True if you want your run to be deterministic, False if not
|
||||
deterministic = False
|
||||
deterministic = True
|
||||
|
||||
# If your run is deterministic you can decide the random seed. This is ignore otherwise.
|
||||
randomSeed = "DAS"
|
||||
|
|
2
study.py
2
study.py
|
@ -36,7 +36,7 @@ def runOnce(config, shape, execID):
|
|||
sim.logger.info("Shape: %s ... Block Available: %d in %d steps" % (str(sim.shape.__dict__), result.blockAvailable, len(result.missingVector)), extra=sim.format)
|
||||
|
||||
if config.dumpXML:
|
||||
result.dump(execID)
|
||||
result.dump()
|
||||
|
||||
return result
|
||||
|
||||
|
|
Loading…
Reference in New Issue