Merge pull request #8 from status-im/config

Adding configuration and shape classes
This commit is contained in:
Leo 2023-01-26 14:33:08 +01:00 committed by GitHub
commit 46f1e7abee
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 241 additions and 106 deletions

View File

@ -1 +1,3 @@
from DAS.simulator import * from DAS.simulator import *
from DAS.configuration import *
from DAS.shape import *

View File

@ -9,8 +9,8 @@ class Block:
blockSize = 0 blockSize = 0
data = bitarray() data = bitarray()
def __init__(self, size): def __init__(self, blockSize):
self.blockSize = size self.blockSize = blockSize
self.data = zeros(self.blockSize*self.blockSize) self.data = zeros(self.blockSize*self.blockSize)
def fill(self): def fill(self):

48
DAS/configuration.py Normal file
View File

@ -0,0 +1,48 @@
#!/bin/python3
import configparser
class Configuration:
deterministic = 0
def __init__(self, fileName):
config = configparser.RawConfigParser()
config.read(fileName)
self.nvStart = int(config.get("Simulation Space", "numberValidatorStart"))
self.nvStop = int(config.get("Simulation Space", "numberValidatorStop"))
self.nvStep = int(config.get("Simulation Space", "numberValidatorStep"))
self.blockSizeStart = int(config.get("Simulation Space", "blockSizeStart"))
self.blockSizeStop = int(config.get("Simulation Space", "blockSizeStop"))
self.blockSizeStep = int(config.get("Simulation Space", "blockSizeStep"))
self.netDegreeStart = int(config.get("Simulation Space", "netDegreeStart"))
self.netDegreeStop = int(config.get("Simulation Space", "netDegreeStop"))
self.netDegreeStep = int(config.get("Simulation Space", "netDegreeStep"))
self.failureRateStart = int(config.get("Simulation Space", "failureRateStart"))
self.failureRateStop = int(config.get("Simulation Space", "failureRateStop"))
self.failureRateStep = int(config.get("Simulation Space", "failureRateStep"))
self.chiStart = int(config.get("Simulation Space", "chiStart"))
self.chiStop = int(config.get("Simulation Space", "chiStop"))
self.chiStep = int(config.get("Simulation Space", "chiStep"))
self.numberRuns = int(config.get("Advanced", "numberRuns"))
self.deterministic = config.get("Advanced", "deterministic")
if self.nvStop < (self.blockSizeStart*4):
print("ERROR: The number of validators cannot be lower than the block size * 4")
exit(1)
if self.chiStart < 1:
print("Chi has to be greater than 0")
exit(1)
if self.chiStop > self.blockSizeStart:
print("Chi (%d) has to be smaller or equal to block the size (%d)" % (self.chiStop, self.blockSizeStart))
exit(1)

View File

@ -5,40 +5,40 @@ from DAS.block import *
class Observer: class Observer:
block = [] block = []
blockSize = 0
rows = [] rows = []
columns = [] columns = []
goldenData = [] goldenData = []
broadcasted = [] broadcasted = []
config = []
logger = [] logger = []
def __init__(self, blockSize, logger): def __init__(self, logger, config):
self.config = config
self.format = {"entity": "Observer"} self.format = {"entity": "Observer"}
self.blockSize = blockSize
self.logger = logger self.logger = logger
def reset(self): def reset(self):
self.block = [0] * self.blockSize * self.blockSize self.block = [0] * self.config.blockSize * self.config.blockSize
self.goldenData = [0] * self.blockSize * self.blockSize self.goldenData = [0] * self.config.blockSize * self.config.blockSize
self.rows = [0] * self.blockSize self.rows = [0] * self.config.blockSize
self.columns = [0] * self.blockSize self.columns = [0] * self.config.blockSize
self.broadcasted = Block(self.blockSize) self.broadcasted = Block(self.config.blockSize)
def checkRowsColumns(self, validators): def checkRowsColumns(self, validators):
for val in validators: for val in validators:
if val.proposer == 0: if val.amIproposer == 0:
for r in val.rowIDs: for r in val.rowIDs:
self.rows[r] += 1 self.rows[r] += 1
for c in val.columnIDs: for c in val.columnIDs:
self.columns[c] += 1 self.columns[c] += 1
for i in range(self.blockSize): for i in range(self.config.blockSize):
self.logger.debug("Row/Column %d have %d and %d validators assigned." % (i, self.rows[i], self.columns[i]), extra=self.format) self.logger.debug("Row/Column %d have %d and %d validators assigned." % (i, self.rows[i], self.columns[i]), extra=self.format)
if self.rows[i] == 0 or self.columns[i] == 0: if self.rows[i] == 0 or self.columns[i] == 0:
self.logger.warning("There is a row/column that has not been assigned", extra=self.format) self.logger.warning("There is a row/column that has not been assigned", extra=self.format)
def setGoldenData(self, block): def setGoldenData(self, block):
for i in range(self.blockSize*self.blockSize): for i in range(self.config.blockSize*self.config.blockSize):
self.goldenData[i] = block.data[i] self.goldenData[i] = block.data[i]
def checkBroadcasted(self): def checkBroadcasted(self):
@ -54,7 +54,7 @@ class Observer:
arrived = 0 arrived = 0
expected = 0 expected = 0
for val in validators: for val in validators:
if val.proposer == 0: if val.amIproposer == 0:
(a, e) = val.checkStatus() (a, e) = val.checkStatus()
arrived += a arrived += a
expected += e expected += e

17
DAS/results.py Normal file
View File

@ -0,0 +1,17 @@
#!/bin/python3
class Result:
config = []
missingVector = []
blockAvailable = -1
def __init__(self, config):
self.config = config
self.blockAvailable = -1
self.missingVector = []
def addMissing(self, missingVector):
self.missingVector = missingVector

19
DAS/shape.py Normal file
View File

@ -0,0 +1,19 @@
#!/bin/python3
class Shape:
numberValidators = 0
failureRate = 0
blockSize = 0
netDegree = 0
chi = 0
def __init__(self, blockSize, numberValidators, failureRate, chi, netDegree):
self.numberValidators = numberValidators
self.failureRate = failureRate
self.blockSize = blockSize
self.netDegree = netDegree
self.chi = chi

View File

@ -1,40 +1,39 @@
#!/bin/python #!/bin/python
import networkx as nx import networkx as nx
import logging import logging, random
from datetime import datetime from datetime import datetime
from DAS.tools import * from DAS.tools import *
from DAS.results import *
from DAS.observer import * from DAS.observer import *
from DAS.validator import * from DAS.validator import *
class Simulator: class Simulator:
chi = 8
blockSize = 256
numberValidators = 8192
failureRate = 0
proposerID = 0 proposerID = 0
logLevel = logging.INFO logLevel = logging.INFO
deterministic = 0
validators = [] validators = []
glob = [] glob = []
result = []
shape = []
logger = [] logger = []
format = {} format = {}
steps = 0
def __init__(self, failureRate): def __init__(self, shape):
self.failureRate = failureRate self.shape = shape
self.format = {"entity": "Simulator"} self.format = {"entity": "Simulator"}
self.steps = 0 self.result = Result(self.shape)
def initValidators(self): def initValidators(self):
if not self.deterministic: self.glob = Observer(self.logger, self.shape)
random.seed(datetime.now())
self.glob = Observer(self.blockSize, self.logger)
self.glob.reset() self.glob.reset()
self.validators = [] self.validators = []
for i in range(self.numberValidators): rows = list(range(self.shape.blockSize)) * int(self.shape.chi*self.shape.numberValidators/self.shape.blockSize)
val = Validator(i, self.chi, self.blockSize, int(not i!=0), self.failureRate, self.deterministic, self.logger) columns = list(range(self.shape.blockSize)) * int(self.shape.chi*self.shape.numberValidators/self.shape.blockSize)
random.shuffle(rows)
random.shuffle(columns)
for i in range(self.shape.numberValidators):
val = Validator(i, int(not i!=0), self.logger, self.shape, rows, columns)
if i == self.proposerID: if i == self.proposerID:
val.initBlock() val.initBlock()
self.glob.setGoldenData(val.block) self.glob.setGoldenData(val.block)
@ -42,27 +41,34 @@ class Simulator:
val.logIDs() val.logIDs()
self.validators.append(val) self.validators.append(val)
def initNetwork(self, d=6): def initNetwork(self):
rowChannels = [[] for i in range(self.blockSize)] self.shape.netDegree = 6
columnChannels = [[] for i in range(self.blockSize)] rowChannels = [[] for i in range(self.shape.blockSize)]
columnChannels = [[] for i in range(self.shape.blockSize)]
for v in self.validators: for v in self.validators:
for id in v.rowIDs: for id in v.rowIDs:
rowChannels[id].append(v) rowChannels[id].append(v)
for id in v.columnIDs: for id in v.columnIDs:
columnChannels[id].append(v) columnChannels[id].append(v)
for id in range(self.blockSize): for id in range(self.shape.blockSize):
G = nx.random_regular_graph(d, len(rowChannels[id]))
if (len(rowChannels[id]) < self.shape.netDegree):
self.logger.error("Graph degree higher than %d" % len(rowChannels[id]), extra=self.format)
G = nx.random_regular_graph(self.shape.netDegree, len(rowChannels[id]))
if not nx.is_connected(G): if not nx.is_connected(G):
self.logger.error("graph not connected for row %d !" % id, extra=self.format) self.logger.error("Graph not connected for row %d !" % id, extra=self.format)
for u, v in G.edges: for u, v in G.edges:
val1=rowChannels[id][u] val1=rowChannels[id][u]
val2=rowChannels[id][v] val2=rowChannels[id][v]
val1.rowNeighbors[id].append(val2) val1.rowNeighbors[id].append(val2)
val2.rowNeighbors[id].append(val1) val2.rowNeighbors[id].append(val1)
G = nx.random_regular_graph(d, len(columnChannels[id]))
if (len(columnChannels[id]) < self.shape.netDegree):
self.logger.error("Graph degree higher than %d" % len(columnChannels[id]), extra=self.format)
G = nx.random_regular_graph(self.shape.netDegree, len(columnChannels[id]))
if not nx.is_connected(G): if not nx.is_connected(G):
self.logger.error("graph not connected for column %d !" % id, extra=self.format) self.logger.error("Graph not connected for column %d !" % id, extra=self.format)
for u, v in G.edges: for u, v in G.edges:
val1=columnChannels[id][u] val1=columnChannels[id][u]
val2=columnChannels[id][v] val2=columnChannels[id][v]
@ -78,20 +84,27 @@ class Simulator:
logger.addHandler(ch) logger.addHandler(ch)
self.logger = logger self.logger = logger
def resetFailureRate(self, failureRate):
self.failureRate = failureRate def resetShape(self, shape):
self.shape = shape
for val in self.validators:
val.shape.failureRate = shape.failureRate
val.shape.chi = shape.chi
def run(self): def run(self):
self.glob.checkRowsColumns(self.validators) self.glob.checkRowsColumns(self.validators)
self.validators[self.proposerID].broadcastBlock() self.validators[self.proposerID].broadcastBlock()
arrived, expected = self.glob.checkStatus(self.validators) arrived, expected = self.glob.checkStatus(self.validators)
missingSamples = expected - arrived missingSamples = expected - arrived
self.steps = 0 missingVector = []
steps = 0
while(missingSamples > 0): while(missingSamples > 0):
missingVector.append(missingSamples)
oldMissingSamples = missingSamples oldMissingSamples = missingSamples
for i in range(1,self.numberValidators): for i in range(1,self.shape.numberValidators):
self.validators[i].receiveRowsColumns() self.validators[i].receiveRowsColumns()
for i in range(1,self.numberValidators): for i in range(1,self.shape.numberValidators):
self.validators[i].restoreRows() self.validators[i].restoreRows()
self.validators[i].restoreColumns() self.validators[i].restoreColumns()
self.validators[i].sendRows() self.validators[i].sendRows()
@ -102,18 +115,21 @@ class Simulator:
arrived, expected = self.glob.checkStatus(self.validators) arrived, expected = self.glob.checkStatus(self.validators)
missingSamples = expected - arrived missingSamples = expected - arrived
missingRate = missingSamples*100/expected missingRate = missingSamples*100/expected
self.logger.info("step %d, missing %d of %d (%0.02f %%)" % (self.steps, missingSamples, expected, missingRate), extra=self.format) self.logger.debug("step %d, missing %d of %d (%0.02f %%)" % (steps, missingSamples, expected, missingRate), extra=self.format)
if missingSamples == oldMissingSamples: if missingSamples == oldMissingSamples:
break break
elif missingSamples == 0: elif missingSamples == 0:
break break
else: else:
self.steps += 1 steps += 1
self.result.addMissing(missingVector)
if missingSamples == 0: if missingSamples == 0:
self.logger.debug("The entire block is available at step %d, with failure rate %d !" % (self.steps, self.failureRate), extra=self.format) self.result.blockAvailable = 1
return 0 self.logger.debug("The entire block is available at step %d, with failure rate %d !" % (steps, self.shape.failureRate), extra=self.format)
return self.result
else: else:
self.logger.debug("The block cannot be recovered, failure rate %d!" % self.failureRate, extra=self.format) self.result.blockAvailable = 0
return 1 self.logger.debug("The block cannot be recovered, failure rate %d!" % self.shape.failureRate, extra=self.format)
return self.result

View File

@ -10,44 +10,40 @@ from bitarray.util import zeros
class Validator: class Validator:
ID = 0 ID = 0
chi = 0 amIproposer = 0
shape = []
format = {} format = {}
blocksize = 0
proposer = 0
failureRate = 0
logger = [] logger = []
def __init__(self, ID, chi, blockSize, proposer, failureRate, deterministic, logger): def __init__(self, ID, amIproposer, logger, shape, rows, columns):
self.shape = shape
FORMAT = "%(levelname)s : %(entity)s : %(message)s" FORMAT = "%(levelname)s : %(entity)s : %(message)s"
self.ID = ID self.ID = ID
self.format = {"entity": "Val "+str(self.ID)} self.format = {"entity": "Val "+str(self.ID)}
self.blockSize = blockSize self.block = Block(self.shape.blockSize)
self.block = Block(blockSize) self.receivedBlock = Block(self.shape.blockSize)
self.receivedBlock = Block(blockSize) self.amIproposer = amIproposer
self.proposer = proposer
self.failureRate = failureRate
self.logger = logger self.logger = logger
if chi < 1: if self.shape.chi < 1:
self.logger.error("Chi has to be greater than 0", extra=self.format) self.logger.error("Chi has to be greater than 0", extra=self.format)
elif chi > blockSize: elif self.shape.chi > self.shape.blockSize:
self.logger.error("Chi has to be smaller than %d" % blockSize, extra=self.format) self.logger.error("Chi has to be smaller than %d" % blockSize, extra=self.format)
else: else:
self.chi = chi if amIproposer:
if proposer: self.rowIDs = range(shape.blockSize)
self.rowIDs = range(blockSize) self.columnIDs = range(shape.blockSize)
self.columnIDs = range(blockSize)
else: else:
self.rowIDs = [] self.rowIDs = rows[(self.ID*self.shape.chi):(self.ID*self.shape.chi + self.shape.chi)]
self.columnIDs = [] self.columnIDs = rows[(self.ID*self.shape.chi):(self.ID*self.shape.chi + self.shape.chi)]
if deterministic: #if shape.deterministic:
random.seed(self.ID) # random.seed(self.ID)
self.rowIDs = random.sample(range(self.blockSize), self.chi) #self.rowIDs = random.sample(range(self.shape.blockSize), self.shape.chi)
self.columnIDs = random.sample(range(self.blockSize), self.chi) #self.columnIDs = random.sample(range(self.shape.blockSize), self.shape.chi)
self.rowNeighbors = collections.defaultdict(list) self.rowNeighbors = collections.defaultdict(list)
self.columnNeighbors = collections.defaultdict(list) self.columnNeighbors = collections.defaultdict(list)
def logIDs(self): def logIDs(self):
if self.proposer == 1: if self.amIproposer == 1:
self.logger.warning("I am a block proposer."% self.ID) self.logger.warning("I am a block proposer."% self.ID)
else: else:
self.logger.debug("Selected rows: "+str(self.rowIDs), extra=self.format) self.logger.debug("Selected rows: "+str(self.rowIDs), extra=self.format)
@ -55,30 +51,30 @@ class Validator:
def initBlock(self): def initBlock(self):
self.logger.debug("I am a block proposer.", extra=self.format) self.logger.debug("I am a block proposer.", extra=self.format)
self.block = Block(self.blockSize) self.block = Block(self.shape.blockSize)
self.block.fill() self.block.fill()
#self.block.print() #self.block.print()
def broadcastBlock(self): def broadcastBlock(self):
if self.proposer == 0: if self.amIproposer == 0:
self.logger.error("I am NOT a block proposer", extra=self.format) self.logger.error("I am NOT a block proposer", extra=self.format)
else: else:
self.logger.debug("Broadcasting my block...", extra=self.format) self.logger.debug("Broadcasting my block...", extra=self.format)
order = [i for i in range(self.blockSize * self.blockSize)] order = [i for i in range(self.shape.blockSize * self.shape.blockSize)]
random.shuffle(order) random.shuffle(order)
while(order): while(order):
i = order.pop() i = order.pop()
if (random.randint(0,99) >= self.failureRate): if (random.randint(0,99) >= self.shape.failureRate):
self.block.data[i] = 1 self.block.data[i] = 1
else: else:
self.block.data[i] = 0 self.block.data[i] = 0
nbFailures = self.block.data.count(0) nbFailures = self.block.data.count(0)
measuredFailureRate = nbFailures * 100 / (self.blockSize * self.blockSize) measuredFailureRate = nbFailures * 100 / (self.shape.blockSize * self.shape.blockSize)
self.logger.info("Number of failures: %d (%0.02f %%)", nbFailures, measuredFailureRate, extra=self.format) self.logger.debug("Number of failures: %d (%0.02f %%)", nbFailures, measuredFailureRate, extra=self.format)
#broadcasted.print() #broadcasted.print()
for id in range(self.blockSize): for id in range(self.shape.blockSize):
self.sendColumn(id) self.sendColumn(id)
for id in range(self.blockSize): for id in range(self.shape.blockSize):
self.sendRow(id) self.sendRow(id)
def getColumn(self, index): def getColumn(self, index):
@ -101,7 +97,7 @@ class Validator:
def receiveRowsColumns(self): def receiveRowsColumns(self):
if self.proposer == 1: if self.amIproposer == 1:
self.logger.error("I am a block proposer", extra=self.format) self.logger.error("I am a block proposer", extra=self.format)
else: else:
self.logger.debug("Receiving the data...", extra=self.format) self.logger.debug("Receiving the data...", extra=self.format)
@ -124,7 +120,7 @@ class Validator:
n.receiveRow(rowID, line) n.receiveRow(rowID, line)
def sendRows(self): def sendRows(self):
if self.proposer == 1: if self.amIproposer == 1:
self.logger.error("I am a block proposer", extra=self.format) self.logger.error("I am a block proposer", extra=self.format)
else: else:
self.logger.debug("Sending restored rows...", extra=self.format) self.logger.debug("Sending restored rows...", extra=self.format)
@ -132,7 +128,7 @@ class Validator:
self.sendRow(r) self.sendRow(r)
def sendColumns(self): def sendColumns(self):
if self.proposer == 1: if self.amIproposer == 1:
self.logger.error("I am a block proposer", extra=self.format) self.logger.error("I am a block proposer", extra=self.format)
else: else:
self.logger.debug("Sending restored columns...", extra=self.format) self.logger.debug("Sending restored columns...", extra=self.format)

View File

@ -16,11 +16,11 @@ $ cd das-research
``` ```
$ python3 -m venv myenv $ python3 -m venv myenv
$ source myenv/bin/activate $ source myenv/bin/activate
$ pip3 install -r DAS/requeriments.txt $ pip3 install -r DAS/requirements.txt
``` ```
## Run the simulator ## Run the simulator
``` ```
$ python3 study.py $ python3 study.py config.das
``` ```

27
config.das Normal file
View File

@ -0,0 +1,27 @@
[Simulation Space]
numberValidatorStart = 256
numberValidatorStop = 512
numberValidatorStep = 128
failureRateStart = 10
failureRateStop = 90
failureRateStep = 40
blockSizeStart = 32
blockSizeStop = 64
blockSizeStep = 16
netDegreeStart = 6
netDegreeStop = 8
netDegreeStep = 1
chiStart = 4
chiStop = 8
chiStep = 2
[Advanced]
deterministic = 0
numberRuns = 2

View File

@ -1,35 +1,45 @@
#! /bin/python3 #! /bin/python3
import time import time, sys
from DAS import * from DAS import *
def study(): def study():
sim = Simulator(0) if len(sys.argv) < 2:
print("You need to pass a configuration file in parameter")
exit(1)
config = Configuration(sys.argv[1])
sim = Simulator(config)
sim.initLogger() sim.initLogger()
maxTries = 10 results = []
step = 20
frRange = []
resultRange = []
simCnt = 0 simCnt = 0
sim.logger.info("Starting simulations:", extra=sim.format) sim.logger.info("Starting simulations:", extra=sim.format)
start = time.time() start = time.time()
for fr in range(0, 100, step):
if fr % 10 == 0: for run in range(config.numberRuns):
sim.logger.info("Failure rate %d %% ..." % fr, extra=sim.format) for fr in range(config.failureRateStart, config.failureRateStop+1, config.failureRateStep):
sim.resetFailureRate(fr) for chi in range(config.chiStart, config.chiStop+1, config.chiStep):
result = 0 for blockSize in range(config.blockSizeStart, config.blockSizeStop+1, config.blockSizeStep):
for i in range(maxTries): for nv in range(config.nvStart, config.nvStop+1, config.nvStep):
for netDegree in range(config.netDegreeStart, config.netDegreeStop+1, config.netDegreeStep):
if not config.deterministic:
random.seed(datetime.now())
shape = Shape(blockSize, nv, fr, chi, netDegree)
sim.resetShape(shape)
sim.initValidators() sim.initValidators()
sim.initNetwork() sim.initNetwork()
result += sim.run() result = sim.run()
sim.logger.info("Run %d, FR: %d %%, Chi: %d, BlockSize: %d, Nb.Val: %d, netDegree: %d ... Block Available: %d" % (run, fr, chi, blockSize, nv, netDegree, result.blockAvailable), extra=sim.format)
results.append(result)
simCnt += 1 simCnt += 1
frRange.append(fr)
resultRange.append((maxTries-result)*100/maxTries)
end = time.time() end = time.time()
sim.logger.info("A total of %d simulations ran in %d seconds" % (simCnt, end-start), extra=sim.format) sim.logger.info("A total of %d simulations ran in %d seconds" % (simCnt, end-start), extra=sim.format)
for i in range(len(frRange)):
sim.logger.info("For failure rate of %d we got %d %% success rate in DAS!" % (frRange[i], resultRange[i]), extra=sim.format)
study() study()